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Background: Sarcopenia is generally diagnosed by the total area of skeletal 
muscle in the CT axial slice located in the third lumbar (L3) vertebra. However, 
patients with severe liver cirrhosis cannot accurately obtain the corresponding 
total skeletal muscle because their abdominal muscles are squeezed, which 
affects the diagnosis of sarcopenia.

Purpose: This study proposes a novel lumbar skeletal muscle network to 
automatically segment multi-regional skeletal muscle from CT images, and 
explores the relationship between cirrhotic sarcopenia and each skeletal muscle 
region.

Methods: This study utilizes the skeletal muscle characteristics of different spatial 
regions to improve the 2.5D U-Net enhanced by residual structure. Specifically, 
a 3D texture attention enhancement block is proposed to tackle the issue of 
blurred edges with similar intensities and poor segmentation between different 
skeletal muscle regions, which contains skeletal muscle shape and muscle fibre 
texture to spatially constrain the integrity of skeletal muscle region and alleviate 
the difficulty of identifying muscle boundaries in axial slices. Subsequentially, a 
3D encoding branch is constructed in conjunction with a 2.5D U-Net, which 
segments the lumbar skeletal muscle in multiple L3-related axial CT slices into 
four regions. Furthermore, the diagnostic cut-off values of the L3 skeletal muscle 
index (L3SMI) are investigated for identifying cirrhotic sarcopenia in four muscle 
regions segmented from CT images of 98 patients with liver cirrhosis.

Results: Our method is evaluated on 317 CT images using the five-fold cross-
validation method. For the four skeletal muscle regions segmented in the images 
from the independent test set, the avg. DSC is 0.937 and the avg. surface distance 
is 0.558 mm. For sarcopenia diagnosis in 98 patients with liver cirrhosis, the cut-
off values of Rectus Abdominis, Right Psoas, Left Psoas, and Paravertebral are 
16.67, 4.14, 3.76, and 13.20 cm2/m2 in females, and 22.51, 5.84, 6.10, and 17.28 cm2/m2 
in males, respectively.

Conclusion: The proposed method can segment four skeletal muscle regions 
related to the L3 vertebra with high accuracy. Furthermore, the analysis shows that 
the Rectus Abdominis region can be used to assist in the diagnosis of sarcopenia 
when the total muscle is not available.
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1. Introduction

Sarcopenia is a pathological decrease in skeletal muscle, 
including primary sarcopenia and secondary sarcopenia. Primary 
sarcopenia is the aging and atrophy of skeletal muscle with age, 
which is related to the aging process of humans. And secondary 
sarcopenia is caused by poor dietary intake, malnutrition and 
chronic diseases such as cirrhosis of the liver (Bauer et al., 2019). 
Sarcopenia is a common complication in patients with liver 
cirrhosis, characterized by the loss of muscle strength and mass. 
According to statistics (Xiao et  al., 2019), as many as 7 million 
people in China suffer from cirrhosis, accounting for 0.5% of the 
total population. The prevalence of sarcopenia in cirrhotic patients 
is between 40% and 70% due to metabolic abnormalities resulting 
from decreased liver function (Cao et al., 2017). Study (Tantai et al., 
2022) shows that cirrhotic sarcopenia increases the risk of falls, 
fractures, decreased quality of life, or acute-on-chronic liver failure 
in patients with cirrhosis. Sarcopenia is significantly associated with 
morbidity and mortality in cirrhotic patients (Hanai et al., 2015) 
and is an independent predictor of survival in patients with 
cirrhosis (Kim et al., 2017). Therefore, early and accurate diagnosis 
of sarcopenia is helpful for the clinical treatment and management 
of liver cirrhosis patients.

Sarcopenia is generally diagnosed by the third lumbar skeletal 
muscle index (L3SMI). L3SMI is defined by measuring the skeletal 
muscle area in the axial CT slice of the third lumbar (L3) vertebra, and 
then calculating the ratio of cross-sectional muscle area to the square 
of body height. For diagnosing patients with cirrhotic sarcopenia, the 
L3SMI’s cut-off values are 50 cm2/m2 in males and 39 cm2/m2 in 
females (Carey et al., 2017). However, in some diseases, it would not 
be enough to only measure these muscles. For example, parts of the 
abdominal muscles of patients with severe ascites may be severely 
squeezed; or the progression of myosteatosis varies in different muscle 
regions in nonalcoholic fatty liver disease. A recent study also explored 
the sarcopenia defined by different muscle groups such as total skeletal 
muscle, psoas major muscle, and rectus abdominis muscle as a 
prognostic factor for patients with advanced hepatocellular carcinoma 
(Wu et  al., 2021). This shows that in the diagnosis of cirrhotic 
sarcopenia, considering the effect of disease on muscle in different 
regions, partitioning skeletal muscle regions and analyzing each 
muscle region separately may be a useful supplement to the analysis 
of the total skeletal muscle.

Therefore, this paper will study the multi-regional skeletal muscles 
from multiple L3-related CT slices. As shown in Figure 1, red, yellow, 
green, and blue represent the labels of Rectus Abdominis (the rectus 
abdominis, external oblique abdominis, internal oblique abdominis, 
and transversus abdominis at the anterior periphery of L3), 
Paravertebral (the paravertebral muscle groups such as the erector 
spine at the posterior part of L3), Right Psoas and Left Psoas (the 
psoas major, psoas minor, and psoas square on the right and left sides 
of L3) respectively. Once these skeletal muscle regions are segmented 

from the L3-related axial CT slices, they can efficiently assist in the 
diagnosis of sarcopenia.

However, there are various challenges in segmenting multiple 
skeletal muscle regions in abdominal or abdominopelvic CT images. As 
shown in Figure 1, there are obvious differences in the shape and size of 
different skeletal muscles; the boundaries between different skeletal 
muscle regions or between skeletal muscle and surrounding tissue are 
unclear or rough, such as the edges of the Right Psoas and Left Psoas in 
Figure 1; morphological differences of the same skeletal muscle region 
between different individuals affect segmentation; physiopathological 
conditions such as muscle fatty degeneration and muscle-reducing 
obesity affect muscle morphology and signal intensity in CT images; 
artifacts in CT images increase the difficulty of segmentation.

Deep Convolution Neural Network (CNN) (LeCun et al., 1998) is 
an effective model for muscle region segmentation in abdominal CT 
images, including Fully Convolutional Network (FCN) (Long et  al., 
2015) architecture and encoder–decoder-based models such as 2D 
U-Net (Ronneberger et al., 2015), 3D U-Net (Çiçek et al., 2016), and 
Swin-unet (Cao et al., 2023). For example, Dabiri et al. (2019) used FCN 
and 2D U-Net to segment skeletal muscles in L3- or L4-related CT slices 
for body composition analysis. Castiglione et al. (2021) and Dabiri et al. 
(2020) firstly automatically located the axial slice at the L3 centroid from 
a whole-body or partial-body CT image, and then used 2D U-Net–based 
models to segment body components, such as skeletal muscle. Park et al. 
(2020) developed and validated an FCN-based system to analyze skeletal 
muscles in the axial CT images at the inferior endplate of the L3. Blanc-
Durand et al. (2020) used CNN to predict the muscle surface from the 
axial CT slices related to L3. And Weston et al. (2020) used U-Net variant 
architecture to segment muscles and other tissues in the abdominopelvic 
CT images. However, these methods only considered the total skeletal 
muscle segmentation but did not pay attention to different muscle region 
segmentation. The relationship between the total skeletal muscle and the 
diagnosis of sarcopenia can be obtained, but the diagnostic effectiveness 
of muscles in each region cannot be analyzed.

Recent studies have gradually focused on the segmentation of 
multiple skeletal muscle regions. Burns et al. (2020) used 2D U-Net-
based model to automatically segment multiple muscle groups in the 
L3- and L4-related axial CT slices to detect central sarcopenia. Huang 
et al. (2020) used BS-ESNet to automatically segment paravertebral 
muscles in axial MRI slices at different spine levels. Barnard et al. 
(2019) used 2D U-Net based model to automatically segment the left 
paraspinal muscle in the axial CT slice at the twelfth thoracic vertebra. 
Although these methods focused on muscle segmentation in different 
regions, they did not pay attention to the multi-regional analysis in 
multiple axial CT slices related to L3. And they did not explore the 
relationship between cirrhotic sarcopenia and each skeletal 
muscle region.

Therefore, the study presents the method to accurately segment 
multiple skeletal muscle regions in the axial slices associated with the 
L3 vertebra, and then calculate the clinical indices and use them for the 
diagnosis of sarcopenia. L3SMI can usually be calculated from muscle 
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regions segmented in two consecutive axial slices associated with the 
L3 vertebra, i.e., L3 middle and its adjacent lower slices (Wang et al., 
2020), or one axial slice, i.e., L3 upper (Carey et al., 2017) or end slice 
(Li et al., 2020). However, recent studies demonstrated that the average 
difference of the skeletal muscle volume measurement was significantly 
lower than that of the corresponding region in a single CT slice by 
segmenting the entire abdominopelvic skeletal muscle (Borrelli et al., 
2021). Inspired by this, the study uses the average cross-sectional area 
of the total skeletal muscle volume corresponding to the L3 vertebra to 
calculate a more reasonable skeletal muscle index. Furthermore, the 
relationship between each regional skeletal muscle and L3SMI is also 
investigated for sarcopenia diagnosis.

2. Materials and methods

2.1. Data description

This study used abdominal or abdominopelvic CT images of 317 
patients from Zhongshan Hospital affiliated to Fudan University in 
Shanghai, China, including 216 cirrhotic patients and 101 
non-cirrhotic patients. And height and gender of 98 patients in the 
cirrhosis group were also collected to analyze the relationship between 

sarcopenia and each skeletal muscle region. According to the 
diagnostic criteria of cirrhotic sarcopenia (Carey et al., 2017), there 
were 54 patients with sarcopenia, 43 of which were male and 11 
females, and 44 patients with non-sarcopenia, 21 of which were male 
and 23 females. The mean age of the patients was 57 years old.

The imaging parameters for abdominal or abdominopelvic CT 
scans are as follows: the in-plane spacing is between 
0.562 mm × 0.562 mm and 0.888 mm × 0.888 mm; the slice thickness 
is 5.0 mm; the image acquisition matrix is 512 × 512; and the number 
of L3 related axial slices are between 4 and 8.

Experienced clinicians manually labeled the skeletal muscle 
regions in all L3-related axial CT slices. According to muscle type and 
distribution, four skeletal muscle regions in the axial, sagittal, and 
coronal planes are obtained and shown in rows A and B of Figure 1. 
Here, red, green, blue, and yellow represent the label of Rectus 
Abdominis, Right Psoas, Left Psoas, and Paravertebral, respectively.

2.2. L3 localization and image 
preprocessing

Abdominal or abdominopelvic CT images contain many 
abdominal and lumbar regions, so it is necessary to accurately locate 

FIGURE 1

(A) The axial CT slices related to L3 are labeled and extracted. (B) The distribution of the four skeletal muscle regions is displayed in axial, sagittal, and 
coronal planes, and red, green, blue, and yellow represent the labels of Rectus Abdominis, Right Psoas, Left Psoas, and Paravertebral, respectively. 
(C) The red arrows indicate the skeletal muscle in the same location, and the skeletal muscles indistinguishable in the axial plane have distinct 
distinguishing features in the sagittal and coronal planes.
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the L3 vertebra. This can be achieved by our developed method of 
automatic localization and identification of vertebra in spine CT 
images (Qin et al., 2021), which is further checked and confirmed by 
the clinician. Once the L3 was successfully detected, all axial slices 
related to L3 can be extracted, totaling about 4 to 8 slices, as shown in 
row A of Figure 1.

For all L3-related axial slices extracted from each CT image, if the 
number of the slices was less than 8, zero-padding was performed 
along the axial direction, so that the number of L3-related axial slices 
of all CT images was equal. Finally, the image block composed of 
L3-related slices was represented by a tensor with size 8 × 512 × 512 
(depth × height × width), which was convenient for inputting the 
network and extracting the axial space feature. The extracted slices 
were processed by intensity normalization. Considering the fact that 
the minimum and maximum Hounsfield Unit (HU) values are varied 
among all CT images, in order to obtain better image contrast, the full 
range of HU values of each image was mapped to [0, 1].

2.3. Skeletal muscle segmentation network

Figure 2 depicts the lumbar skeletal muscle segmentation network 
(LSMU-Net for short). The input of the network is the multiple 
L3-related axial slices of the abdominal CT images, and the outputs are 
the labels of the four skeletal muscle regions. The network mainly 
consists of two hybrid architectures, i.e., a 2.5D encoding–decoding 
network improved by residual structure, and a 3D encoding branch that 
enhances the spatial texture information. Specifically, the dedicated 
texture attention enhancement block is utilized to discern the blurred 

skeletal muscle boundaries in the 2D axial image shown in row C of 
Figure 1 from the 3D image space. The details are described as following.

2.3.1. 2.5D encoding-decoding network
The 2.5D network, which is composed of the encoding and 

decoding branches connected by skip channel connections, is used to 
implement segmentation in the axial CT slice image. Here, although 
the 2.5D branch uses 2D convolution kernel, the input of the network 
consists of CT volumes with multiple slices. In particularly, to adapt 
to the 2.5D network, slices of the input volume are squeezed into a 
batch, so that a volume represented by a tensor with size 
1 × 1 × 8 × 512 × 512 (batch × channel × depth × height × width) is 
squeezed and processed by a dimensional permutation to the size of 
8  ×  1  ×  512  ×  512 (batch  ×  channel  ×  height  ×  width). Here, 8 
originally denotes the depth dimension of the volume and then the 
number of image batch. The batch of the permutated slices is fed into 
the 2.5D encoding branch containing 5 successive Block2D modules 
with 4 stages of 2× max-pooling layer, and then goes through the 
decoding branch with 4 stages of 2× Upsample and Block2D module 
to obtain the hierarchical feature map at each stage. The features of the 
corresponding layer are concatenated in the channel dimension. In the 
last layer of the decoding branch, the feature map is restored to the 
same size as the input image and fused with the output features of both 
the 3D encoding branch and the channel connection in the channel 
direction, then the feature map represented by a tensor with size 
8 × 152 × 512 × 512 is obtained. Finally, a 1 × 1 convolution layer is 
deployed to obtain the prediction maps of 5 categories represented by 
a tensor with size 8 × 5 × 512 × 512 as the final outputs (4 regions of 
skeletal muscles and background).

FIGURE 2

Illustration of the lumbar skeletal muscle segmentation network (LSMU-Net). LSMU-Net containing two parts, i.e., 2.5D Encoding-Decoding Network 
and 3D Encoding Branch. The dimension representation pattern is batch × channel × height × width in the 2.5D network, whereas 
batch × channel × depth × height × width in the 3D branch.
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2.3.2. 3D encoding branch
This is the contextual feature extraction network of the volumetric 

region composed of multiple L3-related axial slices. The network 
consists of 3 layers. Each layer of the 3D encoding branch is composed 
of the max-pooling layer, a Block3D module, and a texture attention 
enhancement block. The output feature map of the Block3D is halved 
by down-sampling using a max-pooling operation. The obtained 
feature maps are transferred to the next layer, simultaneously 
enhanced by the texture attention enhancement block, then restored 
to the original image size, and finally expanded 8 times by duplication 
operation for connecting with the output feature of the 2D decoder 
branch in the channel dimension. In the study, the input is an 
L3-related volumetric image represented by a tensor with size 
1 × 1 × 8 × 512 × 512. After multiple layers of extracted features are 
concatenated to form 3D hierarchical features, the tensor size is 
8 × 112 × 512 × 512 (batch × channel × height × width). Furthermore, 
the channel connection operation is performed with the feature of the 
last layer of the 2.5D network.

Block2D and Block3D: as the basic structure of the LSMU-Net, 
Block2D and Block3D take the residual structure of 2D ResU-Net  
(He et al., 2016) as a reference, but they also have differences. First, the 
convolutional layers are cascaded with InstanceNorm and LeakyReLU 
to form the basic blocks; subsequently, three groups of basic blocks are 
cascaded and jump-connected to form Block2D or Block3D with 
residual structures, respectively, as shown in Figure 3. Block2D has a 
3 × 3 convolutional kernel and Block3D has a 3 × 3 × 3 kernel. These 
two structural blocks do not change the number of channels, but can 
effectively deepen the model, facilitating finer edge feature extraction 
and providing better correction for skeletal muscle refinement. The 
down-sampling process of the 3D branch contains more trainable 

features, which requires more convolutional layers to extract spatial 
information. Therefore, the designs of residual connections in 
Block2D and Block3D are different, with more convolutional layers in 
Block3D so that spatial information and 3D structural characteristics 
can be sufficiently propagated and utilized in the whole network.

Here, it should be noted that the study takes the 2.5D network as 
the backbone structure. The initial reason is that the number of L3 
axial CT slices is small, which limits multiple down-sampling of the 
3D network. And the studies (Liu et al., 2017; Isensee et al., 2021) 
shows that conventional 3D segmentation methods may deteriorate 
the performance in the anisotropic medical image, and anisotropic 
convolution on specific planes with better resolution and more 
appearance features may also improve the accuracy (Jia et al., 2022). 
As shown in row C of Figure 1, the red arrows indicate the same 
position of the axial, sagittal, and coronal planes, and the skeletal 
muscles that cannot be distinguished in the axial plane have distinct 
characteristics in the sagittal and coronal planes. The 3D encoding 
branch precisely extracts the spatial context information (shown by 
the red arrows) lost in the 2.5D network, and the fusion of these 
features enables the 2.5D network to refine the edges of the skeletal 
muscle region from the shape of the muscle fiber bundle, improving 
the segmentation performance. And the studies (Meyer et al., 2021) 
also shows that the ensemble of 2.5D and 3D network does improve 
the accuracy in 3D medical image segmentation. Finally, the training 
time is reduced because the number of parameters in the 2.5D 
network is less than that of the 3D network.

2.3.3. Texture attention enhancement block
To better integrate 3D features and 2.5D features, Zhou et  al. 

(2019) simultaneously selected and trained four adjacent 2D slice 

FIGURE 3

Illustration of the basic residual structures of 2.5D and 3D networks, i.e., Block2D and Block3D, as well as Texture Attention Enhancement Block.
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images to complement the 3D features, then extracted the features 
from 2.5D and 3D branches, and fused them after attention 
enhancement. In this study, based on the standard Squeeze-and-
excitation (SE) Block (Hu et al., 2020), a texture attention enhancement 
block is constructed to compress the channel feature in the 3D 
network and enhance the blurred edge regions, as shown in Figure 3. 
The features extracted by Block3D represented by a tensor with size 
channel × depth × height × width are fed into the attention block. 
Firstly, the global average pooling is carried out to obtain the feature 
map represented by a tensor with size channel × 1 × 1 × 1. Then it 
passes through two layers of a fully connected layer, in which the 
number of neurons in the first fully connected layer is channel/16 
(following SE Block), and the second fully connected layer restores the 
original number of neurons. This operation increases the nonlinear 
processing and can fit the complex correlation between channels. 
Then the probability map is generated through the Sigmoid function. 
Secondly, the features extracted by Block3D are input into the Texture 
Attention Block after passing the Sigmoid function, and the pixel-level 
attention information is obtained through this operation. The 
proposed Texture Attention Block can increase the range of attention, 
as shown in Eq. (1).

 TextureAttention x x x( ) = −( )1  (1)

where x represents the input probability map. This formula 
assigns a higher weight to the edge region whose probability is 
close to 0.5 and a lower weight to the area whose probability is far 
away from 0.5.

By adding the output feature of Eq. (1), the network no longer 
only pays attention to the middle part of the skeletal muscle but 
also enhances the edge refinement based on the shape constraints 
of the skeletal muscle fibre bundles. The texture attention 
enhancement block applied in the 3D branch is aim to calculate the 
weight of the corresponding pixel level and the weight of the 
channel at the same time, and combine the two. The utility of the 
texture attention enhancement block is based on the local 
information of the image, and more attention is paid to the skeletal 
muscle edge. The part of the skeletal muscle edge is given a high 
weight value through the pixel-level weight, and the background 
and the internal area of the skeletal muscle are set a small weight 
value. Finally, the channels are compressed by the Squeeze and 
Upsample block to restore the feature map represented by a tensor 
of original size 512 × 512 in the height and width directions for easy 
fusion with the 2.5D network.

2.3.4. Loss function
For an input abdominal CT image, four skeletal muscle regions 

are segmented by combining the multi-class cross-entropy loss 
function, Lossce, and the dice loss function, Lossdice. The calculation 
of these loss function is shown in Eqs. (2)–(4).

 Loss Loss Lossce dice= +  (2)
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where C = 5 denotes the four skeletal muscle regions and the 
background. ωc denotes the weight of region c. yic  indicates the 
ground truth value of the ith  pixel which belongs to the cth label. ˆc

iy  
denotes the predicted value of the ith  pixel which is predicted as the 
cth label. H and W denote the height and width of the 2D axial CT 
image, respectively.

The sizes of the four skeletal muscle regions vary greatly, which 
means there is a class imbalance problem that may lead to the instability 
of the segmentation network. Therefore, during the training stage, it is 
necessary to punish the low confidence (such as Right Psoas and Left 
Psoas) prediction by setting the weight in the loss function. Specifically, 
the pixel proportions of the four skeletal muscle regions and 
background in the training images are counted, and then the regions 
with smaller proportions are set with large weights, and the regions 
with large proportions are set with small weights, as shown in Eq. (5).
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where H, W, and D denote the height, width, and depth of the 
training image and Ncdenotes the number of pixels counted in the cth

label. As a result, the prior statistics of ωc ensure the class equilibrium 
optimization of the loss function.

2.4. Training and testing parameter settings

The experiments were conducted on Ubuntu 18.04 operating 
system and PyTorch framework, configured with Intel® Core™ 
i5-9600K (3.70 GHz × 6 CPUs), 64 GB RAM and RTX 3090 GPUs. 
The study was evaluated on the abdominal CT images of 317 patients, 
including 216 cirrhotic patients and 101 non-cirrhotic patients. Firstly, 
we randomly divided these data into training group (n = 252) and 
independent test group (n = 65). Cirrhotic images and non-cirrhotic 
images were evenly distributed in each group. Secondly, on the train 
group, we used the five-fold cross-validation method to evaluate the 
proposed algorithm. That is, we randomly divided all the sampled into 
five groups and used four groups for training and the left-out group 
for testing in each fold. Cirrhotic images and non-cirrhotic images 
were evenly distributed in each fold. And the Adam optimizer with a 
learning rate of 0.001 was used to execute for 30 epochs in each fold, 
and five models were obtained. Thirdly, the model with the best 
performance of five models was selected to run on the independent 
test group for the final inference.

2.5. Evaluation indicators

The evaluation metrics of our segmentation results are based on 
standard measures calculated from pixel-level confusion matrix, 
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including Dice similarity coefficient (DSC) (Zou et al., 2004) and 
Sensitivity calculated from Eqs. (6) and (7), respectively.

 
DSC =

+ +
2

2

TP
TP FP FN

c

c c c  
(6)

 
Sensitivity =

+
TP

TP FN
c

c c  
(7)

where c denotes a category label. TPc and TNc denote the numbers 
of the true positive and the true negative pixels in the cth skeletal 
muscle region, while FPc and FNc are the numbers of the false positive 
and the false negative pixels in that category, respectively.

Average symmetrical surface distance (ASSD) is the average 
Hausdorff distance between the outer surfaces of the segmentation 
result and the ground truth, calculated from Eqs. (8) and (9).
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where Sc and Gc denote the surfaces of the segmentation and the 
ground truth of class c, respectively. The shortest distance from any 
voxel vs belonging to Sc toGc is calculated in Eq. (8). ||·||2 represents 
the Euclidean Distance. NSc  and NGc

 represent the number of voxels 
in the surfaces of the segmentation and the ground truth of class c, 
respectively. The unit for ASSD is a millimeter.

3. Experimental result

3.1. Ablation comparison experiments

To illustrate the overall structural validity of the proposed 
network, we reproduced 2D U-Net, 3D U-Net, 2D ResU-Net, and 3D 
ResU-Net (Lee et  al., 2017) for comparison experiments. The 
normalization function and the activation function were 
InstanceNorm and LeakyReLU. In addition, since nnU-Net (Isensee 
et al., 2021) is an out-of-the-box representative of 3D U-Net, and has 
achieved the excellent results in several medical image segmentation 
tasks, in order to evaluate the performance of LSMU-Net, we used the 
latest code (nnU-Net V2, including 2D nnU-Net and 3D nnU-Net) 
from the official nnU-Net website1 to segment the same data set 
following the same cross-validation method. The cirrhosis dataset has 
previously been used for slice-based segmentation in literature (Liu 
et al., 2019), but that study only described the segmentation model 
and lacked a detailed description of the training set, the validation set, 
cross-validation, and DSC calculation of each dataset, so no 
comparison was made with it. It is worth noting that, in order to make 

1 https://github.com/MIC-DKFZ/nnUNet

a fair comparison, all the experiments in the study did not enhance 
the data, which indicates that the results may have the risk 
of overfitting.

Table 1 shows the DSC results of different methods in segmenting 
the four skeletal muscle regions of Rectus Abdominis, Right Psoas, 
Left Psoas and Paravertebral regions. It can be noted from rows 1–4 of 
Table  1 that the DSC values of the methods combining with the 
residual structure, namely 2D and 3D ResU-Net, are generally better 
than those of the corresponding 2D and 3D U-Net, respectively. 
Therefore, these structures were used in our network. The ablation 
experiments in rows 7 to 10 of Table 1 also show that the combination 
of residual structure in our method did improve the DSC values of all 
skeletal muscles. Rows 5 and 6 shows that the DSC values of the four 
skeletal muscle regions segmented by 2D and 3D nnU-Net. In 
particular, the DSC values by 3D nnU-Net are 0.948, 0.929, 0.922, and 
0.954, respectively, and the corresponding values by our LSMU-Net 
are 0.943, 0.928, 0.922, and 0.957  in row 12. The segmentation 
performance of 3D nnU-Net is slightly higher than that of LSMU-Net 
in regions of Rectus Abdominis and Right Psoas. The DSC value of 
LSMU-Net is higher than that of 3D nnU-Net in Paravertebral. The 
DSC values of 3D nnU-Net and LSMU-Net are the same in the 
Left Psoas.

To evaluate the utility of each module, the ablation experiments 
of LSMU-Net were conducted from different perspectives while 
keeping the parameter settings unchanged. The DSC results of the 
four skeletal muscle regions are shown in rows 7 to 11 of Table 1. 
First, the residual module, 3D encoding branch, and texture attention 
enhancement block were removed from LSMU-Net, respectively. In 
row 7, there are no 3D branch nor attention block to enhance spatial 
information. Although the remaining 2.5D backbone network has the 
same residual structure as 2D ResU-Net, their convolutional layers 
are arranged differently because our Block2D has an additional layer 
of convolutional operation before the residual structure. In row 8, 
DSC increase in all four skeletal muscle regions by comparing to row 
7 with the addition of the 3D branch without attention. As the 3D 
branch with attention block in the study mainly focuses on edge 
refinement to obtain more accurate skeletal muscle edges, which is 
more effective in improving the edges of skeletal muscles with small 
areas like the Right Psoas and Left Psoas. Thus, DSC could also 
be improved with the addition of only one 3D branch. In row 9, the 
network including Block2D and Block3D removes all residual 
structures compared to LSMU-Net. It can be seen that the decrease 
of DSC indicates that the residual structures in the network is useful 
for the segmentation of skeletal muscle. To illustrate the validity of 
the weights in the loss function, we  removed the weights from 
LSMU-Net in row 10 and found that the DSCs of Rectus Abdominis, 
Right Psoas, and Left Psoas decrease compared with LSMU-Net. 
Secondly, row 11 shows the results of LSMU-Net using the SE block, 
which is slightly worse than the results of LSMU-Net using the 
texture attention enhancement block in row 12. This indicates that 
our texture attention enhancement block can improve the 
segmentation of fuzzy regions and optimize the performance of 
our method.

Table 2 shows the LSMU-Net ablation comparison experiment on 
the average index of four skeletal muscle regions in the independent 
test dataset. The prediction results of 3D nnU-Net are 0.938, 0.942, 
and 0.578 mm in terms of DSC, Sensitivity, and ASSD (mm), 
respectively. The corresponding results of LSMU-Net are 0.937, 0.944, 
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and 0.558 mm, respectively. The ASSD of LSMU-Net is slightly lower 
than those of other networks.

3.2. Quantitative segmentation results

Our LSMU-Net method was used to segment the four skeletal 
muscle regions in the CT image. Table 3 shows the accuracy of the 
segmentation results for the independent test dataset. For the four 
skeletal muscle regions, DSC reached above 0.92, and Sensitivity 
exceeded 0.93. Our method achieved the best segmentation results for 
the Paravertebral muscles, which were easy to segment because of 
their large area and concentration near the L3 vertebra. However, the 
skeletal muscles represented by Right Psoas and Left Psoas are very 
small, so the corresponding metrics are low, which makes the average 
values of the corresponding muscles less than those of the 
Paravertebral muscles.

Table 3 also shows the average surface distance error of the four 
skeletal muscle regions. The Paravertebral muscle had the smallest 
ASSD of 0.410 mm; while the Left Psoas muscle had the largest ASSD 
at 0.689 mm. The average ASSD for all skeletal muscles reached 
0.558 mm.

3.3. Qualitative segmentation results

To observe whether our method achieved effective segmentation 
of skeletal muscle edges, Figure  4 shows the comparison of the 
segmented contours and the target contours in a CT image from the 
independent test dataset. The green line shows the contour of the 
target, and the red line denotes the contour of the segmentation result.

As seen in Figure 4, 2D U-Net, 3D U-Net, 3D ResU-Net, and 
LSMU-Net-RS have a poor effect on segmenting skeletal muscle in 
this data. Compared to LSMU-Net-3D, LSMU-Net-AB, and 

TABLE 1 LSMU-Net ablation comparison experiment shown on DSC in the independent test dataset.

# 3D AB RS W Rectus abdominis Right psoas Left psoas Paravertebral

3D U-Net 1 0.924 ± 0.001 0.914 ± 0.002 0.902 ± 0.004 0.946 ± 0.001

2D U-Net 2 0.936 ± 0.002 0.925 ± 0.002 0.915 ± 0.003 0.955 ± 0.000

3D ResU-Net 3 ✓ 0.925 ± 0.002 0.916 ± 0.003 0.909 ± 0.003 0.952 ± 0.001

2D ResU-Net 4 ✓ 0.940 ± 0.001 0.926 ± 0.002 0.918 ± 0.003 0.957 ± 0.001

3D nnU-Net 5 0.948 ± 0.001 0.929 ± 0.002 0.922 ± 0.002 0.954 ± 0.001

2D nnU-Net 6 0.946 ± 0.001 0.926 ± 0.003 0.916 ± 0.003 0.956 ± 0.000

LSMU-Net based

7 ✓ ✓ 0.940 ± 0.001 0.925 ± 0.002 0.914 ± 0.002 0.954 ± 0.001

8 ✓ ✓ ✓ 0.942 ± 0.001 0.926 ± 0.002 0.920 ± 0.003 0.957 ± 0.001

9 ✓ ✓ ✓ 0.931 ± 0.001 0.916 ± 0.001 0.906 ± 0.003 0.950 ± 0.001

10 ✓ ✓ ✓ 0.941 ± 0.001 0.927 ± 0.002 0.918 ± 0.003 0.957 ± 0.001

LSMU-Net + SE 11 ✓ ✓ ✓ 0.942 ± 0.001 0.926 ± 0.002 0.915 ± 0.003 0.956 ± 0.001

LSMU-Net 12 ✓ ✓ ✓ ✓ 0.943 ± 0.001 0.928 ± 0.002 0.922 ± 0.002 0.957 ± 0.001

#, method number; 3D, 3D encoding branch; AB, attention block; RS, residual structure; W, weights. The bold value indicates that the method in row has achieved the best performance.

TABLE 2 LSMU-Net ablation comparison experiment shown on the average index of four skeletal muscle regions in the independent test dataset.

# 3D AB RS W DSC Sensitivity ASSD (mm)

3D U-Net 1 0.922 ± 0.002 0.918 ± 0.003 1.263 ± 19.103

2D U-Net 2 0.934 ± 0.002 0.941 ± 0.001 0.695 ± 2.261

3D ResU-Net 3 ✓ 0.925 ± 0.002 0.923 ± 0.003 0.691 ± 2.045

2D ResU-Net 4 ✓ 0.935 ± 0.002 0.942 ± 0.001 0.641 ± 0.845

3D nnU-Net 5 0.938 ± 0.001 0.942 ± 0.002 0.578 ± 1.187

2D nnU-Net 6 0.936 ± 0.002 0.941 ± 0.002 0.814 ± 6.055

LSMU-Net based

7 ✓ ✓ 0.933 ± 0.002 0.937 ± 0.001 0.631 ± 0.785

8 ✓ ✓ ✓ 0.936 ± 0.002 0.942 ± 0.001 0.695 ± 3.711

9 ✓ ✓ ✓ 0.926 ± 0.002 0.922 ± 0.003 1.279 ± 12.220

10 ✓ ✓ ✓ 0.936 ± 0.002 0.947 ± 0.001 0.677 ± 1.381

LSMU-Net + SE 11 ✓ ✓ ✓ 0.935 ± 0.002 0.939 ± 0.001 0.623 ± 0.881

LSMU-Net 12 ✓ ✓ ✓ ✓ 0.937 ± 0.002 0.944 ± 0.001 0.558 ± 0.715

#, method number; 3D, 3D encoding branch; AB, attention block; RS, residual structure; W, weights. The bold value indicates that the method in row has achieved the best performance.
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LSMU-Net-W, the LSMU-Net can reduce the wrong pixels at the 
edges of the segmentation results. In LSMU-Net, the green line 
contours overlap more with the red line contours, especially in uneven 
areas. While using the 2D ResU-Net, most of the muscles are well 
segmented, but in the magnified edge part, it is still non-fine edge 
segmentation compared to LSMU-Net. While compared with the 
network using SE attention (i.e., LSMU-Net + SE), LSMU-Net shows 
smoother boundary segmentation. This shows that the effect of edge 
refinement of the network proposed in the study is obvious. The 
visualization results of nnU-Net is similar to that of LSMU-Net.

To illustrate the performance of the 3D encoding branch, Figure 5 
visualizes the results of any three CT images segmented by LSMU-
Net-3D and LSMU-Net from the sagittal or coronal views, respectively. 
Red, green, blue, and yellow represent the segmentation of Rectus 
Abdominis, Right Psoas, Left Psoas, and Paravertebral, respectively. 
For the muscle boundary region between the Right Psoas and 
Paravertebral muscles that is difficult to distinguish, the segmentation 
result by LSMU-Net is closer to the Ground Truth label than that by 
LSMU-Net-3D by observing the magnified corresponding area. The 
reason is that the texture attention block of 3D encoding branch 
enhances the spatial integrity of the skeletal muscle bundle, thereby 
solving the challenge of identifying the boundaries of skeletal 
muscle bundles.

3.4. Auxiliary diagnostic information

As mentioned previously, the existing diagnostic index for 
‘sarcopenia’ is the assessment of overall skeletal muscle (e.g., L3SMI). 
However, the larger the skeletal muscle volume involved in the 
calculation, the more reasonable the calculated value for diagnosing 
the presence or absence of sarcopenia. In the study, the average cross-
sectional area of skeletal muscle volume corresponding to the L3 
vertebra is used. Furthermore, since our LSMU-Net can segment four 
skeletal muscle regions in all L3-related axial slices, this makes it 
possible to quantitatively investigate the symptoms of cirrhotic 
sarcopenia in multiple muscle regions around L3. Therefore, this study 
will take the L3SMI, the diagnostic index of sarcopenia, as criterion to 
explore its relationship with the muscle indices of the four skeletal 
muscle regions.

The relationship was explained by the correlation analysis in the 
CT images of 98 patients in the cirrhosis group. Firstly, the average 
cross-sectional areas of the total skeletal muscle volume, as well as the 
four skeletal muscle regions, were calculated, respectively; secondly, 
referring to L3SMI’s formula, that is, the ratio of the skeletal muscle 
area to the square of the body height, four potential diagnostic indices 

were obtained, i.e., rectus abdominal index (RAI) based on Rectus 
Abdominis region, right psoas index (RPI) based on Right Psoas 
muscle region, left psoas index (LPI) based on Left Psoas muscle 
region and paravertebral index (PI) based on Paravertebral muscle 
region. Here, the total psoas index (TPI) was calculated by summing 
the Left Psoas and Right Psoas muscle region; finally, according to 
gender and whether it is sarcopenia, the correlations between the new 
index and L3SMI were calculated and listed in Table 4.

Figure 6 also visualizes the correlation analysis between the new 
indicators and L3SMI depending on the gender of the patients in the 
cirrhosis group. As seen in Table  4 and Figure  6, the correlation 
between the five new indicators and L3SMI is higher in 
Non-sarcopenia patients than in Sarcopenia patients. Compared to 
the Male patients, the RAI and PI of the Female patients have a higher 
correlation with L3SMI, while their RPI, LPI, and TPI have a lower 
correlation with L3SMI. The correlation between RAI and L3SMI is 
the highest regardless of gender and whether the patient suffered from 
sarcopenia. From the overall data, the correlation between all indices 
and L3SMI is greater than 0.80.

Furthermore, according to the diagnostic cut-off value of L3SMI, 
Table 5 lists the cut-off value, corresponding Accuracy and AUC of the 
five new indicators in the diagnosis of cirrhotic sarcopenia in female 
and male, respectively. Due to the highest correlation between RAI 
and L3SMI, the diagnostic accuracy of 0.941 can be  achieved by 
selecting the appropriate cut-off value such as 16.67 cm2/m2 in female. 
Therefore, the Rectus Abdominis can achieve the alternative 
diagnostic effect in cases where the overall skeletal muscle is not 
available. As seen in Table 5, the diagnostic effect of skeletal muscle 
region index is RAI  >  PI  >  LPI  =  RPI  =  TPI for female and 
RAI > LPI = TPI > RPI > PI for male.

The receiver operating characteristic (ROC) curve provides a 
simple way to observe the diagnostic performance of a clinical 
indicator. The performance of the ROC curve is usually expressed by 
the area under curve (AUC), the value of which is the size of the area 
under the ROC curve. The closer the AUC is to 1.0, the higher the 
performance of the diagnostic index. When the AUC is equal to 0.5, 
the performance of the diagnostic index is the lowest. Table 5 shows 
the AUC of RAI, RPI, LPI, PI and TPI in females and males, 
respectively. It can be  seen that the RAI index performed best in 
identifying cirrhotic sarcopenia in females and males. The diagnostic 
cut-off values for skeletal muscle regional indicators selected from the 
AUC results are ordered as RAI > PI > RPI > LPI > TPI for female and 
RAI > LPI > TPI > RPI > PI for male.

4. Conclusion

This study presented an automatic segmentation method of multi-
region skeletal muscle in abdominal or abdominopelvic CT images. 
Our method achieved good performance by combining the 
appearance of skeletal muscle regions in CT images into advanced 
U-Net architecture. Specifically, our method includes enhancement of 
the existing U-Net models; texture attention enhancement block for 
augmenting the blurred edges of skeletal muscles; 3D encoding branch 
for extracting feature of muscle fiber bundles; and loss functions using 
the prior knowledge to reduce the class imbalance. Therefore, our 
method accurately segmented the multiple skeletal muscle regions 
from all L3-related axial slices in more than 300 abdominal or 

TABLE 3 DSC, sensitivity, and ASSD (mm) of four skeletal muscle regions 
of the CT image in the independent test dataset segmented by our LSMU-
Net.

DSC Sensitivity ASSD (mm)

Rectus abdominis 0.943 ± 0.001 0.943 ± 0.002 0.431 ± 0.045

Right psoas 0.928 ± 0.002 0.941 ± 0.001 0.689 ± 1.299

Left psoas 0.922 ± 0.002 0.938 ± 0.001 0.701 ± 1.409

Paravertebral 0.957 ± 0.001 0.953 ± 0.001 0.410 ± 0.030

Average 0.937 ± 0.002 0.944 ± 0.001 0.558 ± 0.715
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abdominopelvic CT images, and the segmentation prediction time 
meets the clinical real-time requirement.

Based on the segmentation results of four skeletal muscle regions, 
the five skeletal muscle region indices were calculated, and their 
correlation with L3SMI was quantitatively analyzed in the diagnosis 
of sarcopenia. The five skeletal muscle region indices, especially RAI, 
could be used to assist in the diagnosis of sarcopenia in cases where 
the total muscle was not available.

5. Discussion

Clinically, sarcopenia is usually diagnosed by L3SMI calculated on 
the skeletal muscle region. Existing deep learning methods have 
greatly improved the performance of skeletal muscle segmentation, 
however, for patients with cirrhosis, skeletal muscle may be squeezed 
and deformed by pathological changes, resulting in errors in the 
calculation of L3SMI. This study proposed the lumbar skeletal muscle 

FIGURE 4

Comparison of the segmented contours and the target contours in a CT image from the generalized dataset. The green line denotes the target 
contour, and the red line denotes the contour of the segmentation result.

https://doi.org/10.3389/fnins.2023.1203823
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Song et al. 10.3389/fnins.2023.1203823

Frontiers in Neuroscience 11 frontiersin.org

segmentation network based on the U-Net enhanced by residual 
structure to segment four skeletal muscle regions in all axial CT slices 
related to L3 (i.e., LSMU-Net). The average cross-sectional area of four 
skeletal muscle regions can be used to calculate the diagnostic indexes 
of sarcopenia.

Comparative ablation experiments showed that the LSMU-Net 
method proposed in the study has good performance in terms of DSC, 
Sensitivity, and ASSD, which indicates the feasibility of LSMU-Net. 
The experimental results also showed that 2D nnU-Net and 3D 
nnU-Net perform well in the segmentation tasks. LSMU-Net is 
slightly superior to 2D nnU-Net in DSC, Sensitivity, and 
ASSD. LSMU-Net is slightly superior to 3D nnU-Net in ASSD and 
Sensitivity, while DSC is lower than the corresponding values of 3D 
nnU-Net. The performance of our method is achieved by combining 
the advanced 2D U-Net with residual structure, texture attention 
enhancement blocks, 3D encoding branches and the priori knowledge. 

Different from our LSMU-Net, nnU-Net still uses the original U-Net 
structure, but achieves good performance with the help of many 
advanced techniques, such as image preprocessing, dynamic 
adaptation of network topology, training strategy, inference post-
processing and so on. Therefore, in addition to the improvement of 
network structure, the optimization and integration of data processing 
and training methods are also extremely important in future 
segmentation work.

Among the four skeletal muscle regions, Rectus Abdominis 
and Paravetebral muscle are larger, while Right Psoas and Left 
Psoas are smaller. From the perspective of segmentation 
evaluation index, the index of the first two regions is higher, while 
that of the latter two regions is slighter lower. This shows that the 
proposed network still has difficulties in segmenting small targets 
such as the Right Psoas and the Left Psoas, and the performance 
of the segmentation method needs to be improved.

In addition to L3SMI, sarcopenia is also diagnosed by psoas 
muscle index (PMI). PMI is often calculated based on the psoas 
major muscle, defined as the ratio of the cross-sectional area of 
bilateral psoas major muscles to the square of body height. The 
PMI’s cut-off values are 5.24 cm2/m2 in males and 3.85 cm2/m2 in 
females (Dolan et  al., 2019). In this study, TPI was calculated 
based on the custom Left Psoas and Right Psoas regions, which 
includes the psoas major muscle and the psoas square muscle. 
TPI’s cut-off values are 12.51 cm2/m2 in males and 7.27 cm2/m2 in 
females. Obviously, TPI is defined in a larger skeletal muscle 
region than PMI, which may be a useful complement to PMI.

According to the results of AUC, in females, the comprehensive 
performance of RPI and LPI is higher than that of TPI; while in 

FIGURE 5

Illustration of the performance of 3D encoding branch by qualitative comparison of the segmentation results of any three CT images by LSMU-Net-3D 
and LSMU-Net from the sagittal or coronal views, respectively. The magnified region shows that the result output by LSMU-Net is closer to the ground 
truth label for the area between the right psoas (green) and the paravertebral muscles (yellow) that is difficult to distinguish.

TABLE 4 Correlation analysis between new indices (RAI, RPI, LPI, PI, and 
TPI) and L3SMI in the CT images of 98 patients in the cirrhosis group 
according to gender and whether it is sarcopenia.

RAI RPI LPI PI TPI

Sarcopenia 0.879 0.767 0.693 0.697 0.767

Non-sarcopenia 0.902 0.842 0.799 0.772 0.848

Female 0.935 0.712 0.692 0.862 0.766

Male 0.926 0.842 0.780 0.796 0.836

All Data 0.932 0.839 0.801 0.831 0.847
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males, the diagnostic value of LPI (AUC = 0.875) is similar to that 
of TPI (AUC = 0.871), but different from that of RPI (AUC = 0.862). 
The comprehensive performance of RPI and LPI could not 
be compared to that of TPI in males. This issue may be related to 
the small number of samples of existing data sets, which need to 
be explored and analyzed in more cases of cirrhotic sarcopenia.

The segmented network and the five new metrics of skeletal 
muscle regions could better assist physicians. The results of this 
study may play a very important auxiliary role in the diagnosis of 
cirrhotic sarcopenia, especially in cases where intact skeletal 
muscle is not available in axial CT slices. However, this study also 
has some shortcomings, such as the data set is only from one 
institution, and the number of cases is only 317. In addition, the 

study only considered the effects of muscle and did not address 
other parameters, such as intra-abdominal fat, organ fat and 
subcutaneous fat. In the future, we will combine these parameters 
for further study to improve the automatic diagnosis 
of sarcopenia.
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Cut-off value 22.51 5.84 6.10 17.28 12.51
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