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Recent advancements in AI, big data analytics, and magnetic resonance imaging 
(MRI) have revolutionized the study of brain diseases such as Alzheimer’s 
Disease (AD). However, most AI models used for neuroimaging classification 
tasks have limitations in their learning strategies, that is batch training without 
the incremental learning capability. To address such limitations, the systematic 
Brain Informatics methodology is reconsidered to realize evidence combination 
and fusion computing with multi-modal neuroimaging data through continuous 
learning. Specifically, we  introduce the BNLoop-GAN (Loop-based Generative 
Adversarial Network for Brain Network) model, utilizing multiple techniques such 
as conditional generation, patch-based discrimination, and Wasserstein gradient 
penalty to learn the implicit distribution of brain networks. Moreover, a multiple-
loop-learning algorithm is developed to combine evidence with better sample 
contribution ranking during training processes. The effectiveness of our approach 
is demonstrated through a case study on the classification of individuals with AD 
and healthy control groups using various experimental design strategies and 
multi-modal brain networks. The BNLoop-GAN model with multi-modal brain 
networks and multiple-loop-learning can improve classification performance.
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1. Introduction

The rapid advancement of AI and big data technologies have revolutionized the field of brain 
investigation, providing new insights into its workings and potential applications. However, 
medical research on the brain presents more significant challenges as it involves navigating the 
complex interplay of biological, psychological, and environmental factors. In response to this, 
the Brain Informatics (Zhong et  al., 2011) methodology has been proposed to study the 
mechanisms underlying the human information processing system with big data (Zhong et al., 
2005). As the core part of Brain Informatics, a series of “evidence combination-fusion computing 
(ECFC)” methods (Kuai et al., 2022) are developed to promote fundamental and translational 
studies of the brain, encouraging to handle multi-source brain big data continuously during 
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learning and validating phases of models and systems. The continuous 
learning enables the more effective utilization of existing information 
and experiences learned by previous data, which are different from the 
current most machine learning algorithms.

Alzheimer’s Disease (AD), as a neurodegenerative disease that 
occurs frequently in the elderly, has become a severe threat to the 
health, with clinical manifestations of cognitive decline, accompanied 
by other physiological or mental disorders (Citron, 2010; Ferrari and 
Sorbi, 2021). In recent years, Magnetic Resonance Imaging (MRI) 
technology has emerged as a valuable tool in diagnosing AD due to its 
non-radiative, non-invasive, and non-harmful characteristics. In 
particular, it offers high tissue resolution and can be  utilized for 
imaging with a variety of parameters (Jin et al., 2020; Cao et al., 2022). 
However, single modality-based investigations may not provide 
sufficient information to identify complex diseases. The multi-modal 
MRI techniques, such as diffusion MRI (dMRI) and functional MRI 
(fMRI), can provide a holistic view to observe changes in brain 
structure and function of AD (Cuingnet et al., 2011; Zhang et al., 
2020). In the context, considering the advantages of complementary 
information, multi-modal analyses corresponding to both structural 
and functional characteristics have a great boom simultaneously 
(Poldrack and Farah, 2015). Furthermore, the brain network analysis 
has been widely employed in the diagnosis of brain diseases, which 
can provide valuable insights into the connected mechanisms between 
different brain regions (Lama and Kwon, 2021). For instance, dMRI 
(Soares et  al., 2013) has been  utilized to construct structural 
connectivity to measure the connections of nerve fiber bundles in 
white matter, while resting-state functional MRI (rsfMRI) (Sheline 
and Raichle, 2013; Soares et al., 2016) has been used to construct 
functional connectivity to detect the functional activity of the brain.

Recent advancements in AI, particularly Generative Adversarial 
Networks (GANs), have demonstrated great potential in analyzing 
complex brain data. GANs are capable of learning and generating new 
data samples that resemble the input data (Fahimi et al., 2020). In the 
context of AD, GANs can be trained on large datasets of brain images 
to learn patterns associated with the disease, helping in the diagnosis 
of AD by identifying subtle changes in brain structure or function. 
However, the current limitations of most AI models in neuroimaging 
classification tasks lead to underutilization of existing information and 
insufficient processing of unbalanced data. The primary challenge lies 
in the strategy of randomly selecting data for training at once, which 
ignores the potential benefits of utilizing data systematically 
and continuously.

Confronted with the complexity of these brain science problems, 
the Brain Informatics methodology provides a systematic perspective 
to understand the principles and mechanisms of human information 
processing related to high-order cognition functions cognitive 
functions (such as reasoning, calculation and problem solving) (Yang 
et  al., 2009), as well as the development of new technologies for 
analyzing the biological characteristics and clinical applications on 
brain diseases. In the context of Brain Informatics, multi-modal and 
multi-scale brain data are analyzed systematically by considering 
different distributions of samples, so as to personalized applications. 
For example, the Data-Brain driven general intelligence model (Kuai 
and Zhong, 2020) is proposed to realize systematic brain computing 
in terms of the diversities of brain data from the experimental 
perspective. In particular, an iterated and evolved computing cycle was 
designed to continuously evidence combination and fusion computing.

In this paper, we propose the BNLoop-GAN model, which couples 
the Loop-based Generative Adversarial Network with the ECFC 
method for multiple loop brain network learning. The main 
contributions of this study can be  summarized as follows: (1) an 
enhanced-GAN model is developed, utilizing techniques such as 
conditional generation, patch-based discrimination, and Wasserstein 
gradient penalty to learn the implicit distribution of brain networks; 
(2) a multiple-loop-learning algorithm is introduced, which combines 
evidence with better sample contribution ranking during continuous 
training phases; (3) the BNLoop-GAN model is applied to a case study 
of AD classification, where single-modal and multi-modal brain 
networks are computed iteratively to improve classification performance.

The rest of this paper is organized as follows: Section 2 provides a 
review of related works on brain networks, GANs, and AD. Section 3 
introduces the overall framework of the BNLoop-GAN model for 
classification tasks, which comprises an enhanced GAN model and a 
multiple-loop-learning algorithm. Section 4 describes the 
experimental settings, data preparation, brain network construction, 
and performance evaluation. Section 5 presents results and discusses 
different scenarios on single-modal and multi-modal brain networks. 
Finally, Section 6 gives a conclusion and outlines future work.

2. Related work

Recently, AI models have gained widespread popularity in image 
generation, image super-resolution and other requirements based on 
their generative capabilities of addition, deletion, and modification. In 
the medical field, GAN models have been widely applied to diagnosis 
of AD. For instance, Yu et  al. (2022) proposed a Multidirectional 
Perception GAN that uses a multidirectional mapping mechanism to 
learn morphological features for classifying AD severity at different 
stages. Yu et al. (2021) also proposed a three-player cooperative game-
based framework with the high-order pooling scheme, namely 
tensorizing GAN, which is used to learn the structural information of 
MRI to assess mild cognitive impairment and AD. Moreover, a 
condition GAN (cGAN) model (Jung et  al., 2023) is proposed to 
generate high-quality 3D MR brain images at different stages of AD, 
which integrates an additional module to ensure smooth and realistic 
transitions in 3D space, and uses an adaptive identity loss to preserve 
patient identification features. Ji et al. (2021) proposed a framework 
utilizing recurrent GANs for estimating effective connectivity from 
rsfMRI data, revealing potential differences in neural influence and 
information flow between AD and healthy control (HC) groups.

Given the complexity of AD, many studies have paid attention to 
use GAN models for multi-modal neuroimaging analysis. Pan et al. 
(2021) developed a Decoupling GAN to detect abnormal neural 
circuits for AD, which decomposes a brain network into two parts and 
utilizes an analytic module associated with the hyperedge neurons 
algorithm. The proposed model can extract complementary topology 
information between rsfMRI and diffusion tensor imaging (DTI) to 
detect abnormal neural circuits at different stages of AD. Moreover, a 
cross-modal transformer GAN (Pan and Wang, 2022) has been 
introduced, which employs a bi-attention mechanism to merge 
rsfMRI and DTI data effectively, facilitating the identification of 
AD-associated brain connectivity and enhancing the accuracy of 
classification. Zuo et  al. (2021) developed a multi-modal 
representation learning and adversarial hypergraph fusion framework 
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using complete trimodal images (MRI, DTI and rsfMRI) to address 
the limitation of data distribution inconsistency in AD diagnosis. Zuo 
et al. (2021) also developed a prior guided adversarial representation 
learning and hypergraph perceptual network, which can evaluate the 
changing characteristics of brain connectivity at different stages of AD.

With the progress of brain connectivity, brain network analyses 
break a new ground in the study of AD. Cui et al. (2018) developed a 
minimum spanning tree method to construct the brain functional 
network, and extracted the topological features of the brain network. 
They used the support vector machine to compare AD and HC groups. 
Islam and Zhang (2018) proposed a deep convolutional neural network 
to learn features from a small and imbalanced dataset of structural MRI, 
which can identify and classify AD at different stages. Ye et al. (2019) 
selected DTI from 161 participants and used multivariate distance 
matrix regression (MDMR) analysis to detect structural abnormalities of 
brain networks during the development of AD disease. On the basis of 
the seed regions selected by MDMR analysis, supervised learning was 
applied to evaluate the predictive performance of AD. Furthermore, 
Zhang et al. (2022) proposed a multi-graph convolutional network based 
on GAN, which can learn the complex relationship between individual 
brain structural and functional networks automatically. Lei et al. (2021) 
proposed an automatic weighted centralized multi-task learning 
framework, in which multi-task learning is applied to identify features 
integration of structural and functional connectivity, for providing new 
insights into early AD detection.

Considering the complexity and systematization of brain computing 
in current big data era, the loop-based strategy is adopted to perform 
continuous learning inspired by Brain Informatics methodology. For 
example, Kuai et al. (2021) proposed the ECFC method to analyze multi-
task fMRI data from different sources through merging systematic 
experimental design with evidence type reasoning. The uncertainty is 
analyzed and inferred to provide finer interpretations from both 
cognitive functions and brain regions. Furthermore, the similar strategy 
is adopted to decode the hidden relationship between connectivity 
abnormalities and brain disorders as well (Kuai et al., 2021). However, 
these methods only concern with fMRI at a single modal. In this paper, 
we extend the loop-inspired method from single modal to multiple 
modals, and from cognitive functions to brain diseases. In the next 
section, we will introduce how to realize a GAN-driven multiple-loop-
learning to carry out systematic brain big data computing.

3. Methods

3.1. Overview

In this section, we introduce the overall framework for addressing 
the classification task of brain networks between abnormal and HC 
groups. The framework consists of three main components, which is 
illustrated in Figure  1. The first component is the brain network 
computing component, by which both structural and functional brain 
networks are obtained by analyzing multi-modal brain images. The 
second and third components are the enhanced-GAN model and the 
multiple-loop-learning algorithm, respectively, both of which 
constitute the Loop-based Generative Adversarial Network model for 
Brain Network (BNLoop-GAN). Before brain networks are learned, 
some preprocessing steps are required, including: the multi-modal 
MRI data are processed, such as denoising, calibration, correction; and 
then brain networks are constructed, such as brain region selection, 

region segmentation, time series extraction and connectivity 
measures. Afterwards, the constructed brain networks are recognized 
by the BNLoop-GAN model with Classifiers to realize classification 
tasks. During this process, a multiple-loop-learning algorithm is used 
to select the small batch of samples from the whole training set step 
by step. The selected samples have an easier-to-learn probability 
distribution, which can reduce the complexity of model training. Each 
round of training processes is considered as a loop 
( , | ,Loop i Loop j i j N +− − ∈ ), in which the same number of 
samples from abnormal and HC groups are selected 
( , , , , , , , , , ,|x y p q m nS x y p q m n N +∈ ), where x p m, ,  represents the 
number of abnormal groups; y q n, ,  represents the number of HC 
groups; x y p q m n= = =, , . More specifically, a multiple-loop-learning 
algorithm is developed, depending on the training loop from 
previous iterations.

3.2. The enhanced-GAN model

To provide greater clarity on the enhanced-GAN model within 
the BNLoop-GAN model, illustrated in Figure 2, we present further 
details on its constituent components: a generator, a discriminator, 
and a classifier. The generator is structured with transposed 
convolutional layers, batch normalization, and activation functions 
such as ReLU and Sigmoid. Similarly, the discriminator and classifier 
share the similar structure, both of which are composed of 
convolutional layers, batch normalization, and LeakyReLU 
activation functions.

To provide support for the generation of matrices with specified 
attributes in the subsequent multiple-loop-learning algorithm, the 
enhanced-GAN model incorporates conditional information into 
both the generator and discriminator. This is accomplished through 
the use of a conditional GAN (cGAN) (Mirza and Osindero, 2014) 
architecture, which enables the model to better comprehend the 
contextual information of the generation task.

Patch-based processing is commonly utilized in computer vision 
tasks, including image analysis and object recognition, because it 
allows for local analysis of image features. This approach can 
be especially useful when dealing with complex symmetric matrices, 
as it enables the network to focus on smaller, more manageable 
sections of the input at a time. The idea of PatchGAN (Isola et al., 
2017) is combined here to map the input to N N∗  patches. These 
patches are designed to process matrices in a “patch-wise” manner, 
meaning that they divide the input image into small overlapping 
patches and process each patch individually. By learning the brain 
regions using block features, it is possible to gain a deeper 
understanding of how the network is processing and interpreting the 
input matrix at a local level. This information can be  useful for 
identifying patterns or features within the brain regions that are 
important for the network’s decision-making process and for 
improving the performance of the network on the 
discrimination task.

Wasserstein GAN with gradient penalty (WGAN-GP) (Gulrajani 
et al., 2017) is added to address the problems of traditional GANs 
(Goodfellow et  al., 2014), such as mode collapse and training 
instability. The core concept of WGAN-GP is to use Wasserstein 
distance to measure the difference between the generated and real 
data distributions and to enforce the Lipschitz continuity of the 
network through gradient penalty. Compared to traditional 
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Wasserstein GAN (Arjovsky et  al., 2017), WGAN-GP has the 
advantage of providing more stable training performance and 
producing better sample quality of brain networks. The definition of 
Wasserstein distance is shown as follows:

 
( ) ( ) ( ),,, inf

r gr g x yp pW P P E x yγγ ∼∼∏  = −   
(1)

where Pr  is the real distribution and Pg  is the model distribution 
implicitly defined by the generator; ∏( )p pr g,  denotes the set of all joint 
distributions γ x y,( )  whose marginal distributions are Pr  and Pg  
respectively; ( ),x yE x yγ∼  −   is the mathematical expectation of 
distance x y− ; and { }inf   is the lower bound of set.

In order to solve the mode collapse and improve the convergence 
speed of traditional GANs, the gradient penalty is added to the 

FIGURE 1

The overall framework for the classification of brain networks. AB, abnormal groups; HC, healthy control groups.

FIGURE 2

The architecture of the enhanced-GAN model. AB, abnormal groups; HC, healthy control groups.
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discriminator loss function, and the generated samples are constrained 
by Lipschitz. The discriminator loss function is:

 

( ) ( )
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where λ represents the coefficient of the gradient penalty item; 

x̂P  generates a straight-line uniform sampling between Pg  and Pr ; 
( )ˆ ˆ∇xD x  is the gradient of the discriminator network; 2  stands for 

second norm of matrix.

3.3. Multiple-loop-learning algorithm

Contrary to most of existing methods that learn data using batch 
training, this framework splits whole dataset into different subsets for 
incremental learning. The flowchart of the multiple-loop-learning 
algorithm in Figure  3 illustrates how to generate incremental 
training plans.

As shown in Figure 3, in the first loop (Loop i i− =, 1), the learning 
process starts by randomly selecting AB and HC samples with a 
predefined size from the database. Both the Generator and the 
Discriminator are pre-trained to drive the multiple-loop-learning 
algorithm. The pre-trained Generator is then employed to generate fake 
samples that are close to the true distribution of samples. The pre-trained 
Discriminator is used to process the real and generated samples to 
compute the sample contribution ranking using Euclidean Distance. To 
select samples with an easier-to-learn distribution during training loops, 
the top half of the ranking samples is chosen as the batch for training the 
classification model, and the middle half to three-quarters of the ranking 
is prepared for the next loop sample. The bottom quarter of the ranking 
is put back into the database. Thus far, the first round of loop ends when 
the classifier has learned a batch. The samples ranked in middle half to 
three-quarters of the previous round are combined with randomly 
selected samples to obtain AB and HC samples, which are used in a new 
round of loop. Multiple-loop-learning is achieved through continuous 
loop optimization, and the algorithm continues until the classifier 
converges. Algorithm 1 provides specific details of the algorithm.

Algorithm 1: BNLoop-GAN with multiple-loop-learning.

Input: the pre-training classifier C, generator G, and discriminator D;

the brain network matrix of healthy control groups, MHC;

the brain network matrix of abnormal groups, MAB;

the real matrix, RM;

the fake matrix, FM;

the table of sample contribution ranking of RM, TRM;

Output: the trained classifier, C;

the accuracy of C, ACC;

1: Initializing the loop = 0;

2: Initializing the batch_samples;

3: while C not converge

4:  random select MHC and MAB to fill RM M M
loop

HC AB,( ) to batch_samples from the 

database;

5: generate FM M M
loop

HC AB,( ) from G of random noise;

6:  TRM ← Euclidean Distance computing D(RM M M
loop

HC AB,( )) and D(FM M M
loop

HC AB,( ));

7: choose RM M M
loop

HC AB,( ) of 1/2 top-ranked TRM for training classifier C;

8: get ACC;

9: RM M M
temp

HC AB,( ) ← RM M M
loop

HC AB,( ) of 1/2–3/4 top-ranked TRM;

10: RM M M
loop

HC AB,( ) of 1/4 bottom-ranked TRM back to the database;

11: loop + +;

12: initializing RM M M
loop

HC AB,( );

13: adding RM M M
temp

HC AB,( ) to RM M M
loop

HC AB,( );

14: end while

15: return C, ACC

FIGURE 3

The flowchart of the multiple-loop-learning algorithm with the BNLoop-GAN model. AB, abnormal groups; HC, healthy control groups; C, the 
classifier; G, the generator; D, the discriminator.
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4. Experiments

4.1. Datasets and preprocessing

In this paper, the MRI data (including dMRI and rsfMRI) were 
gathered from the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) database.1 These subjects were instructed to rest with their 
eyes open, not to think of anything in particular, and not to fall asleep 
while collecting rsfMRI. The data set contains 42 AD patients 
(72.0 ± 17.0, 30F/93M) and 42 gender-age matched HC groups 
(74.5 ± 10.9, 39F/92M).

To start with, the raw MRI data were converted from DICOM to 
NIfTI using “dcm2niix” function in the MRIcroGL software.2 The bvec 
and bval files were generated to calculate various diffusion properties 
on the diffusion gradients and directions. All diffusion-based 
tractography approaches and subsequent connectome reconstructions 
were performed in the MRtrix3 software.3 Firstly, the initial diffusion 
images were denoised to increase signal-to-noise ratio. Secondly, 
gibbs-ringing and bias field correction were performed to reduce 
artifacts and non-regularities. The eddy current-induced distortion 
was removed, and head motion error was corrected. Finally, the mean 
b0 image generated by averaging all the images with b = 0 s/mm2 was 
used to register the diffusion image to the structural MRI using the 
FSL toolbox.4 The rsfMRI data were processed by SPM12 software5 
with the standard procedures, including slice-timing correction, 
realignment to the median image, and co-registration to the individual 
structural MRI.

4.2. Brain network computing

4.2.1. Construction of diffusion MRI networks
The constrained spherical deconvolution (CSD) method 

overcomes the limitations of crossing fibers inherent in the diffusion 
tensor model (Tournier et al., 2008). Therefore, we performed multi-
shell multi-tissue CSD method to obtain the fiber orientation 
distribution (FOD) (Jeurissen et al., 2014). The white matter pathways 
of whole brain were reconstructed using probabilistic streamline 
tractography through the second-order integration over FOD 
algorithm (Smith et al., 2013). The aparc2009 template (Destrieux 
et al., 2010) of FreeSurfer was used to divide each brain region, and 
the connection strength is normalized by the number of streamlines 
divided by the brain volume, thereby constructing structural 
brain networks.

4.2.2. Construction of resting-state functional 
MRI networks

The functional brain networks were constructed using the Nilearn 
package in Python.6 For each subject, the average time series of each 

1 https://adni.loni.usc.edu

2 https://www.nitrc.org/projects/mricrogl

3 https://www.mrtrix.org

4 https://www.fmrib.ox.ac.uk/fsl

5 https://www.fil.ion.ucl.ac.uk/spm/software/spm12

6 https://nilearn.github.io

brain region were extracted using the aparc2009 template of 
FreeSurfer. Then, the connectivity characteristics were measured using 
the Pearson correlation coefficient as shown in Equation 3, by which 
the matrices of N*N-dimensional functional connectivity were 
obtained for each subject.

  

r X Y
X i X Y i Y

X i X Y i

i
N

i
N

i
N

,( ) =
( ) −  ∗ ( ) − 

( ) −  ∗ (
=

= =

∑
∑ ∑

1

1

2

1
)) − Y

2

 
(3)

where r X Y,( )  is the Pearson correlation coefficient to measure 
connected effects between brain regions X  and Y ; X i( ) and Y i( ) 
represent the time series from two different brain regions respectively, 
i N=1 2, ,.., , and N  is the number of time points of the subject; X  and 
Y  are the mean values of X i( ) and Y i( ) respectively.

4.2.3. Joint learning of multi-modal brain 
networks

Brain disorders exhibit muti-aspect changes in the brain’s 
structural, functional and dynamic characteristics frequently. The 
structure forms the foundation of function, while the function is 
the representation of structure. Multi-modal MRI data analyses 
can capture complementary characteristics from diverse 
perspectives, bringing richer information and benefiting 
classification tasks consequently. We adopted the joint learning 
method of multi-modal data, that is, superimposing the number 
of dMRI and rsfMRI brain network channels. The follow-up 
experimental results can reflect its advantages compared with 
single-modal brain networks.

4.2.4. Brain network augmentation
In order to reduce noise and facilitating normalization of input 

features, we performed min-max scaling, which involves scaling the 
data to a range between 0 and 1. Additionally, to prevent over-fitting, 
the data augmentation techniques were used to expand the training 
data set, as shown in Figure 4.

For a given image in Figure 4, it can be seen that an original 
matrix (A) is transformed by moving its first column to the last 
column, generating an in-process matrix (B), and then its first row 
is moved to the last row, resulting in the enhanced matrix (C). In 
this way, the strategy of data augmentation will avoid breaking the 
symmetry of the matrix. We  repeat this process on the newly 
generated enhanced matrix (C), generating 163 additional enhanced 
matrices from one original brain network matrix corresponding to 
a single subject, and 13,692 enhanced matrices from 84 subjects in 
total. We employed all of these matrices, with 80% reserved for 
training and 20% for testing.

4.3. Model description and evaluation 
indicators

Table 1 presents the architectural parameters of the BNLoop-GAN 
model in detail. This model is capable of accommodating both single-
modal and multi-modal inputs, with the parameter ‘n’ in Table 1 
denoting the number of modalities.
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Three indicators are used to evaluate the performance of the 
model, including accuracy (ACC ), sensitivity (SEN ), specificity 
(SPE). The formula is defined as follows:

  
ACC TP TN

TP TN FP FN
=

+
+ + +  

(4)

  
SEN TP

TP FN
=

+  
(5)

  
SPE TN

FP TN
=

+  
(6)

FIGURE 4

The strategy of data augmentation. (A) Original matrix. (B) In-process matrix. (C) Enhanced matrix.

TABLE 1 The architectural parameters of the BNLoop-GAN model.

Sub-module Layer Kernel Stride Padding
Size of feature map 
(height × width × channels)

Activation 
function

Generator

Input – – – 1 × 100 × n –

ConvT 1 4 1 0 4 × 4 × 512 ReLU

ConvT 2 4 2 1 8 × 8 × 256 ReLU

ConvT 3 4 2 1 16 × 16 × 128 ReLU

ConvT 4 4 2 1 32 × 32 × 64 ReLU

ConvT 5 12 1 1 41 × 41 × 32 ReLU

ConvT 6 4 2 1 82 × 82 × 16 ReLU

ConvT 7 4 2 1 164 × 164 × n Sigmoid

Discriminator

Input – – – 164 × 164 × n –

Conv 1 4 2 1 82 × 82 × 16 LeakyReLU

Conv 2 4 2 1 41 × 41 × 64 LeakyReLU

Conv 3 10 1 0 32 × 32 × 128 LeakyReLU

Conv 4 4 2 1 16 × 16 × 256 LeakyReLU

Conv 5 4 2 1 8 × 8 × 512 LeakyReLU

Conv 6 4 1 0 5 × 5 × n –

Classifier

Input – – – 164 × 164 × n –

Conv 7 4 2 1 82 × 82 × 16 LeakyReLU

Conv 8 4 2 1 41 × 41 × 64 LeakyReLU

Conv 9 10 1 0 32 × 32 × 128 LeakyReLU

Conv 10 4 2 1 16 × 16 × 256 LeakyReLU

Conv 11 4 2 1 8 × 8 × 512 LeakyReLU

Conv 12 8 2 1 2 × 2 × 1 –

ConvT, Transposed Convolution; Conv, Convolution.
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TABLE 2 The results of AD classification of different brain network 
learning strategies using various models.

Model

Brain 
Network 
Learning 
Strategy

ACC 
(%)

SEN 
(%)

SPE 
(%)

FCN ① 77.2 74.7 79.6

② 75.3 73.9 80.3

③ 81.4 80.2 82.2

FCN with loop of 

conditional generation

① 77.3 74.5 79.8

② 75.1 73.6 79.9

③ 81.6 80.5 82.5

FCN with loop of 

conditional generation 

and patch-based 

discrimination

① 78.2 75.1 80.5

② 76.1 74.2 81.2

③ 82.3 81.0 83.1

FCN with loop of 

conditional generation 

and Wasserstein 

gradient penalty

① 77.8 75.2 80.6

② 75.9 74.1 81.1

③ 82.1 80.9 83.0

BNLoop-GAN ① 79.1 76.3 81.2

② 77.0 75.2 81.9

③ 83.8 81.8 84.9

FCN is the fully convolutional neural network. Three brain network learning strategies were 
utilized, including: ① Single-modal brain networks based on dMRI; ② Single-modal brain 
networks based on rsfMRI; ③ Multi-modal brain networks based on dMRI and rsfMRI. The 
bold values represent the highest accuracy, sensitivity and specificity of the BNLoop-GAN 
model on Multi-modal brain networks based on dMRI and rsfMRI.

FIGURE 5

The process of multiple-loop-leaning.

where FP, FN, TP, and TN denote False Positive, False Negative, True 
Positive and True Negative assessments, respectively.

Furthermore, due to the complexity of AD diagnosis, the Receiver 
Operating Characteristic (ROC) curve and Area under the ROC 
Curve (AUC) are utilized to evaluate the efficacy of binary 
classification models. The ROC curve plots the true positive rate 
(TPR) against the false positive rate (FPR), with TPR on the y-axis and 
FPR on the x-axis.

  
TPR TP

TP FN
=

+  
(7)

  
FPR FP

FP TN
=

+  
(8)

The AUC is the area under the ROC curve, with values ranging 
from 0 to 1. A higher AUC indicates better model performance, 
with 0.5 indicating random guessing and 1 indicating 
perfect prediction.

5. Results and discussions

A case study was performed to examine the classification 
performance corresponding to single-modal brain networks and 
multi-modal brain networks, respectively, through the BNLoop-GAN 
model with the multiple-loop-learning algorithm. In order to evaluate 
the effectiveness of the different components incorporated into the 
enhanced-GAN model, we conducted a series of ablation experiments. 
Table 2 presents the results of these experiments, which were evaluated 
using three indicators.

Taking into account the necessity of conditional information for 
driving multiple-loop-learning algorithms, we conducted a series of 
Loop-based ablation experiments on the baseline FCN model. 
Compared to the baseline FCN, the FCN with loop of conditional 
generation demonstrated no significant improvement in indicators for 
any modality. Simply capturing the similarity of samples through 
conditional information is not enough to improve loop efficiency. 
However, FCN with loop of conditional generation and patch-based 
discrimination, as well as FCN with loop of conditional generation and 
Wasserstein gradient penalty, both improved performance of the 
classifier for all modalities. The patch-based discrimination ensures 
that the generated images have a high degree of similarity to real 
images in terms of brain regions. The Wasserstein gradient penalty 
enforces the Lipschitz continuity constraint in the discriminator. Both 
of them contributes to the improved quality of generated samples. It is 
worth noting that the BNLoop-GAN model exhibited the highest 
performance for all three modalities, combining techniques of 
conditional generation, patch-based discrimination, and Wasserstein 
gradient penalty to learn the implicit distribution of brain regions. 
These techniques optimize the model by improving the quality of 
generated samples, selecting samples with an easier-to-learn 
distribution during training loops, and providing better performance 
on a classification task of brain networks. In addition, the evaluation 
indicators for multi-modal data are higher than those for single-
modal data.

The training processes of each loop driven by the multiple-loop-
learning algorithm in the BNLoop-GAN model are shown in Figure 5. 
The overall trend of the training process reveals that the model’s 
accuracy can be  improved steadily and effectively, regardless of 
whether single-modal or multi-modal data is used. Furthermore, it 
can be  seen that multi-modal brain networks learned by the 
BNLoop-GAN model achieve the better accuracy of 83.8% than 
others related to single-modal brain networks.
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Figure  6 illustrates the computation of ROC curves, which 
provide a comprehensive representation of performance across 
different brain network types. Sub-figure (A) and (B) are constructed 
using two strategies of original matrices (without brain network 
augmentation) and enhanced matrices (with brain network 
augmentation) as a test set to verify the effectiveness of the model. 
The experimental results prove that data augmentation actually 
increase the performance of the model. The six curves of each 
sub-figure are represented by different colors corresponding to 
different modalities and different model strategies. It can be clearly 
seen that the classification effect of the model based on multi-modal 
data is significantly higher than that of single-modal data. 
Additionally, each dotted ROC curves represent the performance of 
the basic mode (i.e. FCN), whereas the solid ROC curves depict the 
performance of the entire BNLoop-GAN model using the multiple-
loop-learning algorithm. Compared with the AUC value of the 
single classifier model, the classification of BNLoop-GAN model has 
a slight improvement, indicating that the effectiveness of the 
multiple-loop-learning algorithm can improve the performance of 
classification, and it performs better in the use of multi-modal data. 
The AUC value reaches 0.872. All experiments are performed in the 
same experimental environment with the parameters of the 
equipment (Intel(R) Core(TM) CPU i7-8750H @ 2.20GHz, 12 CPU 
cores, 8GB NVIDIA GeForce GTX 1070).

In recent years, an increasing number of studies utilize multiple 
modalities, such as dMRI and fMRI, to improve the classification of 
brain networks. Various combination techniques, including feature 
selection (Yu et al., 2022), data augmentation (Venugopalan et al., 
2021), transfer learning (Ghaffari et al., 2022), and more, have been 
proposed to optimize classification results. For instance, Meng et al. 
(2022) proposed the multi-modal LassoNet model, which combines 
fMRI and DTI modalities in a sparse Lasso neural network 
framework and incorporates connection strength and subject 
structure to construct a comprehensive multi-modal brain network. 
The model has achieved a classification accuracy of approximately 
90.68% for AD-HC. Mohtasib et  al. (2022) conducted a 
comprehensive connectivity analysis between the default mode 

network regions using group independent component analysis on 
rsfMRI data, and examined the paired structural connectivity 
between the frontal lobe region and the hippocampus using DTI data. 
They applied both logistic regression and random forest models to 
classify AD patients and HC groups, achieving an accuracy of 74%. 
Although some current studies can achieve higher accuracy, it is 
worth noting that the evaluation strategy is based on k-fold cross-
validation (Alorf and Khan, 2022) which is difficult to transfer into 
real-world scenarios. In this paper, we consider the test samples are 
not seen in the training phrase. The advantages of the proposed 
BNLoop-GAN model are as follows. Firstly, an enhanced-GAN 
model is designed for facilitating to learn the implicit distribution of 
the brain networks. Secondly, it utilizes the multiple-loop-learning 
algorithm to select easier-to-learn samples during training loops, 
continuously improving model classification performance. Lastly, the 
model can achieve satisfy performance on classification tasks of AD 
using multi-modal brain network fusion.

6. Conclusion

In this paper, the BNLoop-GAN model with a multiple-loop-
learning algorithm is proposed to the classification of brain diseases 
from the brain network perspective. The proposed model is evaluated 
by the AD classification task, using rsfMRI, dMRI, and their fusion. 
The experimental results show that the fused brain image learning can 
achieve a better performance than others, strengthening the 
importance of fusing structural and functional information. Moreover, 
the loop learning mode can effectively learn the implicit distribution 
of brain networks to reduce training complexity and improve 
classification performance. In the future, more effort will be required 
to solve the following issues, such as: expanding multi-modal MRI 
data such as task-state fMRI to capture deeper feature patterns; 
designing the reasoning rules for representing the main and 
supplementary modal types with weights and their relations; enriching 
the “evidence combination-fusion computing” methods for multi-
modal brain data.

FIGURE 6

The ROC curves of the BNLoop-GAN model. (A) The ROC curve of original matrices. (B) The ROC curve of enhanced matrices.
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