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Efficient cellular communication is essential for the brain to regulate diverse 
functions like muscle contractions, memory formation and recall, decision-
making, and task execution. This communication is facilitated by rapid signaling 
through electrical and chemical messengers, including voltage-gated ion channels 
and neurotransmitters. These messengers elicit broad responses by propagating 
action potentials and mediating synaptic transmission. Calcium influx and efflux 
are essential for releasing neurotransmitters and regulating synaptic transmission. 
Mitochondria, which are involved in oxidative phosphorylation, and the energy 
generation process, also interact with the endoplasmic reticulum to store and 
regulate cytoplasmic calcium levels. The number, morphology, and distribution of 
mitochondria in different cell types vary based on energy demands. Mitochondrial 
damage can cause excess reactive oxygen species (ROS) generation. Mitophagy 
is a selective process that targets and degrades damaged mitochondria via 
autophagosome-lysosome fusion. Defects in mitophagy can lead to a buildup 
of ROS and cell death. Numerous studies have attempted to characterize the 
relationship between mitochondrial dysfunction and calcium dysregulation in 
neurodegenerative diseases such as Alzheimer’s Disease, Parkinson’s Disease, 
Huntington’s Disease, Amyotrophic lateral sclerosis, spinocerebellar ataxia, 
and aging. Interventional strategies to reduce mitochondrial damage and 
accumulation could serve as a therapeutic target, but further research is needed 
to unravel this potential. This review offers an overview of calcium signaling 
related to mitochondria in various neuronal cells. It critically examines recent 
findings, exploring the potential roles that mitochondrial dysfunction might 
play in multiple neurodegenerative diseases and aging. Furthermore, the review 
identifies existing gaps in knowledge to guide the direction of future research.
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1. Introduction

The small, double-membraned organelle called mitochondria are 
well-known for being the “powerhouse” of cellular function since they 
play the vital role of ATP generation and are also important for Ca2+ 
storage and homeostasis, initiation of apoptosis, synthesizing cholesterol, 
and regulation of mitophagy. ATP and ROS production are linked during 
oxidative phosphorylation through the electron transport chain (ETC) 
complexes I  and III and increases with high inner mitochondrial 
membrane potential and high NADH/NAD+ ratios (Ramzan et al., 2020). 
ROS, mainly hydrogen peroxide and superoxide radicals (•O2

−), result 
from electron leak from the ETC and partial reduction of molecular 
oxygen, which can damage the cell and are typically resolved through 
anti-oxidative enzymes. Mitochondria interact with the endoplasmic 
reticulum, considered the primary calcium storage site, at specific 
locations called mitochondria-associated membranes (MAMs). To 
facilitate this interaction, protein tethers keep the membranes at the 
optimal distance to coordinate shared functions, including phospholipid 
synthesis, exchange and calcium signaling (Muller et al., 2018; Barazzuol 
et  al., 2021). When dealing with second messengers and mediators 
affecting cell death/proliferation as well as synaptic transmission, organelle 
quality control is crucial. One of the key quality control mechanisms is 
mitophagy, a process of selectively degrading and recycling damaged or 
excess mitochondria within cells through carefully orchestrated sequential 
steps. The mitochondria have several pathways for regulation and tagging 
dysfunctional mitochondria for degradation, namely PTEN-induced 
putative kinase 1 (PINK1)/Parkin. In a healthy mitochondria, with an 
intact transmembrane potential, PINK1 gets transported to the inner 
mitochondrial membrane where it is cleaved by protease and subsequently 
degraded in the proteasome. Loss of mitochondrial membrane potential 
triggers PINK1 to stabilize at the outer mitochondrial membrane (OMM) 
and block protein translocation. Parkin is subsequently recruited, and 
ubiquitination of OMM proteins occurs for recognition and binding by 
autophagy receptors (Youle and Narendra, 2011; Sedlackova and 
Korolchuk, 2019). Mitophagy and mitochondrial biogenesis work 
simultaneously and in concert to balance the total mitochondria copy 
number per the needs of the cell. If there is too much biogenesis, there can 
be an accumulation of ROS, thereby producing damaged mitochondria, 
which trigger cell death; alternatively, if there is too much mitophagy, 
there can be overstressing of remaining mitochondria and mitophagic cell 
death (Sedlackova and Korolchuk, 2019; Cabral-Costa and Kowaltowski, 
2020; Cheng et al., 2020).

To add complication, ROS overload often correlates with calcium 
overload in mitochondria to further exacerbate cell death. Calcium 
signaling can have different purposes in different tissues, e.g., gene 
transcription, cell growth, muscle contraction, and egg fertilization, 
among others. In neurons, calcium signaling functions mainly 
involve cell differentiation and migration, synaptic transmission and 
plasticity, vesicle release, cell death and survival, and neuronal-glial 
communication (Zündorf and Reiser, 2011; Brini et al., 2014; Esteras 
and Abramov, 2020). Calcium ions [Ca2+] are classified as second 
messengers because they transmit external signals to intracellular 
targets via changes in their cytosolic concentration, which could 
be either spikes or oscillations. These differences affect the specific 
downstream effects, altering the amplitudes, frequencies, and spatial 
locations of calcium ion [Ca2+] fluctuations. Deficiencies in calcium 
signaling perturb synaptic transmission, but overload can 
be cytotoxic (Zündorf and Reiser, 2011). The resting concentration 

of calcium in the cytoplasm is typically about 100 nM, and the 
extracellular concentration is higher in the millimolar range to create 
a considerable concentration gradient.

Voltage-dependent anion channel (VDAC), also known as 
mitochondrial porin, controls the passage of metabolites and ions 
between mitochondria and the rest of the cell and thus mediates 
metabolic and energetic functions as well as cell survival and death 
signaling (Shoshan-Barmatz et  al., 2010). Both the decrease and 
increase of VDAC expression have been shown to be detrimental to 
cellular function as silencing decreased ATP and slowed cellular 
growth (Abu-Hamad et al., 2006), and overexpression led to apoptosis 
(Godbole et al., 2003; Zaid et al., 2005). Calcium transport across the 
OMM is mediated by VDACs and more so in their closed state than 
open – consistent with VDAC closing being pro-apoptotic (Tan and 
Colombini, 2007). When there is [Ca2+] overload, there is an opening 
of the mitochondrial permeability transition pore (mPTP), a 
non-selective channel that spans both inner and outer mitochondrial 
membranes. The problematic channel has been implicated as a 
mechanism of cell death and has since become a target of interest. 
Several different types of calcium channels are found in the plasma, 
ER, and mitochondria membranes that respond to various signals. 
The two types of calcium channels primarily utilized by the 
mitochondria for [Ca2+] homeostasis are mitochondria calcium 
uniporters (MCU) and Na+/Ca2+ exchangers (NCX) (Contreras and 
Satrustegui, 2009; Muller et al., 2018; Tong et al., 2018; Semyanov, 
2019; Esteras and Abramov, 2020; Ruiz et al., 2020).

Neurons, being high-energy-demanding cells, naturally possess a 
greater number of mitochondria. Consequently, they are more 
susceptible to dysfunctions related to mitochondrial activities. For 
example, diseases with mutations in the mitochondrial genome alter 
overall mitochondrial function and often present symptoms in the 
nervous system (sensorineural loss, stroke, ataxia, parkinsonism, optic 
atrophy, migraine, dementia) (Mandemakers et al., 2007; Gorman 
et al., 2016). A compromise in mitochondrial function can impact 
calcium channels within the mitochondria, thereby disrupting 
calcium signaling. When mitochondria are dysfunctional and calcium 
homeostasis is dysregulated, it can lead to excitotoxic, calcium-
mediated cell death. Characterizing neurodegeneration by disease has 
been difficult due to the multifactorial nature of neurodegeneration 
– it is the later stages that are noticed due to emerging symptoms; 
however, the specific cellular mechanisms at this point in the disease 
progression are often similar. The various contributors to cell death 
are of interest to try to arrest the disease before irreversible damage is 
done. A major contributor in the context of many neurodegenerative 
disorders is mitochondrial dysfunction, and another less-discussed 
theory is calcium dysregulation. As underscored above, these two 
functions are interrelated and are likely to influence one another. It is, 
therefore, reasonable to conceive ways to overcome dysregulated 
mitochondrial function by the modulation of channels that regulate 
calcium homeostasis. This could open the door to a new branch of 
therapeutics targeting different neurodegeneration types that currently 
lack effective treatments.

1.1. Mitochondrial calcium uniporter

To reduce the concentration of cytoplasmic [Ca2+], Mitochondrial 
Calcium Uniporters (MCUs), located in the Inner Mitochondrial 
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Membrane (IMM), uptake calcium. This calcium is transported into 
the mitochondrial matrix by ion channels for storage. The MCU has 
a wide range of capacity; hence, there must be  a high enough 
concentration before significant transport can occur. This could 
indicate a safety mechanism to prevent overload of [Ca2+]in the 
cytosol; however, beyond a certain concentration threshold, the 
elevation of mitochondrial [Ca2+] might be  damaging to the 
mitochondria. The molecular composition of the uniporter has 
recently been parsed out to reveal a protein complex containing a 
pore-forming component and several regulatory units (MICU1 & 
MICU2), the expression of which may vary slightly based on tissue 
type. Reports have shown that an MCU enhancer, MICU3, is highly 
expressed in the brain and dimerizes with MICU1 through disulfide 
bond formation (Patron et al., 2019; Wang et al., 2023). Numerous 
studies indicate that upregulation of MICU3 enhances the uptake of 
mitochondrial [Ca2+] (Granatiero et  al., 2019; Cabral-Costa and 
Kowaltowski, 2020; Esteras and Abramov, 2020), while its 
downregulation results in decreased uptake and accumulation of ROS 
(Wang et al., 2023). This makes MICU3 a compelling candidate for 
therapeutic potential.

1.2. Na+/Ca2+ exchanger

The Na+/Ca2+ Exchanger (NCX) is a low affinity, high-capacity 
sodium-calcium exchanger and transmembrane protein critical in 
regulating calcium ions [Ca2+] concentration within cells. To mediate 
mitochondrial [Ca2+] efflux, the NCX found in the IMM employs the 
electrochemical gradient of Na+ to exchange three Na+ ions for one 
[Ca2+] ion. The general efflux rate is slower than MCU’s influx rate, 
indicating a significant role for NCX in mitochondrial [Ca2+] 
homeostasis. These exchangers are also reversible and can indirectly 
interact with calpain-induced degradation, pH, and protein kinases C 
and A. Kostic and Sekler (2019) delved into the functional properties 
and mode of regulation of mitochondrial NCX and emphasized the 
need for a more specific/selective blocker to study the physiological 
role of NCX in different cell types (Kostic and Sekler, 2019). Despite 
the limited understanding of the subject, significant therapeutic 
potential still makes it an area of interest. Knockout models have 
demonstrated their importance through the lethality of deletion of 
NCX in myocardial tissue and protection against damage when 
overexpressed (De Oliveira et  al., 2019; Kostic and Sekler, 2019; 
Esteras and Abramov, 2020). The ability to utilize sodium to reduce 
the calcium load in mitochondria could be useful in preventing or 
slowing neurodegeneration.

2. Neurodegenerative diseases and 
aging

Numerous neurodegenerative diseases have been investigated, 
considering mitochondrial dysfunction and calcium dysregulation. In 
this review, the focus is on the critical findings in Alzheimer’s Disease 
(AD), followed by a brief discourse about similar findings in 
Parkinson’s Disease (PD), Huntington’s Disease (HD), and 
spinocerebellar ataxia (SCA) research.

AD is commonly characterized as the formation of amyloid 
plaques (abnormally high deposition of amyloid beta peptides) and 

neurofibrillary tangles resulting from hyperphosphorylation of Tau, a 
microtubule-associated protein. The exact mechanisms remain 
unclear partly due to recent findings that disruption of [Ca2+] 
homeostasis can precede amyloid plaques and neurofibrillary tangles 
(Huang et  al., 2022). There have also been findings suggesting 
misfolded proteins (including amyloid-β and Tau) alter [Ca2+] 
homeostasis, indicating a wide range of causes. Multiple sources found 
correlations between NCX loss and [Ca2+] dysregulation with AD 
progression and proposed rescue through NCX expression or 
inhibition of MCU by blocking mPTP opening (Tong et al., 2018; 
Cabral-Costa and Kowaltowski, 2020; Calvo-Rodriguez et al., 2020; 
Esteras and Abramov, 2020).

PD is characterized by the progressive loss of dopaminergic 
neurons in the substantia nigra, which manifests as deficits in both 
motor and non-motor functions. The primary source of HD is 
attributed to a repeat expansion of CAG trinucleotides in the first exon 
encoding the huntingtin protein, resulting in a mutant protein with 
numerous repeats, leading to neuronal loss along with disruptions in 
motor and cognitive function. The similarity in AD, PD, and HD is 
the presentation of neuronal death following mitochondrial [Ca2+] 
alteration and oxidative imbalance; the differences lie in the 
component(s) of maintenance of mitochondrial bioenergetics and 
function that is impaired (Sheehan et al., 1997; Sousa et al., 2003; 
Hariharan et  al., 2014; Rodriguez et  al., 2022). A link between 
impairment in complex I  activity and neurodegeneration was 
identified in PD patients (Sheehan et  al., 1997). Additionally, 
inhibiting complex I  in neurons of lab animals led to a rapid 
depolarization, followed by oxidative and [Ca2+] imbalance (Sousa 
et  al., 2003). Those with HD have an altered huntingtin protein 
essential in mitochondrial bioenergetics maintenance. Without the 
properly functioning huntingtin protein, there is a reduction in 
electron transport activity, exhibited in animal models with inhibited 
complex II activity (Hariharan et al., 2014).

Spinocerebellar ataxia (SCA), a heterogeneous group of 
progressive neurodegenerative diseases of the cerebellum, has long 
had implications for dysregulated calcium homeostasis (Liu et al., 
2009; Sullivan et  al., 2019). Some types have newly described 
mutations in genes, such as voltage-gated calcium channel subunit 
alpha 1 G (CACNA1G) and glutamate metabotropic receptor 1 
(GRM1) (Watson et al., 2017).

The preceding examples of neurodegeneration mechanisms 
demonstrate how impairments in different components relating to 
mitochondrial bioenergetics and calcium homeostasis (stemming 
from either disease or aging) can present similar damage-inducing 
malfunctions that cascade into neurodegeneration. During aging, over 
time and in the absence of disease, cells progressively become 
senescent – i.e., they either lose optimal function and/or have 
damaged or impacted cellular processes but have not yet begun to die. 
Many individual alterations can make up cellular senescence or aging, 
but some that occur are directly related to the mitochondria and 
calcium signaling. One alteration found is the downregulation of the 
mitochondrial calcium uptake family member 3 (MICU3) in skeletal 
muscle of aged mice, which was associated with increased oxidated 
stress and apoptosis and the reconstitution of MICU3 enhanced 
antioxidants, decreased apoptosis, and prevented mitochondrial ROS 
accumulation (Yang et al., 2021).

Since different cell types have differentially expressed genes and 
proteins, generally conserved processes may vary to fit the needs of 
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the cell, such as mitochondria distribution and activity. Mitochondria 
have been shown to move to elevated [Ca2+] sites and regions of high 
ATP demand to provide buffering capacity and supply energy. Until 
recently, astrocyte processes were thought to be  too small to 
accommodate mitochondria because of the small size of the astrocyte, 
but newer studies indicated otherwise (Jackson and Robinson, 2018). 
Complex I  assembly into the (I/III) supercomplex is reduced in 
astrocytes compared to neurons, resulting in lower complex I activity 
and respective downstream effects connected to astrocyte calcium 
dysfunction reports in AD, PD, and HD (McAvoy and Kawamata, 
2019; Okubo, 2020; Okubo and Iino, 2020).

Another aspect worth considering is the comparison between the 
Peripheral Nervous System (PNS) and the Central Nervous System 
(CNS), given their differences in axonal regeneration capacity (Smith 
et al., 2020). Fecher et al. (2019) demonstrated that cell-type-specific 
regulation could occur even in the most basic mitochondrial functions 
in the CNS. They speculated and suggested that this mitochondria 
diversity imbues properties that contribute to the unique function of 
different brain cell types and selective vulnerability during disease 
(Fecher et al., 2019). In the context of SCA, cerebellar Purkinje cells 
(GABAergic inhibitory neurons) are most affected by disturbed 
calcium homeostasis and mitochondrial dysfunction (Kreiner et al., 
2010; Egorova et  al., 2015, 2023). These could be  an example of 
selective vulnerability where large amounts of efficient mitochondria 
are required.

Lastly, calcium and mitochondria dysregulation have been 
implicated in various optic neuropathies (Mueller et al., 2011). In 
animal models of glaucoma, an accumulation of mitochondria was 
observed in the optic nerve (ganglion cell axons), specifically in the 
prelaminar and laminar regions, which was thought to result from 
either mechanical compression or axoplasmic stasis (Bristow et al., 
2002). Rather, it has been suggested that mitochondrial activities are 
different across tissues and in specific regions to compensate for and 
maintain function; thus, the unmyelinated optic nerve may 
be  susceptible to mitochondrial dysfunction because of higher 
energy demand (Bristow et  al., 2002; Yu Wai Man et  al., 2005; 
Maresca et al., 2013). Additionally, the calcium-sensitive apoptotic 
proteins Calcineurin and Calpain have been implicated not only in 
glaucoma (Huang et al., 2010) but also in other neurodegenerative 
diseases, contributing to calcium dysregulation (Mueller et  al., 
2011). Inhibiting these proteins has been shown to prevent the late-
stage activation of apoptosis (Loetscher et al., 2001; Wu et al., 2004). 
However, employing calcium channel blockers as a therapeutic 
strategy could potentially be  more effective by addressing 
dysregulation at an earlier stage.

3. Recent studies and potential 
therapeutic targets

Characterizing the mitochondrial mechanisms that contribute to 
neurodegeneration is sorely needed to aid in the identification of 
potential therapeutic targets. Relieving mitochondrial calcium 
dysregulation has been approached from multiple angles, such as 
upregulating calcium-binding proteins Calretinin and Calbindin-
D28K to buffer free calcium (La Barbera et  al., 2022) as well as 
targeting pathways such as mTORC1-SKN-1-Nrf (Ryan et al., 2022). 
Some of the most promising targets for mitoprotection (Figure 1) 

include NCX and MCU, as well as a channel that has only been found 
in neuronal mitochondria to aid with zinc (Zn2+) uptake: transient 
potential melastatin 2 (TRPM2). This channel is also capable of [Ca2+] 
uptake and has gained prominence in AD studies. However, there is a 
notable prevalence of reviews over empirical findings (Jiang et al., 
2018; Ataizi et al., 2019). A review by Jiang et al. discusses recent 
theories involving TRPM2 being used in neurons to decrease 
intracellular zinc uptake into the mitochondria, which can lead to 
neuronal degeneration. The authors suggest more evidence is needed 
to determine if the channel mediates Zn2+ flux from lysosomes or into 
mitochondria (Jiang et al., 2018). Next, a few studies investigating 
NCX, MCU, or TRPM2 as therapeutic targets are discussed.

Several key findings on different aspects of mitochondrial [Ca2+] 
homeostasis raise the potential for identifying therapeutic targets to 
protect against neurodegeneration. In 2019, a group investigated the 
neuroprotective effects of melatonin and selenium against docetaxel 
damage to the brain and hippocampus. Docetaxel is meant to treat 
glioblastoma (an aggressive cancer of the brain that forms in astrocytes) 
but has detrimental effects on the brain compared to other tissues 
(Ataizi et  al., 2019). The drug was found to induce excessive ROS 
production and activate caspase −3 and − 9 to promote apoptosis, 
potentially through cytosolic calcium overload. Melatonin and selenium 
were shown to stimulate antioxidant response and inhibit TRPM2, a 
calcium-permeable, non-selective cation channel, by facilitating the 
neutralization of ROS into less harmful products. The fluorescence data 
suggested a more significant improvement mediated by selenium than 
melatonin. Intriguingly, when treating hippocampal cells with 2-APB, 
a known TRPM2 channel blocker, there was a decrease in fluorescence, 
indicating decreased [Ca2+], suggesting a role in calcium homeostasis 
and supporting the potential of TRPM2 being in the mitochondria and/
or involved with mitochondria in neurons. Another study found that 
amyloid-β inducing ROS can activate TRPM2 to alter intracellular Ca2+/
Zn2+ homeostasis (Jiang et al., 2018). Selenium has since been used in 
microglia to mitigate interferon-gamma’s activation of TRPM2 and, 
when combined with 2-APB, showed potentiated effects of TRPM2 
inhibition and decreased calcium influx (Akyuva et al., 2021). Carvacrol 
has also been recently proposed as an effective TRPM2 antagonist in 
SH-SY5Y neuronal, BV-2 microglial, and HEK293 (human epithelial 
kidney derived) cells (Nazıroğlu, 2022). In the context of the eye, 
specifically retinal pigment epithelial cells, Selenium reduced TRPM2 
activity following hypoxia (Özkaya et  al., 2021), and Carvacrol 
attenuated TRPM2 activity following high glucose insult (diabetes 
mellitus model) (Daldal and Nazıroğlu, 2022). Considering these 
findings, there is an implication that multiple stimuli (such as amyloid-β, 
docetaxel, INF-gamma, hypoxia, or high glucose) generate ROS as a 
second messenger to produce TRPM2 dysfunction. This highlights the 
dynamic nature of regulation and the need to characterize further 
specific mechanisms involving TRPM2.

Several studies have investigated the modulation of NCX in 
neurons and have demonstrated the rescue of mitochondrial function 
in models of AD-associated pathology (Jadiya et  al., 2019), 
PD-associated pathology (Sisalli et al., 2022), and cerebral ischemia 
(Abedinzade et  al., 2022). When NCX was knocked out of 
hippocampal cells, the positive effects of PDE2 inhibitors (which 
rescue calcium efflux by diminishing mitochondrial cAMP) were 
diminished, confirming a relationship between NCX and PDE2-
dependent neuronal survival (Rozenfeld et  al., 2022). In human 
SH-SY5Y cells (neuronal-like blastoma), an increase of NCX 
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expression and activity that corresponded with improved 
mitochondrial functions was observed following rotenone and 
6-hydroxydopamine treatment (Abedinzade et al., 2022). Another 
connection to mitochondrial calcium homeostasis is PD-associated 
LRRK2 deficiency having calcium efflux rescued by NCX upregulation 
(Ludtmann et al., 2019). These studies highlight a link between NCX 
expression/activity and calcium homeostasis and that it has a 
noticeable effect on cellular function.

One group performed immunoblot analyses of proteins 
associated with mitochondrial calcium exchange in brain samples 
from diagnosed AD patients and found decreased expression of 
NCX and remodeling of MCU components. Next, the group used 
an animal model with NCX knockout and found compelling data 
indicating accelerated AD pathology. A model with AD mutations 
was utilized to rescue from the AD pathology by increasing 
neuronal NCX mRNA and protein expression at 4 weeks of age. The 
results were impressive – genetic rescue via introducing a vector 
containing the transcript for NCX entirely removed age-associated 
cognitive decline and reduced the expected neuronal pathology. 
Mice overexpressing NCX tested similarly to healthy controls, 
suggesting that this novel treatment for neurodegeneration is 
sufficient for suppressing a cognitive decline in even advanced 
stages. Mitochondrial function was investigated in response to the 
restoration of calcium efflux and was found to be improved. In the 

discussion, the authors explored the downregulation of calcium 
efflux in early AD pathogenesis, positing it as a possible 
compensatory mechanism to meet the increased demand for 
dehydrogenase activity and ATP production. They suggested that as 
the need for metabolic signaling grew, calcium efflux decreased 
while calcium uptake increased to supplement [Ca2+] signaling 
(Jadiya et al., 2019).

Some groups have investigated the modulation of MCU in 
Parkinson’s and Alzheimer’s models. A 2022 publication found that 
patients with PD had variants in Miro1, a Rho GTPase that aids 
calcium buffering and mitophagy. The inhibition of MCU resulted in 
features characteristic of the mutated Miro1 genotype calcium 
response, demonstrating Miro1’s ability to modulate calcium via the 
MCU (Schwarz et  al., 2022). Another study found that MCU 
knockdown in hippocampal neurons improved memory, decreased 
neuroinflammatory responses, and improved PINK1-Parkin signaling 
(Cai et al., 2022). Alternatively, a group that knocked down MCU in 
excitatory neurons found disruption in neuronal network oscillations 
that require high mitochondrial performance (Kann et al., 2014). A 
2022 study on the relationship between action potential firing and 
MCU calcium uptake in excitatory neurons of the cortex and 
hippocampus found that the activation of MCU was matched to 
enhanced firing rate and likely acts through metabolic regulation and 
excitability control (Groten and MacVicar, 2022). This could mean 

FIGURE 1

Mitochondrial calcium homeostasis. This scheme illustrates the mitochondrion and the key components involved in calcium homeostasis, 
demonstrating the balance between calcium influx via the mitochondrial calcium uniporter (MCU) and efflux via the Sodium Calcium Exchanger (NCX). 
The MCU is depicted in tan/brown, calcium in dark purple, NCX in blue, and sodium flow in light purple. The grey arrows do not represent direct 
actions but rather illustrate the downstream effect of calcium on reactive oxygen species (ROS) production and the opening of the mitochondrial 
permeability transition pore (mPTP). When cytosolic calcium concentration exceeds 10 micromolar, voltage-dependent anion channels (VDACs) 
transport calcium into the intermembrane space. Subsequently, MCU, NCX, and TRPM2 mediate ion movements between the intermembrane space 
and the mitochondrial matrix. Given the higher rate of calcium influx compared to efflux, calcium ions can easily accumulate, leading to ATPase 
overload, excess ROS production, and the opening of mPTP, which can trigger apoptosis. To prevent calcium overload, two potential interventions are 
proposed: using a blocker to reduce the rate of calcium influx, or employing protein kinase A (PKA) or plasmid transfection to enhance NCX expression 
and thus increase the rate of calcium efflux. Created in BioRender.
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that MCU modulation would be more beneficial in cell types that do 
not rely on network oscillations.

Despite the numerous gaps in our understanding of 
neurodegeneration and the mechanisms involved in various calcium 
channels and responses to stimuli, a handful of promising treatments 
still show potential. It would be worth investigating a combination of 
treatments to combat the dysregulation of mitochondrial calcium, 
such as targeting TRPM2 or MCU (depending on the disease) for 
inhibition in addition to increasing NCX expression (Figure 1). It is 
worth noting that these studies have primarily been in cells and a few 
in vivo, so further research is needed to understand any potential 
drawbacks of the proposed treatments fully.

4. Conclusion

With aging, most cells in the body become more susceptible to 
mutations, mitochondrial damage, and associated diseases. By virtue 
of their high metabolic rate and oxygen consumption, neurons are 
particularly susceptible to mitochondrial injury and degeneration. 
Not surprisingly, one of the most prominent and devastating effects 
of age is the degeneration of neurons and subsequent loss of memory 
and motor function. There are numerous ways to analyze 
mechanisms contributing to neurodegeneration in various 
neurodegenerative diseases. One active area of investigation is the 
involvement of mitochondria in regulating calcium, ROS, zinc, and 
sodium. Regardless of the inciting cause of degeneration in aging, 
AD, PD, and HD, it has become clear that a common denominator 
leading to cell death is the dysregulation of mitochondrial [Ca2+] 
homeostasis, which makes it an ideal therapeutic target. The data 
reviewed here highlight the potential for developing treatments for 
neurodegeneration in animal models. The main trigger of 
dysfunction in the mitochondria from disruption of calcium 
homeostasis remains to be  determined. This could involve 
mitochondrial calcium uniporter (e.g., MICU3), the sodium-
calcium exchanger, the TRPM2 cation channel, and specific 
mechanisms of TRPM2 alteration and NCX downregulation. 
Increasing NCX expression and using a TRPM2-specific blocker 
(e.g., selenium, 2-APB) may be promising approaches for in vivo 
experiments aimed at developing new therapies. More studies need 

to be done to support these findings and elucidate the side effects of 
novel candidate drugs.
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