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Introduction: Fine-tuning (FT) is a generally adopted transfer learning method for

deep learning-based magnetic resonance imaging (MRI) reconstruction. In this

approach, the reconstruction model is initialized with pre-trained weights derived

from a source domainwith ample data and subsequently updatedwith limited data

from the target domain. However, the direct full-weight update strategy can pose

the risk of "catastrophic forgetting" and overfitting, hindering its e�ectiveness. The

goal of this study is to develop a zero-weight update transfer strategy to preserve

pre-trained generic knowledge and reduce overfitting.

Methods: Based on the commonality between the source and target domains,

we assume a linear transformation relationship of the optimal model weights from

the source domain to the target domain. Accordingly, we propose a novel transfer

strategy, linear fine-tuning (LFT), which introduces scaling and shifting (SS) factors

into the pre-trained model. In contrast to FT, LFT only updates SS factors in the

transfer phase, while the pre-trained weights remain fixed.

Results: To evaluate the proposed LFT, we designed three di�erent transfer

scenarios and conducted a comparative analysis of FT, LFT, and other methods at

various sampling rates and data volumes. In the transfer scenario between di�erent

contrasts, LFT outperforms typical transfer strategies at various sampling rates

and considerably reduces artifacts on reconstructed images. In transfer scenarios

between di�erent slice directions or anatomical structures, LFT surpasses the FT

method, particularly when the target domain contains a decreasing number of

training images, with a maximum improvement of up to 2.06dB (5.89%) in peak

signal-to-noise ratio.

Discussion: The LFT strategy shows great potential to address the issues

of "catastrophic forgetting" and overfitting in transfer scenarios for MRI

reconstruction, while reducing the reliance on the amount of data in the

target domain. Linear fine-tuning is expected to shorten the development cycle

of reconstruction models for adapting complicated clinical scenarios, thereby

enhancing the clinical applicability of deep MRI reconstruction.

KEYWORDS

magnetic resonance imaging reconstruction, deep learning, transfer learning, fine-

tuning, transfer strategy
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1. Introduction

Magnetic resonance imaging (MRI) includes diverse sequences

that provide distinct types of anatomical and pathological

information, catering to a wide range of clinical needs (Yousaf

et al., 2018). For instance, T1-weighted spin-echo sequences can

be employed to measure the cross-sectional area of visceral and

subcutaneous fat in the abdomen (Lancaster et al., 1991), as T1-

weighted images provide the most anatomically-relevant details.

Additionally, T2-weighted images highlight lesions and can be

used to identify myocardial edema (Eitel and Friedrich, 2011),

determine the area at risk in non-reperfused infarction (Aletras

et al., 2006), etc. As a downside, standard scan sequences used in

clinical routines generally require a long imaging time, which can

aggravate patient discomfort and introduce severe motion artifacts.

In an effort to speed up the acquisition of MRI, reconstruction

techniques (Roy and Kailath, 1989; Pruessmann et al., 1999;

Griswold et al., 2002; Block et al., 2007; Hamilton et al., 2017)

based on under-sampled k-space data have been developed, albeit

at the cost of increased hardware requirements or lengthened

reconstruction time.

Recently, deep learning-based technologies have gained much

attention owing to the powerful image representation capabilities

and fast image generation speed (Lee et al., 2018; Quan et al.,

2018; Hosseini et al., 2020; Cole et al., 2021). Numerous neural

network frameworks have been proposed for MRI reconstruction,

establishing an end-to-end non-linear mapping from under-

sampled data to fully-sampled images. Wang et al. (2016)

introduced a convolutional neural network (CNN) that employed

a large number of MR images as training datasets to recover the

delicate structures and details of test data. Additionally, Quan

et al. (2018) designed a variant of a fully-residual convolutional

auto-encoder and generative adversarial networks (GAN) called

RefineGAN, which incorporated a cyclic data consistency loss

and a chained architecture to enhance the reconstruction quality.

Despite being a powerful tool for MRI reconstruction, deep

learning still suffers from a notable inherent drawback: limited

generalizability (Gavrikov and Keuper, 2022). It was found that

deep learning algorithms are sensitive to shifts in the distribution

of input data (Knoll et al., 2019; Antun et al., 2020). Knoll et al.

(2019) summarized the deviations between training and testing

led to substantial decreases in reconstruction image quality. Antun

et al. (2020) demonstrated that even some certain tiny, almost

imperceptible perturbations may result in severe artifacts in the

reconstruction.Moreover, even for one specific anatomical part, the

reconstructed MR images exhibit obvious stylistic variations when

different sequences or different scan parameters are performed.

Therefore, adapting a reconstruction model to diverse clinical

scenarios is challenging.

To enhance the generalization ability of the neural networks,

a straightforward approach is to collect ample data encompassing

various clinical scenarios. However, medical imaging domains

generally face a dearth of data, which is both time-consuming

and expensive to acquire. Alternatively, transfer learning strategies

(Tajbakhsh et al., 2016) have been developed, focusing on how

to transfer knowledge from the source domain to the target

domain (Romero et al., 2020). Since an explicit paradigm for

designing transfer strategies is not available, multiple factors such

as the task attribute, the total amount of data, and the amount

of labeled data in the source and target domains should be

considered comprehensively. Kamphenkel et al. (2018) proposed

an unsupervised domain adaptation method for breast cancer

classification to transform the target data to the source domain

without any label information of target data. Faced with the

inability to obtain paired images of the same subject, Zhang et al.

(2022) designed a novel unsupervised domain adaptation approach

for tackling the distribution discrepancy across domains in medical

image segmentation.

Regarding the MRI reconstruction scenario involved in this

study, it is characterized by the following aspects. Firstly, the

tasks in both the source and target domains are identical, i.e.,

reconstructing under-sampled aliased images into aliasing-free

images. Secondly, the source domain is composed of a large-

scale public dataset, while the target domain has a relatively

small data volume. Thirdly, network training usually takes full-

sampling data as the reference without requiring additional

labeling. Hence, in this case, fine-tuning (FT) (Pan and Yang,

2010; Dar et al., 2020; Frégier and Gouray, 2021) is the most

commonly used transfer learning method that updates pre-

trained models to target domains. The FT strategy leverages

pre-trained weights as initialization and relearns all the weights

of convolutional layers in the transfer phase, which has been

investigated in many studies. Dar et al. (2020) pre-trained

networks on large public MR datasets and then fine-tuned them

using only tens of brain MR images from the target domain,

achieving performance comparable to networks trained directly

on thousands of target images. Arshad et al. (2021) obtained

satisfactory reconstruction of MR images based on a pre-trained

U-Net through end-to-end FT under various magnetic field

strengths, anatomies, and acceleration factors. Lv et al. (2021a)

focused on the generalization ability of the multi-channel MRI

reconstruction network and highlighted the critical role of FT

in adapting to a particular target application using only a few

training cases.

All of the aforementioned research has employed FT to achieve

reliable reconstructions of under-sampled images in different

transfer scenarios, demonstrating the potential of knowledge

transfer for reconstruction. However, two major limitations of

FT hinder its effectiveness. Firstly, updating all the pre-trained

weights implies that the target model may forget the pre-trained

knowledge when adapting to a new task, known as “catastrophic

forgetting” (Lopez-Paz and Ranzato, 2017). This can be improved

as distinct MR images exhibit many similar features despite

variations in contrast, slicing direction, and anatomy. Additionally,

networks mostly contain a mass of weights, and the full-weight

adjustment on a small target dataset may result in overfitting

(Sun et al., 2019). Recently, layer-wise FT (Tajbakhsh et al., 2016;

Amiri et al., 2020), a transfer strategy of FT, has been applied

in the field of medical imaging for transfer learning. Layer-

wise FT freezes the weights of specific layers and tunes the rest

in the transfer phase. Although layer-wise FT has the potential

to alleviate “catastrophic forgetting” by reducing the degree of

weight updates, the determination of an optimal freezing strategy

is scenario-dependent, making it difficult to design a general
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scheme for all transfer scenarios as in the case of FT. Therefore,

layer-wise FT is rarely applied in the transfer learning of deep

MRI reconstruction.

In this study, we propose a novel transfer strategy of FT,

termed linear fine-tuning (LFT), which assists in effective transfer

and is applicable to MRI reconstruction. The approach assumes a

linear transformation relationship between the source and target

models. Specifically, networks pre-trained on a large-scale source

dataset can be transferred to the target domain by adjusting the

scaling and shifting (SS) factors. These two factors are integrated

into the SS block in a learnable fashion, which is merged with

regular convolution to adjust for linear deviation. Unlike FT, LFT

avoids changing the entire pre-trained weights and instead updates

the SS factors continuously while freezing the pre-trained weights

and biases. The proposed zero-weight strategy benefits learning

specific knowledge while avoiding forgetting the generic knowledge

by fixing the pre-trained weights. Additionally, LFT entails a

considerably smaller number of weights to be adjusted, thereby

reducing the risk of overfitting.

Our contributions can be summarized as follows.

• We hypothesize that advanced features of different MR images

can be represented as different linear combinations of the

same basic features.

• Based on the proposed assumption, the LFT strategy

introduces two coefficients, namely SS factors, in

convolutional layers for the linear transformation of

features. In the transfer phase, only the SS factors are updated,

thereby mitigating the risk of “catastrophic forgetting” and

overfitting.

• We conducted extensive experiments on various MR datasets

with different data volumes and sampling rates. The results

suggest that the proposed LFT strategy generally outperforms

other methods and achieves high-quality reconstruction,

especially in the case of small samples.

2. Methods and materials

2.1. Preliminary

2.1.1. Definitions and notations
Since the key part of the LFT strategy implementation is the

SS factors inserted into the convolutional layer, some concepts

are defined to facilitate the explanation. In general, one of the

fundamental components of a neural network is the convolutional

layer, which acts as a feature extractor. The two-dimensional

convolutional layer transforms an input tensorU of sizeM×H×W

into an output tensor V of size N × H × W by applying N

convolution filters F(1), F(2), · · · , F(N). The feature maps generated

by each filter are defined as advanced features Va, such that

Va = U ∗ F, (1)

where F ∈ {F(1), F(2), · · · , F(N)}, ∗ represents the multichannel

convolution operator, and Va of each filter corresponds to one

channel of V .

FIGURE 1

Exemplary basic and advanced features. Vb and Va represent the

outputs of each kernel and each filter, respectively. Va shows two

types of advanced features including in-contour artifacts (top) and

out-of-contour artifacts (bottom).

Each filter F contains M kernels, namely K(1),K(2), · · · ,K(M),

with weights W. The output of each kernel is defined as basic

features Vb, via

Vb(m) = U(m) ⊙W(m) + b(m), (2)

where K(m) ∈ {K(1),K(2), · · · ,K(M)}, with weight W(m). U(m)

indicates the channel of U corresponding to K(m). ⊙ denotes the

convolution operator and b is the bias of the convolutional layer.

Equations (1) and (2) are combined to obtain

Va =

M∑

m=1

Vb(m) =

M∑

m=1

(U(m) ⊙W(m) + b(m)). (3)

Equation (3) indicates the convolution operation can be

split into two parts: feature extraction and linear combination.

Specifically, as illustrated in Figure 1, an example of a filter

F containing two kernels K(1),K(2) is used. Each kernel slides

over the corresponding channel of U and extracts basic features.

Subsequently, the extracted features from different kernels are

combined into advanced features, which are commonly described

as a feature map. Advanced features typically contain special

significance that reflects the function of the filter, especially in the

deep layers of the network. Figure 1 shows two types of advanced

features, including in-contour artifacts (top) and out-of-contour

artifacts (bottom).

2.1.2. Fine-tuning
The aim for transfer learning is to generalize high-performance

networks trained in a related source domain to the target domain

(Weiss et al., 2016). Fine-tuning is a common transfer learning

method for MRI reconstruction, which begins with pre-training
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FIGURE 2

Visualization of the di�erence between FT and LFT in the transfer

phase. Taking a 3 × 3 filter as an example with four channels, the

structure of SSConv is composed of SS block and regular

convolution. The 3 × 3 and 1 × 1 squares represent the weight W

and bias b of the kernel, respectively, and di�erent colors in them

symbolize di�erent channels. (A) FT updates all the pre-trained W

and b. (B) The propose LFT optimizes the scaling factor 8SW
and

shifting factor 8Sb
only.

a network in the source domain, usually with large-scale data.

In the transfer phase, a new network is initialized with the pre-

trained weights and continues to be trained for target task, with the

updating process is shown in Figure 2A.

During pre-training, regular convolution Conv is applied to the

input Us in the source domain with a kernel K(m) as

Vs
b = Us ⊙W + b. (4)

Note that m is omitted for readability. During the transfer

process, FT initializes the target network with the pre-trained W

and b, giving

V t
b = Ut ⊙W + b. (5)

Afterwards, FT updates all the values of W and b utilizing the

target data Ut , obtaining

V t
b = Ut ⊙W′ + b′, (6)

whereW′ and b′ indicate the updated weights.

Fine-tuning is considered to shorten the convergence time and

enhance the quality of the generated images by providing a strong

initialization, particularly when the target dataset is limited (Jiang

et al., 2019). However, as stated in Section 1, such full-weight

updating leads to “catastrophic forgetting” and overfitting.

2.2. Linear fine-tuning

2.2.1. Hypothesis
Despite the presence of distinct variations in advanced features,

they share many of the basic features (Olah et al., 2020). Hence,

we hypothesize that for two similar types of images, their advanced

features Va can be derived from different linear combinations of

the shared basic features Vb by means of the scaling factor8SW and

shifting factor 8Sb . By substituting the inputs in Equation (3) with

data U1 and U2 from these two datasets, and adding two factors,

the hypothesis can be expressed as

V1
a =

M∑

m=1

((81
SW (m) · (U

1
(m) ⊙W(m))+ (81

Sb(m) + b(m))),

V2
a =

M∑

m=1

((82
SW (m) · (U

2
(m) ⊙W(m))+ (82

Sb(m) + b(m))),

(7)

where 8SW (m) and 8Sb(m) denote the two factors corresponding to

K(m). Equation (7) indicates that Vb of U1 and U2 are extracted

with the same kernel, and then their own Va are formed by diverse

linear combinations of Vb, which are adjusted by SS factors. The

above equation can be rearranged into

V1
a =

M∑

m=1

((U1
(m) ⊙ (81

SW (m) ·W(m))+ (81
Sb(m) + b(m))),

V2
a =

M∑

m=1

((U2
(m) ⊙ (82

SW (m) ·W(m))+ (82
Sb(m) + b(m))).

(8)

Equation (8) indicates the effect of SS factors on the kernel.

The 8SW uniformly scales all the weights W of the kernel, while

8Sb shifts the outputs in addition to the original bias b. A linear

transformation can be observed between the trained models for

these two datasets.

Although the flexible sequences in MRI can result in images

with varying advanced features, we argue that there is high

repeatability of basic features due to the standardized views of

medical images such as the limited texture variants or small patches

(Alzubaidi et al., 2021). According to the hypothesis above, we

speculate that there is a linear correlation relationship between the

trained models for two related MR datasets. If these two are treated

as source and target datasets separately, it is feasible to adjust the

source model pre-trained on the source dataset, by SS factors to

obtain the target model.

2.2.2. Scaling and shifting factors
Based on the hypothesis and analysis, we propose the LFT

strategy, which is implemented using the SS factors. The SS block,

containing two factors, is integrated with regular convolution into

SSConv in the transfer phase. The structure of SSConv is shown in

Figure 2B. Taking a 3 × 3 filter as an example, the lower part of

SSConv shows the regular convolution Conv. The upper part is SS

block, which contains a single scaling factor 8SW corresponding to

W with 9 elements, and a shift factor 8Sb corresponding to b.
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In the following, the complete training process of LFT is

described in detail. Firstly, in the pre-training phase, the W and b

are initialized randomly, which is identical to classic pre-training.

We train the W and b on large-scale datasets, as represented by

Equation (4). Next in the transfer phase, the new target model is

initialized with the pre-trained weights, and the SS block is inserted

into the model. Here 8SW and 8Sb are initialized as 1 and 0,

respectively. Therefore, feeding input Ut in the target domain into

SSConv can be expressed as

V t
b = Ut ⊙ (8SW ·W)+ (8Sb + b). (9)

Then LFT requires training the target model with target data, as

shown in Figure 2B. It is worth noting thatW and b are frozen, and

only 8SW and 8Sb are optimized, giving

V t
b = Ut ⊙ (8′

SW
·W)+ (8′

Sb
+ b), (10)

where 8
′
SW

and 8
′
Sb
indicate the optimized weights.

Figure 2 visualizes the difference between FT and LFT in the

transfer phase. Fine-tuning updates the complete values ofW and b,

while LFT updates only the SS factors. It is obvious that LFT reduces

the number of tuning weights, which contributes to lessening the

risk of overfitting in the case of small samples sizes. Moreover, LFT

prevents the problem of “catastrophic forgetting” by fixing the pre-

trained weights, which benefits in learning specific knowledge of

the target data without forgetting the generic knowledge learned

from the source data.

2.3. Materials

2.3.1. Network
Generative adversarial networks (GANs) have shown strong

performance in modeling the prior distributions of images (Shaul

et al., 2020; Lv et al., 2021b). Therefore, GANs have been widely

studied in MRI reconstruction (Shitrit and Riklin Raviv, 2017;

Yang et al., 2017; Mardani et al., 2018; Quan et al., 2018), among

which, RefineGAN (Quan et al., 2018) gets a superior performance

(Lv et al., 2021b). In view of this, we constructed SSGAN as

the reconstruction network by referring to RefineGAN’s residual

bottleneck block and double chain structure. To evaluate the

proposed LFT strategy, the SS block is inserted into the network

in the transfer phase. In addition, our network only contains basic

building units, such as convolutional layers, non-linear activation

functions and residual connections to facilitate the experiments on

generalization and transferability. Figure 3 provides an overview

of the SSGAN architecture with the inserted SS block. For more

details, please refer to RefineGAN for more details.

2.3.2. Datasets
The IXI dataset1 is a large publicly available MR brain image

dataset of healthy subjects, and the extensive data assists in

improving the performance of the original model. For pre-training

1 http://brain-development.org/ixi-dataset/

the source model, 58,000 sagittal T1-weighted brain images were

selected from the IXI dataset. The transfer performance of the

source model was explored on three different target datasets: the

private sagittal T2-weighted brain dataset I, the private axial T1-

weighted brain dataset II and the FastMRI2 knee dataset. These

datasets differ from the source data in distributions ranging from

small to large, allowing us to study the effects of the distribution

deviation on the proposed method. The two private datasets were

derived from the study (Jiang et al., 2022), and all the ethical

and experimental procedures were approved by the First Affiliated

Hospital of University of Science and Technology of China (in

accordance with the Declaration of Helsinki), under Application

No. 2021 KY205. Detailed acquisition parameters can be found in

the Supplementary material. Slices (256×256 pixels) were extracted

from raw data as the standard reference images, and retrospective

under-sampling was performed with the mask to obtain the under-

sampled data. The mask was constructed by random row (1D)

sampling from a normal distribution, with denser sampling in the

central part of the k-space.

2.3.3. Performance evaluation
The results were evaluated by the Peak Signal-to-Noise

Ratio (PSNR) and the Structure SIMilarity (SSIM) (Wang et al.,

2004) as they are commonly used measures for evaluating

image reconstruction quality. Both metrics rely on a pixel-

wise comparison between the fully-sampled image and the

reconstructed result. In addition, weighted peak signal-to-noise

ratio (WPSNR) (Gupta and Aggarwal, 2009; Erfurt et al.,

2019) is considered to be a metric more compatible with

human visual perception, and its results are included in the

Supplementary material.

3. Experiment and results

3.1. Experimental design

As shown in Figure 4, we utilized LFT to transfer the pre-

trained SSGAN (gray part) to reconstruct the under-sampled MR

data from three target datasets mentioned in II.D (color part).

Hence, three transfer scenarios were designed: (1) sagittal brainMR

images with different contrasts (T1-weighted and T2-weighted);

(2) brain MR images with different slicing directions (axial and

sagittal planes); (3)MR images with different anatomical structures

(brain and knee).

The model transferred by LFT strategy was termed linear

fine-tuning model (LFT model). For comparison, the following

models were set up: (1) testing the target data directly with

pre-trained model (PT model) to verify the necessity of transfer

learning; (2) training the model directly (DT model) from

scratch with the target data to prove the effectiveness of transfer

learning; (3) transferring the PT model by FT, termed fine-tuning

model (FT model).

Additionally, experiments were conducted at

different sampling rates of 30, 40, and 50% to examine

2 https://fastmri.org/dataset/

Frontiers inNeuroscience 05 frontiersin.org

https://doi.org/10.3389/fnins.2023.1202143
http://brain-development.org/ixi-dataset/
https://fastmri.org/dataset/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Bi et al. 10.3389/fnins.2023.1202143

FIGURE 3

Overview of the SSGAN architecture. The generator G of SSGAN is composed of two residual U-net with 2 encoder (pink box) and 2 decoder (blue

box) blocks. The architecture of the discriminator D is the same as the encoding path of G. The inputs of G are the ZF image (i) and ZF image (k),

which come from di�erent collections.

FIGURE 4

Three transfer scenarios of the pre-trained SSGAN. The gray part shows SSGAN was pre-trained on the IXI dataset, then transferred to reconstruct

images with di�erent contrasts (blue part, scenario 1: T1-weighted to T2-weighted), slicing directions (purple part, scenario 2: axial planes to sagittal

planes), and anatomical structures (green part, scenario 3: brain to knee).

the robustness of the proposed method. We also

investigated the effect of different sizes of training

sets to validate the feasibility of LFT in the case of

few samples.

3.2. Implementation details

All the models in this work were implemented using PyTorch

framework on NVIDIA Geforce GTX 3090 with 24 GB memory.
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FIGURE 5

Comparison of advanced features extracted by filters of the same channel in four cases: advanced features obtained by (A) feeding the source data

into the PT model; (B) feeding the target data into the PT model; (C) feeding the target data into the FT model; (D) feeding the target data into the LFT

model. Source data is from IXI dataset, while target data are from private sagittal brain dataset I, private axial brain dataset II, and FastMRI knee dataset.

Adam optimizer (Kingma and Ba, 2014) with an initial learning

rate of 10−4 was applied for pre-training, and lowered the initial

learning rate depending on the target datasets in the transfer

phase. We stopped the network training based on the convergence

criterion that the PSNR on the validation set does not increase

within 15 epochs. The datasets used for the experiments were

divided into training, validation and test datasets in the ratio of

16:5:4, but not all in the training set were used every time to

examine the effect of the training set size.

3.3. Validation of the hypothesis

To verify the hypothesis in Section 2.2, the feature maps, i.e.,

advanced features extracted by filters of the same channel for

four cases are visualized in Figure 5, including: advanced features

obtained by (a) feeding the source data into the PT model; (b)

feeding the target data into the PTmodel; (c) feeding the target data

into the FT model; (d) feeding the target data into the LFT model.

As shown in column (a), the PT model extracted the out-of-

contour artifacts (the first row) and in-contour artifacts (the last

row) of source data, which presented the functions of these two

pre-trained filters, respectively. The features in column (b) were the

results of the PT model tested directly on the target data and were

of different types than that in column (a) obviously. We attribute

this to the fact that although the data in the source and target

domains have similar basic features, the combination coefficients of

advanced features are variable. Inappropriate coefficients prevented

the PT model from extracting the expected advanced features of

the target data. Column (c) shows the FT model restored the filters

to extract the expected features, as in column (a). Although FT

adjusted all the weights, it served to restore the original function

of the filter, instead of relearning to extract new types. Column (d)

displays the features of applying the LFT model to the target data.

It is found that it also succeeded in extracting the desired advanced

feature types. In particular, the LFT model adjusted the suitable

coefficients for linear combinations of basic features by SS factors.

This demonstrates that the hypothesis is reasonable and the LFT

can achieve model transfer as FT with fewer tuning weights.

3.4. Results and analysis

In the pre-training phase, we trained three SSGANs with

different under-sampling rates on the large-scale source IXI dataset.

The networks reached the convergence stage within a few dozen

iterations and achieved satisfactory reconstructions on the test data.

Table 1 presents the quantitative evaluation of both PSNR and

SSIM, where the values of PSNR and SSIM are displayed in the form

of mean ± standard deviation. The zero-filled model (ZF model)

indicates the zero-filled reconstruction of the under-sampled k-

space measurement. Each network with the highest PSNR was

saved as the basis for further transfer and named as PT model.

In transfer scenario 1, the target data are sagittal T2-weighted

brain images, with different contrasts from the source data.

There is not much deviation between their distributions. Table 2

demonstrates the evaluation metrics of different reconstructions

for the target data, with bolded indicating the best. The mean

SSIM and PSNR values were both improved for two transfer

models compared to the original PT and DT model. It indicates

the necessity and effectiveness of transfer learning in the presence

of contrast variation between the source and target data. In

addition, the highest PSNR and SSIM were obtained by the LFT

model at various under-sampling rates, reflecting the superiority

and robustness of the proposed method. Figure 6 provides

the reconstructions of each model. It can be seen that the

reconstruction of the DT model had notable artifacts, indicating

that training the network from scratch could not achieve a good

result when there were only a few target samples. Instead, PT,

FT, and LFT models basically succeeded in reconstructing, but the

results of the LFT model achieved artifact minimization, which

is more obvious at the red arrow indication in the error maps.

Therefore, LFT model provided the most desirable reconstruction

when transferring the network to data with different contrasts.

As for transfer scenario 2, the target data are axial T1-weighted

brain images. They are sliced in different directions from the

source data, and the variance in the data distribution leads to

some respective features. Table 3 shows the quantitative results

of different reconstructions on the target data. The bolded rows

mark the best results obtained by the LFT model, resolving

the variation in different slicing directions. It is noteworthy
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TABLE 1 Performance evaluation of PT models on source dataset.

PSNR/SSIM 30% 40% 50%

model PSNR SSIM PSNR SSIM PSNR SSIM

ZF modela 25.78± 2.35 0.691± 0.046 26.17± 2.32 0.696± 0.046 28.72± 2.23 0.745± 0.046

PT modelb 39.02± 2.81 0.981± 0.008 39.83± 3.12 0.982± 0.008 42.24± 3.15 0.988± 0.005

aZero-filled model. bPre-trained model.

TABLE 2 Performance evaluation of di�erent reconstructions for the target data with di�erent contrasts.

PSNR/SSIM 30% 40% 50%

model PSNR SSIM PSNR SSIM PSNR SSIM

ZF modela 31.10± 2.73 0.850± 0.048 31.90± 2.92 0.853± 0.049 33.88± 2.76 0.891± 0.038

PT modelb 40.45± 2.39 0.973± 0.007 41.28± 2.56 0.978± 0.008 44.52± 2.61 0.980± 0.003

DT modelc 37.45± 2.61 0.959± 0.013 37.43± 2.77 0.956± 0.015 39.82± 2.60 0.971± 0.010

FT modeld 40.72± 2.54 0.981± 0.008 42.35± 2.73 0.984± 0.008 44.78± 2.69 0.991± 0.004

LFT modele 41.45 ± 2.52 0.984 ± 0.008 42.52 ± 2.78 0.985 ± 0.008 45.84 ± 2.64 0.992 ± 0.003

aZero-filled model. bPre-trained model. cDirectly trained model. dFine-tuning model. eLinear fine-tuning model. The bold values indicate the best values of the evaluation metrics of different

reconstructions for the target data.

FIGURE 6

Typical reconstructions for sagittal T2-weighted brains from private dataset I by di�erent methods. The last three models trained with 160 images at

50% sampling rate. From left to right are the results of: ground truth, zero-filled model, pre-trained model, directly trained model, fine-tuning model,

and linear fine-tuning model, as well as their 10× magnified error maps.

TABLE 3 Performance evaluation of di�erent reconstructions for the target data with di�erent slicing directions at 30% sampling rate.

PSNR/SSIM 100 images 200 images 400 images 800 images

model PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

ZF modela 23.88± 3.47 0.806± 0.040 23.88± 3.47 0.806± 0.040 23.88± 3.47 0.806± 0.040 23.88± 3.47 0.806± 0.040

PT modelb 34.33± 2.67 0.959± 0.009 34.33± 2.67 0.959± 0.009 34.33± 2.67 0.959± 0.009 34.33± 2.67 0.959± 0.009

DT modelc 31.46± 2.84 0.925± 0.016 32.62± 2.87 0.941± 0.014 33.92± 2.77 0.958± 0.011 34.86± 2.71 0.964± 0.011

FT modeld 34.94± 2.61 0.950± 0.026 35.05± 2.61 0.951± 0.027 35.21± 2.61 0.952± 0.027 35.40± 2.56 0.950± 0.030

RFT modele 36.82± 2.51 0.952± 0.042 36.88± 2.48 0.952± 0.047 36.95± 2.45 0.954± 0.051 37.00± 2.49 0.955± 0.050

LFT modelf 37.00 ± 1.89 0.966 ± 0.012 37.03 ± 1.90 0.966 ± 0.015 37.13 ± 1.97 0.968 ± 0.018 37.14 ± 1.93 0.968 ± 0.013

aZero-filled model. bPre-trained model. cDirectly trained model. dFine-tuning model. eRow fine-tuning model. f Linear fine-tuning model. The bold values indicate the best values of the

evaluation metrics of different reconstructions for the target data.

that the LFT model demonstrated high reconstruction quality

for small training sets, while the FT model showed a clear

performance degradation as the sample size decreased. As shown

in the results of the 100 training images, the LFT model

reflects the most visible advantage over the FT model, with

a 2.06 dB (5.89%) improvement in PSNR. Figure 7 presents

intuitive reconstructions for the target data. A slight difference

can be observed from the red arrow indication in the error

map, which represents the LFT model outperforming the others

in scenario 2.
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FIGURE 7

Typical reconstructions for axial T1-weighted brain images from private dataset II by di�erent models (the last three networks trained with 200

images at 50% sampling rate). From left to right are the results of: ground truth, zero-filled model, pre-trained model, directly trained model,

fine-tuning model, and linear fine-tuning model.

Furthermore, we consider FT as a way for each element in a

kernel to learn a transformation factor, and LFT as a way for all

elements in a kernel to learn a transformation factor. Therefore, the

method of learning one transformation factor for all elements in a

single row within the kernel is set up for comparison, named row

fine-tuning (RFT) model. The results of RFT were added to Table 3

as a comparison, and we can observe that RFT improves upon FT

by reducing adjustment weights. However, LFT, which minimizes

the number of updated weights, yields the best performance. It

implies that the performance of the transfer can be improved by

reducing the number of weight updates, and LFT proves to be the

optimal choice.

We transferred the model pre-trained on the brain data to

reconstruct knee images in scenario 3, which belong to different

anatomical structures and vary greatly from the source data. The

reconstruction indices for the knee data at 50% sampling rate

are presented in Table 4. The results indicate that LFT model

obtained the optimal quality in most cases, but occasionally,

the FT model performed better. We consider this phenomenon

reasonable due to the large variation in diverse anatomical

structures. Relatively few similar features limited the validity of

LFT method. However, FT adjusted the model more adequately

after providing more training data, resulting in better performance.

It is also reflects by the decreasing gap between the metrics of

FT and LFT models as the number of training sets increased.

Besides, both FT and LFT models deteriorated the PT model

due to overfitting when the dataset was extremely small. As the

training data increased, LTF prioritized improving the situation.

Typical reconstructions for knee images by different networks

are shown in Figure 8. Focusing on the error maps of the PT

model here, there were more artifacts remaining in the background

compared to the first two scenarios. This observation suggests

that the PT model was more adaptable to the first two datasets

as the data are more similar. In addition, the red arrow indicates

that the LFT model had the least residual artifacts in the

reconstruction images. Consequently, the LFT method is still the

optimal transfer strategy when the source and limited target data

vary widely.

4. Discussion

This study centers on optimizing the FT strategy for MRI

reconstruction. We conducted a comparative analysis of FT,

LFT, and other transfer strategies in various transfer scenarios

based on the reconstruction quality. Fine-tuning yields suboptimal

reconstruction quality and appreciable residual artifacts, especially

when the target domain training set contains fewer than 200 images

in the anatomical structure transfer scenario, whereby the FT

model performs worse than the PT model. We attribute the result

to “catastrophic forgetting” and overfitting. Fine-tuning involves

the update of all weights, which inevitably forgets the pre-trained

knowledge. Moreover, as the target domain typically has limited

data, updating a large number of weights is prone to overfitting

(Sun et al., 2019). Obviously, reducing the number of updated

weights is crucial to improve the FT’s performance. Several studies

(Tajbakhsh et al., 2016; Amiri et al., 2020) have attempted to update

only a subset of network weights, but the required level of tuning

differs from one application to another. Hence, this approach is

only applicable to certain transfer scenarios, limiting its scalability.

The proposed LFT provides a new perspective of decoupling the

pre-trained and to-be-updated weights by introducing learnable

SS factors. While completely fixing the pre-trained weights, LFT

can accomplish the transfer task by updating the weights fewer

than those in the FT, thereby avoiding forgetting and overfitting.

Consequently, LFT achieves more competitive results in various

transfer scenarios.

Comprehensively analyzing the results of multiple transfer

scenarios, it is found that with only 100 training images in the

target domain, LFT outperforms FT with 400 training images.

This implies that in the practical deployment, LFT can construct

multiple reconstruction models at a lower cost and shorter

development cycles to adapt to various complicated clinical

scenarios. In addition, the SS block can be integrated into existing

convolutional neural networks in a plug-and-play fashion, further

enhancing the clinical applicability of LFT.

This study has some limitations. Firstly, we have exclusively

assessed the proposed method using the linear sampling pattern of
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TABLE 4 Performance evaluation of di�erent reconstructions for the target data with di�erent anatomical structures at 50% sampling rate.

PSNR/SSIM 100 images 200 images 400 images 800 images

model PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

ZF modela 29.34± 3.07 0.854± 0.038 29.34± 3.07 0.854± 0.038 29.34± 3.07 0.854± 0.038 29.34± 3.07 0.854± 0.038

PT modelb 35.35± 2.86 0.934 ± 0.025 35.35± 2.86 0.934± 0.025 35.35± 2.86 0.934± 0.025 35.35± 2.86 0.934± 0.025

DT modelc 32.51± 2.86 0.907± 0.024 33.92± 2.75 0.922± 0.021 34.76± 2.64 0.930± 0.020 35.14± 2.59 0.934± 0.018

FT modeld 34.70± 2.69 0.930± 0.024 35.26± 2.76 0.933± 0.024 35.50± 2.79 0.936 ± 0.024 35.86± 2.72 0.936 ± 0.024

LFT modele 35.64 ± 2.33 0.932± 0.024 35.79 ± 2.55 0.934 ± 0.024 35.83 ± 2.60 0.934± 0.024 35.96 ± 2.66 0.935± 0.024

aZero-filled model. bPre-trained model. cDirectly trained model. dFine-tuning model. eLinear fine-tuning model. The bold values indicate the best values of the evaluation metrics of different

reconstructions for the target data.

FIGURE 8

Typical reconstructions for knee images from FastMRI dataset by di�erent networks (the last three networks trained with 200 images at 50% sampling

rate). From left to right are the results of: ground truth, zero-filled model, pre-trained model, directly trained model, fine-tuning model, and linear

fine-tuning model.

the Cartesian k-space trajectory, owing to its prevalence. Additional

research is necessary to examine the feasibility of utilizing LFT in

non-linear scenarios, such as radial sampling patterns. Secondly,

deepMRI reconstruction is performed using retrospectively under-

sampled data, which deviates from clinical routine, so prospective

validation is required. Thirdly, LFT introduces a few additional

parameters to the original model, causing an increase in the latency

of inference. The comparison of inference time with and without

additional parameters is shown in the Supplementary material.

Despite a slight extension of reconstruction time, it does not

considerably affect the overall MRI process in most clinical

applications, as data acquisition and reconstruction can be executed

asynchronously. Lastly, our source domain dataset only contains

brain images, that is, the transfer effects were verified only from

brain MR images to other scenarios. In future work, we intend to

gather a more diverse range of image types to thoroughly evaluate

the transferability of the LFT strategy across various scenarios.

5. Conclusion

To address the issues of “catastrophic forgetting” and

overfitting in FT for MRI reconstruction, we have developed

a novel transfer strategy, LFT, which is predicated on a linear

transformation hypothesis. By focusing on optimizing the SS

factors, as opposed to all weights, LFT achieves performance on

par with FT, while requiring fewer training samples from the target

domain. When applying deep learning for MRI reconstruction in

diverse and complicated clinical scenarios, engineers only need

to create a general pre-training model using MR images from

various sequences and body parts, and subsequently gather a small

quantity of images in the target scene. The LFT approach can

then be employed to derive a customized reconstruction model

with satisfactory performance. Additionally, as the LFT method

can be seamlessly integrated with any reconstruction convolutional

network, it does not limit the choice of architecture during the

development phase. To conclude, LFT greatly enhances the viability

of deep MRI reconstruction in scenarios with limited data.
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