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Introduction:Cocaine is a highly addictive drug that is abused due to its excitatory

e�ect on the central nervous system. It is critical to reveal the mechanisms of

cocaine addiction and identify key genes that play an important role in addiction.

Methods: In this study, we proposed a centrality algorithm integration strategy to

identify key genes in a protein–protein interaction (PPI) network constructed by

deferential genes from cocaine addiction-related datasets. In order to investigate

potential therapeutic drugs for cocaine addiction, a network of targeted

relationships between nervous system drugs and key genes was established.

Results: Four key genes (JUN, FOS, EGR1, and IL6) were identified and well

validated using CTD database correlation analysis, text mining, independent

dataset analysis, and enrichment analysis methods, and they might serve as

biomarkers of cocaine addiction. A total of seventeen drugs have been identified

from the network of targeted relationships between nervous system drugs and

key genes, of which five (disulfiram, cannabidiol, dextroamphetamine, diazepam,

and melatonin) have been shown in the literature to play a role in the treatment of

cocaine addiction.

Discussion: This study identified key genes and potential therapeutic drugs for

cocaine addiction, which provided new ideas for the research of the mechanism

of cocaine addiction.

KEYWORDS
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Introduction

Drug addiction is a chronic, recurrent disorder caused by the long-term effects of drugs

on the brain (Leshner, 1997). Since 1985, cocaine, a highly addictive drug that has been

abused due to its excitatory effects on the central nervous system, has become one of the

world’s leading drugs, mostly in the Americas and Europe. According to the 2020 National

Substance Use and Health Survey report released by the Substance Abuse andMental Health

Services Administration (SAMHSA), 1.9% of people 12 years of age or older in 2020 reported

cocaine use in the past 12 months (NIDA, 2022). Cocaine abuse remains a major worldwide

health problem (Richards and Le, 2022).

Numerous studies have shown that cocaine causes irreversible structural changes in

organs such as the brain and heart (Riezzo et al., 2012; Dang et al., 2022). Research by Goertz

et al. (2015) found that cocaine increases dopaminergic neurons and motor activity through

midbrain α1 adrenergic signaling. It is well known that the ventral tegmental area (VTA)

is an area of the midbrain. In previous studies, the VTA was found to be associated with
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the addictive properties of many drugs, including cocaine

(Cameron andWilliams, 1994). Cocaine abuse results in significant

adaptation of dopamine (DA) neurons in the VTA of the midbrain

(Wolf et al., 2004; Stuber et al., 2010; Mameli and Lüscher, 2011).

Therefore, studies based on the midbrain region could reveal the

mechanisms of cocaine addiction.

A differential gene expression analysis is commonly used for

the analysis of transcriptomic datasets to explore the underlying

molecular mechanisms (Liu et al., 2021). The construction of the

differential gene interaction network according to differential genes

has become the main method for data analysis from the system

level. Generally, centrality algorithms are mainly used to identify

the role of specific nodes in a network and their impact on the

network, and nodes with a high centrality ranking may affect

other nodes and play an important role in the network. Using a

variety of centrality algorithms to analyze the network, screening

themost important key genes has become themain analysismethod

(Chaudhary et al., 2019; Ma et al., 2021; Bhattacharyya et al., 2022;

Luan et al., 2022). In the study of Zhang et al. (2020), ten different

centrality algorithms in cytoHubba were used to identify key genes

in the protein–protein interaction (PPI) network, and it was finally

verified that the key genes were potential biomarkers or therapeutic

targets for opioid addiction. In Poisel et al. (2023)’s computational

biology analysis of human postmortem brain tissues with cocaine

addiction, a gene ontology (GO) enrichment analysis was carried

out for addiction-related CpG sites. A PPI network analysis

revealed several addiction-related genes as highly connected nodes,

including CACNA1C, NR3C1, and JUN. Therefore, by identifying

key genes in the network, the mechanisms of the addiction process

were explored in depth at the system level to explain addiction.

To date, there are no FDA-approved drug treatments for

cocaine addiction (Feng et al., 2022; Shang et al., 2023), so it is

necessary to explore drugs to reduce the incidence and severity of

cocaine abuse. In this study, we analyzed datasets related to cocaine

addiction, constructed a cocaine addiction-related PPI network

to identify potential biomarkers of cocaine addiction, and finally

explored potential therapeutic drugs. This could provide new ideas

for studying the mechanisms of cocaine addiction and potential

cocaine addiction therapeutic drugs.

Materials and methods

The procedure of our study is shown in Figure 1, and the details

are described in the following sections.

Data

Cocaine addiction-related data GSE54839 (Homo sapiens),

GSE67281 (Homo sapiens), GSE186981 (Mus musculus), and

GSE155313 (Mus musculus) were downloaded from the Gene

Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.

gov/geo). The dataset GSE54839 was chosen as our experimental

set, which is based on the GPL6947 platform (Illumina HumanHT-

12 V3.0 expression beadchip). This microarray-based study

determined the profiles of midbrain gene expression in chronic

cocaine abusers (n = 10) and well-matched drug-free control

subjects (n = 10). Array-related procedures were performed in

triplicate for each subject.

GSE67281 (Homo sapiens), GSE186981 (Mus musculus), and

GSE155313 (Mus musculus) were chosen as our validation sets.

GSE67281 is an expression profile in postmortem human midbrain

specimens from chronic cocaine abusers (n= 11) andwell-matched

control subjects (n = 11). The GSE186981 is RNA-Seq data in

hybrid mouse diversity panel (HMDP) mouse strains of nucleus

accumbens (NAc) and prefrontal cortex brain regions (PFC).

GSE155313 is the RNA-Seq data from the VTA region of mouse

that underwent one of four commonly used paradigms: acute

home cage injections of cocaine, chronic home cage injections of

cocaine, cocaine-conditioning, or intravenous-self administration

of cocaine.

Human PPI data were downloaded from the STRING database

(https://string-db.org/) (Szklarczyk et al., 2021). With a combined

score of >900 as the threshold, a total of 230,524 interactions

between 11,763 genes were obtained.

Cocaine addiction-related PPI network

The dataset GSE54839 was differentially analyzed using the R

package “limma” to obtain their differential genes. The p-value of

<0.05 and |log2F>p20mm| > 0.2630344 (i.e., fold change ≥ 1.2 or

fold change ≤ 0.8) were considered statistically significant.

To obtain the interaction relationships between DEGs, the

downloaded PPI data were filtered using the DEGs obtained from

the microarray data GSE54839. By using the gene interactions

as edges and DEGs as nodes, a differential gene network was

constructed. After removing scatters from the network, the core

network was defined as a PPI network related to cocaine addiction.

Key gene identification

We proposed a centrality algorithm integration strategy to

analyze genes in cocaine addiction-related PPI networks. The

scores of the node in network under each centrality algorithm

were calculated separately by applying a series of centrality

measures, including degree, edge-percolated component (EPC),

Laplacian centrality, maximum neighborhood component (MNC),

Katz radiality, and semi-local centrality (SLC). The intersection of

the top 10 genes of each centrality algorithm was considered the

key gene.

In this study, G is the cocaine addiction-related PPI network we

built, and V(G) is the collection of nodes in the network. For node

x in G, N(x) is the set of direct neighbors of x in G. For collection

A, |A| is used to represent the number of elements in the collection.

The specific algorithms are as follows:

1. Degree (Deg)

Deg (x) =
∣

∣N(x)
∣

∣ .

2. Edge percolated component (EPC)

EPC (x) =
1

∣

∣V(G)
∣

∣

1000
∑

k=1

∑

y∈V

δkxy.
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FIGURE 1

Workflow of our methodology. (A) Data. (B) Cocaine addiction-related PPI network. (C) Key gene screening. (D) Validation of key genes and

identification of potential therapeutic drugs.
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Given a threshold of 0.5, 1,000 reduced networks were created

by assigning each edge a random number between 0 and 1 and

removing edges with associated random numbers less than the

threshold. Let the Gk be the reduced network generated at the

kth reduced process. If nodes x and y are connected inGk, set δ
k
xy

to 1; otherwise, δkxy = 0 (Chin et al., 2014).

3. Laplacian centrality (Qi et al., 2012):

Lap(x) = Deg (x)2 + Deg (x) + 2
∑

y∈N(x)

Deg
(

y
)

. (1)

4. Maximum neighborhood component (MNC):

MNC (x) =
∣

∣V(m(N(x))
∣

∣ , (2)

where m(N(x)) is a maximum connected component of the

induced subgraph of G by N (x) (Lin et al., 2008).

5. Katz centrality:

Katz (x) =

∞
∑

k=0

|V(G)|
∑

y=1

αk(Ak)xy, (3)

where A is the adjacency matrix of the network G with

eigenvalues λ, (Ak)xy is the number of paths from x to y with

length k, α is a damping factor and 0 < α < 1
λmax

. In all our

experiments, we chose α = 0.1 (Wei et al., 2020).

6. Radiality (rad):

Rad (x) =
∑

y∈V(G)

d + 1− s(x, y)
∣

∣V(G)
∣

∣ − 1
, (4)

where d is the diameter of the network G (Valente and

Foreman, 1998).

7. Semi-local centrality (SLC):

SLC (x) =
∑

y∈N(x)

∑

z∈N(y)

B (z) , (5)

where B(z) is the number of direct connections and two-step

neighbors for node z (Chen et al., 2012).

Correlation analysis of key genes with
cocaine addiction

The Human Protein Atlas (HPA; https://www.proteinatlas.

org/) database creates a brain-centric knowledge resource on RNA

and protein expression in three mammalian brains: human, pig,

and mouse (Sjöstedt et al., 2020). The RNA expression of key genes

in different brain regions in humans and mice was searched in the

brain section of the HPA database.

The Comparative Toxicogenomics Database (CTD, https://

ctdbase.org/) was used to obtain associations between key genes

and cocaine addiction. In the CTD database, the inference score

reflects the degree of similarity between the CTD chemical–gene–

disease network and a similar scale-free random network (Davis

et al., 2023). The higher the score, the higher the degree of

association between the disease and the gene.

The role of key genes in the mechanism of cocaine

addiction was identified by text mining in the PubMed database.

The search keywords were “cocaine addiction” and the four

key genes.

Three independent sets GSE67281 (human), GSE186981

(mouse), and GSE155313 (mouse) were used for pre-addiction

and post-addiction differential expression analyses to verify

key genes, and the threshold and differential analysis

methods were consistent with those of the experimental

set GSE54839.

The R package “homologene” was used to search for

homologous genes between the human and the mouse. The

“homologene” package is a package based on the NCBI

HomoloGene (https://www.ncbi.nlm.nih.gov/homologene/)

database. The HomoloGene database is a system that can

automatically detect congeners in human and mouse genes (NCBI

Resource Coordinators, 2014).

To investigate the possible molecular mechanisms of key genes

for cocaine addiction, we used the Kyoto Encyclopedia of Genes

and Genomes (KEGG; http://www.kegg.jp/ or http://www.genome.

jp/kegg/) database for enrichment analysis. An adjusted p-value of

<0.05 was considered to be statistically significant.

Potential therapeutic drug identification

In order to identify potential therapeutic drugs for cocaine

addiction, a network of targeted relationships between nervous

system drugs and key genes was constructed. Nervous system drug

information was retrieved from the ATC classification system of

the Drugbank (www.drugbank.ca) database (Wishart et al., 2018).

The targeted effects of key genes with nervous system drugs were

reflected in the CTD, where drugs that affect the expression level

of genes were our screening criteria. According to the targeting

relationship between key genes and nervous system drugs, a

targeted relationship network between nervous system drugs and

key genes was constructed. Cytoscape was used to visualize this

network. Finally, the network was analyzed to screen for potential

therapeutic drugs for cocaine addiction.

Results

Cocaine addiction-related PPI network

A total of 724 DEGs were identified from the GSE54839 dataset,

including 409 up-regulated genes and 315 down-regulated genes

(Supplementary Table 1). The volcano plot was plotted with the

“ggplot2” package in R software to visualize the identified DEGs

(Figure 2A).

The differential genes were mapped to the downloaded PPI

data to obtain a differential gene network consisting of 236 nodes

and 316 edges. Removing scatter points in the network, the core

network had a total of 153 nodes and 263 edges, which was defined

as a cocaine addiction-related PPI network. Cytoscape software was

used to visualize the network (Figure 2B).
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FIGURE 2

DEGs and cocaine addiction-related PPI network: (A) A volcano plot of 724 DEGs. Red: upregulated genes; blue: downregulated genes; gray:

unchanged genes. (B) Cocaine addiction-related PPI network. The higher the degree value, the larger the node.

Key gene

The scores of each node in the cocaine addiction related

PPI network were calculated separately using seven different

centrality algorithms (Figure 3A, Supplementary Table 2). Based

on our proposed centrality algorithm integration strategy, the

top ten genes scored by each algorithm were selected, and their

intersections (FOS, IL6, EGR1, and JUN) were regarded as key

genes (Figure 3B). The scores of the seven centrality algorithms for

the four key genes are shown in Figure 3C.

We performed correlation analyses for four key genes in non-

drug control participants (Figure 3D) and chronic cocaine abusers

(Figure 3E), respectively. The correlation heat map showed that

all four key genes were positively correlated, and the correlation

showed a significant increase in the cocaine group. It suggested that

these four key genesmight bemore closely related to each other and

had synergistic effects during addiction. In addition, the expression

of the IL6 gene was the lowest of the four key genes.

Expression of key genes in brain regions

To investigate the expression of four key genes in the brain, we

searched the HPA database for the expression of four key genes in

different brain regions in the human and mouse (Figures 4A, B).

The results showed that four key genes were expressed in all regions

of the human brain, and IL6 was expressed in the human midbrain

region lower than the other three genes, which is consistent

with our findings. IL6 was not detected in the mouse midbrain,

hypothalamus, pituitary gland, retina, pons, and medulla.

Correlation analysis of CTD databases

The correlation scores between each gene in the cocaine

addiction-related PPI network and cocaine addiction were

searched in CTD. The scores for the top 100 genes are

shown in Figure 5. It showed a higher degree of association

between the four key genes and cocaine addiction. CTD

showed that FOS and EGR1 could be biomarkers of cocaine

addiction or play a role in addiction, and EGR1 could

be a gene for a therapeutic target in the treatment of

cocaine addiction.

Literature validation

The PubMed database showed that four key genes were

all associated with cocaine addiction. Both FOS (Fos proto-

oncogene) and JUN (Jun proto-oncogene) are members of the

AP-1 transcription factor complex. Multiple studies have shown

that cocaine affected the expression of FOS proteins (Todtenkopf

et al., 2002; Imam et al., 2005; Larson et al., 2010; Lobo et al.,

2010). Zhang et al. (2004) prepared CPu extracts from D1 and D3

receptor mutant mice and wild-type control littermates at different

time points after cocaine injection and found that ERK activation

mediates acute cocaine-induced expression of c-fos (Fos). The

study by Xu (2008) found that c-fos might mediate cocaine-

induced persistent changes by regulating the formation of AP-1

transcriptional complexes and gene expression. Previous studies

have demonstrated that cocaine causes increased expression of the

JUN protein (Malaplate-Armand et al., 2005; Paletzki et al., 2008).

Cocaine affects the expression of the JUN protein (Imam et al.,

2005).

There are some studies proving that EGR1 (early growth active

protein 1) and c-fos expressions are reduced after cocaine induction

(Helton et al., 1993; Ennulat et al., 1994). In experiments on

mutant mice by Valjent et al. (2006), EGR1 was found to play

a vital role in cocaine-related behavior. Humblot et al. (1998)

found that acute cocaine administration was effective in inducing

c-FOS and EGR-1 direct early genes, and cocaine-induced EGR-

1 and c-FOS expression was significantly reduced in brain regions

of rats.
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FIGURE 3

Key gene identification: (A) Seven centrality algorithms calculate the distribution of scores for all nodes in the PPI network, and the red signal marks

the top ten genes in the score. (B) The top 10 hub genes in the PPI network were identified by seven centrality algorithms and overlapped to obtain

four key genes. (C) Seven centrality algorithm results for four key genes. (D) Co-expression analysis heat map of four key genes in samples from

drug-free control subjects and chronic cocaine abusers. (E) Co-expression analysis heat map of four key genes in samples from drug-free control

subjects and chronic cocaine abusers.

IL6 (interleukin-6) is a pro-inflammatory cytokine. The

study by Halpern et al. (2003) showed that men and women

respond weakly to pro-inflammatory challenges to IL6 after

intravenous cocaine. In experiments measuring changes in IL6

levels in crack cocaine-dependent adolescents after 21 days of

withdrawal, it was found that IL6 was elevated in patients

on admission compared to the control group (Pianca et al.,

2017).

Independent set analysis

A differential expression analysis was performed on the human

dataset GSE67281, which is the expression profile of human

cocaine abusers in the midbrain region. A total of 200 DEGs were

identified after annotation, including 110 upregulated genes and

90 downregulated genes. There were 20 intersecting genes in the

datasets GSE54839 and GSE67281 (Figure 6), including the key
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FIGURE 4

Brain regions heatmap of four key genes and histograms of expression of di�erent brain regions obtained in the HPA database. (A) Expression of four

key genes in human brain regions. (B) Expression of four key genes in mouse brain regions.

genes JUN, FOS, and EGR1, all of which were downregulated in

the addictive state (Table 1), while the IL6 gene was not annotated

in GSE67281.

A differential expression analysis and a homology analysis

were performed on the mouse dataset GSE155313 from the VTA

brain region, and the Fos gene was identified as a downregulated

differential gene under four different conditions. The degree of

difference in the Fos gene was not the same between chronic

and acute home cage injections of cocaine, and even greater

in chronic home cage injections of cocaine condition (Table 2).

It suggested that the Fos gene plays a crucial role in long-

term addiction.

The JUN, FOS, and EGR1 genes were shown to be

downregulated differential genes in the human validation set, and

the FOS gene was also downregulated in the mouse validation

set, which is the same as the experimental set. Analysis of

the independent sets showed that the key genes we identified

were well-confirmed.
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FIGURE 5

Top 100 correlation scores between all genes in the cocaine addiction-related PPI network and cocaine addiction. Red represents key genes and

green represents other genes in the network.

FIGURE 6

Venn diagram of di�erential genes in datasets GSE54839 and GSE67281.

TABLE 1 Di�erential expression of key genes in GSE54839 and GSE67281.

GSE54839 GSE67281

Gene Brain region logFC logFC

JUN Midbrain −0.842 −0.391

FOS Midbrain −0.978 −0.588

EGR1 Midbrain −1.090 −0.665

IL6 Midbrain −0.557 –

Pathway verification

To reveal the roles of the key genes, we performed a KEGG

enrichment analysis of all the genes in the cocaine addiction-

related PPI network. A total of 75 KEGG pathways were enriched

(Figure 7A). The four key genes were mainly enriched in the TNF

TABLE 2 Di�erential expression of key genes in GSE155313.

GSE155313

Gene logFC Paradigms Brain
region

Fos −0.918 Cocaine/saline-conditioning VTA

Fos −0.750 Chronic home cage injections of

cocaine/saline

VTA

Fos −0.656 Acute home cage injections of

cocaine/saline

VTA

Fos −0.325 Chronic intravenous-self

administration of cocaine/saline

VTA

signaling pathway, cocaine addiction, amphetamine addiction, IL-

17 signaling pathway, MAPK signaling pathway, and Toll-like

receptor signaling pathway. Previous studies have shown that these
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FIGURE 7

Functional enrichment analysis of key genes. (A) Chord diagram of four key genes vs. the top 20 KEGG pathways. (B) Subnetwork associated with key

genes and addiction-related KEGG pathways.
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FIGURE 8

KEGG pathway map (Kanehisa and Goto, 2000; Kanehisa, 2019; Kanehisa et al., 2023). (A) Cocaine addiction pathway. (B) Amphetamine addiction

pathway. Pink represents di�erential genes and red represents key genes.
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FIGURE 9

A network of targeted relationships between nervous system drugs and key genes.

pathways were all linked to cocaine addiction (Northcutt et al.,

2015; Lewitus et al., 2016; Brown et al., 2018; Ganguly et al.,

2019; Montesinos et al., 2020; Bingor et al., 2021). The subnetwork

associated with the key genes and their enrichment pathways

(Figure 7B) showed that the four key genes were closely connected

in the network, amongwhich JUN, FOS, and IL6 were enriched into

multiple pathways, and EGR1 was closely related to these pathways

and played a very important synergy.

The cocaine addiction pathway and the amphetamine addiction

pathway are two enriched addiction-related pathways (Figures 8A,

B). They have similar addiction mechanisms, and both have

enhanced firing activity of dopamine neurons in the VTA of the

midbrain, resulting in enhanced dopamine release from the NAc.

With the stimulation of addictive drugs, the FOS gene induces

and maintains an addictive state in the short term of addiction.

In human who achieve long-term addiction after further drug use,

the FOS gene causes long-term adaptive changes in the brain, and

the JUN gene dimerizing with 1FosB leads to an increased cocaine

response. 1FosB desensitizes c-fos mRNA induction after chronic

amphetamine exposure (Renthal et al., 2008). Zhang et al. (2006)

have shown that FOS might mediate cocaine-induced persistent

changes by regulating AP-1 transcriptional complexes and target

gene expression. To sum up, both our key genes JUN and FOS

played important roles in the addiction pathways.

Identification of potential therapeutic
drugs for cocaine addiction

To find potential therapeutic drugs for cocaine addiction,

a network of targeted relationships between nervous system

drugs and key genes was constructed (Figure 9). Fourteen drugs

affected four genes, eight drugs affected three genes, nineteen

drugs affected two genes, and thirty-five drugs affected one gene.

In particular, among drugs that affected four genes, disulfiram,

cannabidiol, and dextroamphetamine have been used to mitigate

the cocaine response. Many studies have shown that disulfiram

might reduce cocaine use in patients with cocaine dependence

(Petrakis et al., 2000; Gaval-Cruz and Weinshenker, 2009; De

Mulder and Dom, 2012; Kosten et al., 2013). In the experiment

conducted by Petrakis et al. (2000), disulfiram inhibited dopamine
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TABLE 3 Top 10 results of three unused algorithms.

Closeness Betweenness Stress

JUN JUN JUN

IL6 IL6 IL6

FOS MAP2K2 MAP2K2

EGR1 VAMP2 VAMP2

CEBPB YWHAH YWHAH

CCL2 FGF2 EGR1

IL1B CEBPB IFITM2

MAP2K2 EGR1 BAG3

JUNB ASNS FGF2

FGF2 GOT1 CEBPB

β-hydroxylase, resulting in dopamine overdose and decreased

norepinephrine synthesis, possibly weakening cocaine cravings,

leading to reduced cocaine use. Dextroamphetamine, a central

nervous system stimulant, has been found to be a treatment

for cocaine dependence (Grabowski et al., 2001; Shearer et al.,

2003; Palis et al., 2021; Ndiaye et al., 2022). In experiments on

rats by Chiodo and Roberts (2009), sustained dextroamphetamine

treatment was found to weaken the potentiating effect of cocaine.

Cannabidiol (CBD) is one of the main components of cannabis,

and multiple studies have shown that CBDmay act as a therapeutic

drug for substance abuse (Katsidoni et al., 2013; Calpe-López et al.,

2019; Anooshe et al., 2021; Karimi-Haghighi et al., 2022). Recent

research showed that CBD can be effective in reducing the reward

and reinforcement effects of addictive drugs (Galaj et al., 2020).

Among the drugs that affected the three genes, diazepam and

melatonin might be useful therapeutic agents for reducing cocaine

abuse (Takahashi et al., 2017; Barbosa-Méndez et al., 2021; Sanchez

et al., 2022).

In twenty-two drugs affecting the expression of three or

four key genes, five (disulfiram, dextroamphetamine, diazepam,

cannabidiol, and melatonin) have been validated in the literature

to reduce cocaine abuse and be used to treat cocaine addiction.

They are distributed among drugs used in addictive diseases,

psychoanaleptics, and antiepileptic drugs. We, therefore,

speculated that seventeen drugs that affected the expression

of three or four genes in these three classes might play the

same role.

The Drugbank database was used to analyze the status

of these seventeen drugs. All of them have been approved

by the FDA for the treatment of other diseases, and their

effects on cocaine addiction are still being studied. Twelve of

these drugs, namely, disulfiram, nicotine, fluoxetine, donepezil,

caffeine, amphetamine, cannabidiol, desipramine, valproic acid,

dextroamphetamine, carbamazepine, and methylphenidate, are

currently in clinical trials for the treatment of cocaine addiction.

The CTD was then used to analyze the relationship between

seventeen drugs and cocaine addiction, and the results showed

that disulfiram, dextroamphetamine, caffeine, fluoxetine,

methylphenidate, desipramine, scopolamine, valproic acid,

TABLE 4 Top 20 results of EcCentricity algorithm.

Gene EcCentricity

GOT1 0.125

MAP2K2 0.125

YWHAH 0.125

IL6 0.125

EDN1 0.125

JUN 0.111

PAK1 0.111

TH 0.111

VAMP2 0.111

DDIT4 0.111

FOS 0.111

FGF2 0.111

DDC 0.111

TIMP1 0.111

CCL2 0.111

CCL20 0.111

CXCL10 0.111

IL1B 0.111

MDH1 0.111

CDK5 0.111

TABLE 5 Di�erential expression of key genes in GSE186981.

GSE186981

Gene logFC Brain region

Fos −0.325 NAc

Fos −0.318 PFC

Egr1 −0.270 NAc

Egr1 −0.316 PFC

diazepam, haloperidol, donepezil, clozapine, carbamazepine, and

cannabidiol were chemicals with known or potential therapeutic

effects in cocaine addiction. Disulfiram, dextroamphetamine,

nicotine, fluoxetine, caffeine, methylphenidate, desipramine,

diazepam, scopolamine, amphetamine, haloperidol, and melatonin

were chemical substances related to cocaine addiction or may play

a role in the etiology of cocaine addiction. Although all seventeen

drugs have been confirmed in the CTD to be associated with

cocaine addiction, further research is needed to determine whether

these drugs can be used to treat cocaine addiction.

Discussion

To study the mechanisms of chronic cocaine addiction, data

on chronic cocaine abuse in the human midbrain region were

used for analysis. Based on the differential expression analysis, a
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FIGURE 10

KEGG pathway map of non-key genes (Kanehisa and Goto, 2000; Kanehisa, 2019; Kanehisa et al., 2023). (A)MAPK signaling pathway. (B) TNF signaling

pathway. (C) Synaptic vesicle cycle. Red represents key genes and yellow represents non-key genes in the top 10 of the seven centrality algorithms.
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cocaine addiction-related PPI network was constructed, and seven

different network centrality algorithms were used to calculate the

scores of each gene in the network separately. Finally, four key

genes were screened: FOS, IL6, JUN, and EGR1. Through CTD

database correlation analysis, literature verification, independent

dataset analysis, and enrichment analysis, we found that the

four key genes were significantly associated with addiction, and

they showed more significant changes under long-term addiction.

The network of targeted relationships between nervous system

drugs and key genes showed that seventeen drugs targeting

three or four key genes were distributed among drugs used

in addictive diseases, psychoanaleptics, and antiepileptic drugs,

five of which have been shown to be associated with cocaine

treatment in the literature. This suggested that key genes might

serve as biomarkers for cocaine addiction and that potential

therapeutic drugs for cocaine addiction could be found based on

key genes.

In this study, the seven centrality algorithms we used were

all calculated based on the attributes of the nodes themselves.

To show the importance of identifying key genes, we also

used these four centrality algorithms to analyze genes in the

PPI network associated with cocaine addiction. The algorithm

based on the shortest path (closeness, betweenness, EcCentricity,

and stress) was not considered. The results of the four unused

algorithms are shown in Tables 3, 4. We obtained four key

genes using seven centrality algorithms, of which three to

four genes were also included in the results of these four

unused algorithms.

The HPA database showed that four key genes were expressed

in multiple brain regions in humans and mice, so data from other

brain regions in mice were used for analysis. The validation set

GSE186981 was located in the NAc and PFC brain regions, and

the difference analysis showed that the Fos and Egr1 genes were

downregulated differential genes in both the NAc and PFC brain

regions (Table 5). In the validation set of the two sets of mice, the

Il6 and Jun genes were not differentially expressed genes. Human

addiction to drug abuse is a long-term process, while animal model

experiments are usually relatively short andmay not fullymimic the

process of long-term addiction in humans. In the human addiction

pathway map, the FOS gene undergoes changes after acute drug

administration, while the JUN gene undergoes changes after long-

term addiction. The longest experimental period of the mouse

validation set we used is only 7 days, which may not be enough

to have formed long-term addiction, so there was no significant

difference in the Jun gene. The expression of the IL6 gene was very

low in both humans and mice, so we infer that it was too low to

reach the difference.

The genes ranked top in the network based on centrality

algorithms were important since they were central in the

cocaine addiction-related PPI network, so we analyzed the

non-key genes in the top 10 genes of the seven centrality

algorithms. The expression of these genes showed significant

differences before and after addiction. To reveal their functions,

we analyzed these genes using the KEGG database. The results

showed that non-key genes were mainly enriched in the cocaine

addiction pathway, amphetamine addiction pathway, MAPK

signaling pathway, TNF signaling pathway, and synaptic vesicle

circulation pathway, all of which were related to cocaine

addiction. In the addiction pathway, long-term exposure to

addictive drugs can induce a unique transcription factor,

delta FosB, which can cause long-term adaptive changes in

the brain. Research has confirmed that cocaine can induce

the production of TNF (Kovalevich et al., 2015; Lewitus

et al., 2016; Sil et al., 2019), thereby affecting non-key genes

downstream of this pathway (Figure 10A). Upstream non-key

genes (FGF2, VEGFA, and IL1B) affect the expression of

downstream genes in this pathway (Figure 10B), while MAP2K2

regulates ERK through phosphorylation, thereby affecting cocaine

addiction. Drug addiction is closely related to synapses, and

non-key genes (SYT1, VAMP2, SNAP25, and STXBP1) play

an important role in the synaptic vesicle circulation pathway

(Figure 10C).

To date, there are too few datasets related to cocaine addiction

in humans, and the sample size in our study is not very

large. Therefore, the potential biomarkers and therapeutic targets

of cocaine addiction identified in this study needed further

experimental verification.

In summary, this study identified four key genes (FOS,

IL6, EGR1, and JUN) that might be involved in cocaine

addiction mechanisms and had potential roles as biomarkers

and therapeutic targets for cocaine addiction. Our research

provided new ideas for the study of the mechanism of cocaine

addiction and was expected to help in the treatment of

cocaine addiction.
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