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Humans do not learn everything from the scratch but can connect and associate

the upcoming informationwith the exchanged experience and known knowledge.

Such an idea can be extended to cooperated multi-reinforcement learning and

has achieved its success on homogeneous agents by means of parameter sharing.

However, it is di�cult to straightforwardly apply parameter sharing when dealing

with heterogeneous agents thanks to their individual forms of input/output and

their diverse functions and targets. Neuroscience has provided evidence that our

brain creates several levels of experience and knowledge-sharing mechanisms

that not only exchange similar experiences but also allow for sharing of abstract

concepts to handle unfamiliar situations that others have already encountered.

Inspired by such a brain’s functions, we propose a semi-independent training

policy method that can well tackle the conflict between parameter sharing and

specialized training for heterogeneous agents. It employs a shared common

representation for both observation and action, enabling the integration of various

input and output sources. Additionally, a shared latent space is utilized to maintain

a balanced relationship between the upstream policy and downstream functions,

benefiting each individual agent’s target. From the experiments, it can approve that

our proposed method outperforms the current mainstream algorithms, especially

when handling heterogeneous agents. Empirically, our proposed method can

also be improved as a more general and fundamental heterogeneous agents’

reinforcement learning structure for curriculum learning and representation

transfer. All our code is open and released on https://gitlab.com/reinforcement/

ntype.

KEYWORDS

brain function, knowledge-sharing institution, multi-agent reinforcement learning,

parameters sharing, representation transferability

1. Introduction

The attention on Multi-agent reinforcement learning (MARL) is booming largely since
a lot of real-world cooperatives challenges can be properly solved. The scenarios such as
distributed network routers, sensor networks (Zhang and Lesser, 2011), traffic management
(Singh et al., 2020), and coordination of robot swarms (Hüttenrauch et al., 2017), etc. can be
better modeled as MARL where the decision on controlling and management are distributed
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made. However, the introduction of multi-agent reinforcement
learning has also brought in 2 challenges: increased computation
requirements due to the larger observation and action spaces, and
difficulty in convergence during training due to the presence of
other agents.

Multi-Agent Reinforcement Learning (MARL) methods can be
classified into two categories based on the level of centralization
in decision-making and learning (centralized or decentralized). In
decentralized systems, each agent makes decisions and learns on
its own, without accessing the observations, actions, or policies of
other agents. However, decentralized learning lacks the guarantee
of convergence due to the non-stationary caused by other agents.
Therefore, most modern MARL research follows the paradigm of
Centralized Training and Decentralized Execution (CTDE), where
agents have access to other agents’ observations during training but
execute their own policies separately. Examples of CTDE include
MADDPG (Lowe et al., 2017), COMA (Foerster et al., 2018), and
QMIX (Rashid et al., 2020).

Based on such a paradigm, the idea of parameter sharing
is naturally born following the merging of multi-reinforcement
learning. It coheres to the human intuition that knowledge sharing
can make better learning and judgment. Humans do not learn
everything from scratch but exchange knowledge when learning
from experience. This idea was first introduced for classical
RL (Tan, 1993) and later extended to cooperative multi-agent
reinforcement learning (Chu and Ye, 2017; Gupta et al., 2017).
Homogeneous multi-reinforcement learning has achieved success
when utilizing parameter sharing. They leverage an identical policy
trained with all the trajectories. This method is more efficient
compared to training multiple independent policies, as only one
policy is employed for both learning and training, reducing the high
computational demands, and difficulties in achieving convergence.

The application of parameter sharing to heterogeneous agents
is limited in its effectiveness due to the homogenizing effect it has
on agents’ behavior, particularly at the early stages. Additionally, the
shared policy results in a fixed observation and action space size. To
address this, some algorithms utilize zero-padding to standardize
inputs and outputs, and allow a single policy to serve multiple
agents (Gupta et al., 2017; Foerster et al., 2018). These strategies
have helped to reduce the obstacles to further extension to hetero
agents. It works well for agents with fewer functional and targeting
variations or for environments easy to normalize the input and
output but not for an abundance diversity of agents. However, this
adaptation may not be suitable for all situations, such as when there
are different dimensions of inputs and outputs that are not easy to
be unified through extra padding of inputs or outputs. The policy
for diverse agents also results in slow convergence. Therefore, a
more flexible parameter-sharing and policy training strategy is
desirable for the real-world application.

Neuroscience has provided evidence that our brain establishes
various levels of experience and knowledge-sharing institutions
that not only exchange similar experiences but also allow for
the exchange of abstract concepts to tackle novel situations
that others have already encountered. Inspired by this, we
propose a semi-independent training policy method that applies
identical policies among the same type of agents and semi-
independent parameter-sharing schemes between different types

for tackling the conflict between parameter sharing and specialized
training for heterogeneous agents. This method also utilizes
a common shared representation, generated by supervised
learning, to formalize the observations and actions of the
agents, allowing it to handle all types of inputs and outputs.
An intrinsic reward is also introduced to speed up the
environmental exploration. Experimental results demonstrate
that our proposed method outperforms the current mainstream
algorithms, particularly when dealing with heterogeneous agents.
In advance, our proposed method can be considered as a
more general and fundamental structure for heterogeneous agent
reinforcement learning, incorporating curriculum learning and
representation transferring.

This paper is organized as follows. In Section 2, we provides
some background on Multi-agent Reinforcement Learning
(MARL) and recent advances in Deep Reinforcement Learning
(DRL) relevant to the proposal. Section 3 presents the proposal
in detail. In Section 4, we will detail the experiments performed
and their results. In Section 5, we will review the related
work concerning our proposed MARL, including curriculum
learning and representation transferring. Lastly, in Section
6, we will summarize the conclusions and suggests future
research directions.

1.1. Main contribution

This paper presents three main contributions we have made to
our proposal.

First, we introduce and adopt a hard-parameter-sharing scheme
to MARL in order to balance the conflicting requirements of
agents’ specialization and network fast convergence. This scheme
was originally proposed for multi-task networks, which take a
parameter-shared base to process the input and multiple-task
terminals to handle different tasks. This structure accounts for
specialization among heterogeneous agents while still attempting
for the maximum level of experience sharing. Based on our
knowledge, there is no other literature currently existing for this
approach, and our work is the first made such attempt to introduce
the multi-task network parameter-sharing scheme to multi-agent
reinforcement learning.

Second, we invent a supervised learning method to generate
a general input and output representation shared with all agents.
The shared common representation facilitates the formalization of
input and output, thus resolving the diversity of heterogeneous
agents’ input and output issues, and making it easier to incorporate
the hard-parameter-sharing scheme. Thanks to this common
shared input/output representation, all the agents will be equally
treated after the input/output processing regardless of the types
of agents. Empirically, We carried out such an approach by
simultaneously training with reinforcement learning to ensure that
the representation is both accurate and precise. It can be approved
such a training schedule can fast generate the representation to
facilitate policy training.

Third, we introduce an extra intrinsic reward to encourage
more exploration of the environment initially. Unlike traditional

Frontiers inNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fnins.2023.1201370
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zhao et al. 10.3389/fnins.2023.1201370

intrinsic rewards which are based on a comparison of trajectories,
our proposed intrinsic reward is based on the prediction of
supervised learning and its input/output representation. Such a
tactic can help to stimulate more exploration right away without
requiring extra effort and well incorporate the representation
generation process.

2. Background

2.1. Reinforcement learning

Reinforcement Learning (RL) methods attempt to identify an
optimal policy (a function that takes an observation and returns
an action) that maximizes the expected total reward from an
environment. Commonly, such environments are modeled as a
Markov Decision Process (MDP) or Partially-Observable Markov
Decision Process (POMDP) (Boutilier, 1996). MDPs characterize
decision-making as a repetitive process whereby an agent takes
an action, receives a reward, and transitions to a new state (with
perfect knowledge of the state). POMDP extends this to include
environments in which the agent may not be able to observe the
full state information.

In Deep Reinforcement Learning (DRL), a neural network is
used to represent the policy. These methods are typically divided
into two categories: Q-learning methods and policy gradient
(PG) methods. The first deep Q learning method was Deep Q
Network (DQN) (Mnih et al., 2013), and the first widely-used PG
method was Deep Deterministic Policy Gradient (DDPG) (Lillicrap
et al., 2015). Subsequently, various newer, more powerful methods
were developed, including Soft Actor-Critic (SAC) (Haarnoja
et al., 2018), TD3 (Fujimoto et al., 2018), Proximal Policy
Optimization (PPO) (Chu and Ye, 2017), (the synchronous version
of Asynchronous Advantage Actor-Critic (A3C) (Mnih et al., 2016),
Rainbow DQN (Hessel et al., 2018) etc., and more advanced deep
reinforcement learning methods is on the way of development for
the real-world applications.

Multi-agent reinforcement learning (MARL) can be deemed as
an extension of RL that considers the interactions between multiple
agents in a changing environment. The agents must learn to adjust
their actions based on changes not only in the environment but
also in the behavior of other agents. MARL can lead to distributed
intelligent decision-making and has applications in game theory
and robotics. Our proposed method focuses on developing a fast
and accurate MARL algorithm for practical use.

2.2. Brain’s transfer learning on the new
tasks

Learning is not a process that begins from scratch, as people can
connect and relate new information to their existing experiences
and knowledge. Recent neuroscience research has shown that the
brain has the capacity to transfer knowledge from one task to
another, even if the tasks appear dissimilar. The brain’s ability
to extract and store abstract representations of information is
the reason behind this transfer. When confronted with a new
task, the brain first looks for similarities with past experiences,

allowing individuals to learn how to handle the new task quickly.
These abstract experiences can also be shared and learned by
others, highlighting the importance of utilizing past experiences
and knowledge to facilitate learning.

2.3. Dec-POMDP

Decentralized Partially Observable Markov Decision Processes
(Dec-POMDPs) are a probabilistic framework for enabling
distributed decision-making among multiple agents. It has been
commonly utilized for decision-making in cooperated large-scale
multi-agent settings, originally proposed in the literature on
autonomous multi-agent systems (Lillicrap et al., 2015). In this
framework, each agent has a set of actions and observations defined
in mathematics that it can take in order to achieve a goal. The
environment is represented as a stochastic process that is partially
observable to the agents.

A Dec-POMDP on MARL can be formally defined as a tuple
(N, S,A,P,R,�, O, n, γ ), where:

• N is a finite state of n agents where i ∈ N ≡ {1, . . . , n};
• S is the global state of the environment where s ∈ S;
• A is a set of joint actions, A = A1 × · · · ×AN whereAi is the

set of actions that the i-th agent can choose from;
• P is a state transition probability function where P(s

′
|s,A) : S×

∏

i∈N Ai × S → [0, 1];
• R is a reward function, often can be modeled as R = R(S,A),

where Ri ∈ R : S ×
∏

i∈N Ai × S → R is the reward function
for agent i;

• � is the set of observations, where �i ∈ � is the possible
observation for agent i;

• O is the observation function, normally modeled as O(S, i).
According to the settings of partial observation, the agent
cannot access the global state but samples local observations
according to the observation function where S × Ai ≡ �i,
which can generate the set of observation that ith agent can
receive;

• γ is the discount factor, where γ ∈ [0, 1). The utilization of
the discount factor is to compromise for the reward one can
receive a few steps later than immediately.

The set of agents A comprises the agents that are involved in
the decision-making problem, each of which has its own set of
decisions and observations. The set of observed states S represents
the states of the environment, which are partially observed by
the agents. Finally, the set of joint actions A contains the joint
actions taken by all, which are finally to determine the probability
of transitioning to different states. The Dec-POMDP framework
allows agents to make optimal decisions in a partially observable
environment by combining their observations and taking into
account their own rewards and the rewards of their peers (Oliehoek,
2012).

Such a framework can be perfectly utilized to describe the
decision-making in cooperated large-scale multi-agent settings,
thus we will also apply the above-mentioned mathematics
definitions in this paper to describe our proposal.
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2.4. Parameters sharing

The concept of parameter sharing is a widespread practice
in the field of deep learning. It refers to an approach where a
single set of parameters is shared among multiple components of
a neural network, such as layers or sub-networks. In the context of
multi-agent reinforcement learning, parameter sharing involves an
algorithm that learns from the experiences of all agents and updates
a collectively shared policy. Parameter sharing, which involves
representing all policies with a single neural network that shares
the same set of parameters, was first introduced by Tan (1993)
for classical reinforcement learning. Later, it was concurrently
introduced to cooperative multi-agent deep reinforcement learning
by Chu and Ye (2017) and Gupta et al. (2017). This straightforward
approach has proven to be highly effective in various applications,
including those presented in Zheng et al. (2018), Chen et al.
(2021), and Yu et al. (2022). This paper will discuss parameter
sharing in detail and make a proposal based on that with a more
general framework and structure from the common representation
and semi-independent training and will further analyze the
effectiveness and utilization of representation transferring and
curriculum learning.

2.5. Coping with heterogeneity

Heterogeneity in agents is a common challenge in multi-
agent systems, which can arise due to various reasons, such
as differences in the physical capabilities or perceptual abilities
of the agents. Addressing this issue is crucial to ensure that
the agents can effectively cooperate and achieve their goals. To
address such a challenge, two methods have been proposed.
The first method is to add an indication of observations to
enable a single policy to serve multiple agents, accommodating
different action and observation spaces. However, since there is
only one neural network, the observation spaces of all agents
must be the same size especially when the observation spaces of
agents are vastly different, as the neural network may struggle
to learn from a disparate input. The second method proposes
“padding” observations and action spaces to a uniform size, which
allows agents to ignore any actions outside their “true” action
space. By standardizing the observation and action spaces, the
agents can effectively communicate with each other, and the
neural network can learn from these inputs more efficiently.
However, this approach may introduce redundant or irrelevant
information, leading to additional computational overhead. Also
the initial policies it generated with the unified neutral network
will be also less efficient and mislead to sub-optimal when
the network cannot well recognize the correct information and
“padding”.

3. Preliminary

3.1. Representation learning

Reinforcement learning (RL) involves training an agent
through interactions with an environment. This formalism is
powerful in its generality, but poses an open-ended problem: how

can we design agents that learn efficiently and generalize well,
given only sensory information and a scalar reward signal? One
solution that is becoming increasingly popular is introducing self-
supervised learning. Applying self-supervised learning in RL can
help solve problems with high-dimensional state-action spaces
and improve sample efficiency by incorporating inductive biases,
such as structural information about tasks anden vs, into the
representations for better performance.

The UNREAL agent (Jaderberg et al., 2016) introduced
unsupervised auxiliary tasks to deep RL, including the Pixel Control
task, a Q-learning method that requires predictions of screen
changes in discrete control environments, which has become a
standard in DMLab (Hessel et al., 2019). CPC (Oord et al.,
2018) applied contrastive losses over multiple time steps as an
auxiliary task for the convolutional and recurrent layers of RL
agents, and it has been extended with future action-conditioning
(Guo et al., 2018). Recently, PBL (Guo et al., 2020) surpassed
these methods with an auxiliary loss of forward and backward
predictions in the recurrent latent space using partial agent
histories. A small number of model-free methods have attempted
to decouple encoder training from the RL loss as ablations,
but have met reduced performance relative to end-to-end RL
(Laskin et al., 2020). Examples of works that pre-train encoder
features in advance using image reconstruction losses, such as the
VAE (Kingma and Welling, 2013), PR2 (Finn et al., 2016), and
World models (Ha and Schmidhuber, 2018). Other works (Devin
et al., 2018; Kipf et al., 2019), apply pre-trained object-centric
representations that learn a forward model through contrasting
losses. CFM (Yan et al., 2021) introduced a similar technique to
learn encoders that support the manipulation of deformable objects
through traditional control methods. In this paper, we will leverage
an encoder-decoder framework to formalize the various inputs and
output for heterogeneous agents.

3.2. Hard/soft parameter sharing

Hard parameter sharing is a fundamental scheme that enables
domains to share some of their model parameters to reduce storage
costs and improve prediction accuracy. This approach originated
from multi-task learning (MTL), which aims to support multiple
downstream tasks on devices. While recent advancements in model
compression havemade deploying a singlemodel easier, supporting
multiple models on devices remains challenging due to increased
bandwidth, energy, and storage costs. To address this challenge, the
hard/soft parameter-sharing approach has been employed. Unlike
soft parameter sharing, where each task keeps its own model and
parameters, hard parameter sharing allows multiple tasks to share
some of the model parameters. As depicted in Figure 1, this sharing
is commonly applied by sharing the bottom layers among all tasks
while keeping several top layers and an output layer task-specific
(Ruder, 2017). Hard parameter sharing is often used in designing
multi-task deep neural network models (Long et al., 2017; Ruder
et al., 2019).

Given its effectiveness in MTL, we believe that utilizing
hard parameters can also be a viable solution for sharing
policies among different types of agents to share the basis while
maintaining dependence.
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FIGURE 1

A typical structure of hard parameter sharing.

3.3. Role-based learning method

Roles are a fundamental aspect of natural systems, such as
ants, bees, and humans, where they are closely related to the
division of labor and crucial for labor efficiency. This concept has
inspired multi-agent system designers to reduce design complexity
by assigning agents with the same roles to specific sub-tasks.
However, in such systems, roles and their associated responsibilities
are typically predefined using prior knowledge, limiting their
generalizability and requiring prior knowledge that may not
always be available. To overcome this challenge, Wilson et al.
(2010) utilized Bayesian inference to learn a set of roles, while
ROMA (Wang et al., 2019) developed a specialization objective to
encourage the emergence of roles, method RODE (Wang et al.,
2020b) proposes a scalable role-based multi-agent learning method
that effectively discovers roles by decomposing the joint action
space according to action effects, thereby access to the producing
of role selectors and learning of role policies in the reduced spaces.
These methods suffer from a limitation in searching for the optimal
task decomposition in the full state-action space, resulting in
inefficient learning in hard-exploration tasks. Our work is inspired
by the concept of role-based policy training, and we propose
a method that groups agents by their unit types. Within each
group, we implement a full parameter-sharing scheme, while across
different groups, we use a semi-sharing parameter scheme. This
approach can facilitate faster convergence for agents with similar
roles or types while allowing for greater flexibility in learning
different strategies or behaviors for agents with different roles
or types.

4. Proposal

Based on the preliminary research mentioned above, we
propose our semi-independent training policy method with
shared representation (STSR) for reinforcement learning.
This method comprises three main components: a common
inputs/outputs representation derived from supervised learning, a
semi-independent policy training scheme that applies full shared
parameters among agents of the same type/role and hard sharing
among different types, and an intrinsic/diversity-driven extra
reward to encourage environment exploration and enhance the

representation that can more clearly distinguish the inputs and
outputs from different types/roles. Before we delve into each
component, Figure 2 depicts the graph illustrating the entire
process.

Our idea is to use supervised learning to build a prediction
model, which enables us to establish an observation-action
embedding to formalize the agent’s input and output, regardless
of their invariant observation and actions. Based on that, we can
extend a hard parameter-sharing scheme tomultiple heterogeneous
agents, which fully shares the parameters among the same types
of agents and employs hard sharing between different type groups.
From the learned representation, we will generate an extra intrinsic
reward to encourage environment exploration and an identifying
reward to enhance the representation difference between agent
types. We provide a clear definition of the agent types and
representations below.

Definition 1 Given a cooperative multi-agent task

G=(N,S,A,P,R,�, O, n, γ ), let Kj be a set of agent type

with the total type accounts for j, where each agent i ∈ Kj.

Each type with the same policy forms as the tuple (gj,πKj ),
where gj = (Nj, S,Aj, Pj,R,�j, O, nj, γ , Zo

j , Z
a
j ) can be defined

as a sub-space for each type, πKj
:T × Aj → [0, 1] is a

full parameter shared type policy, associated with each type.

Zo
j = Z0(oi,Kj), Za

j = Za(ai,Kj) are the observation representation

function and action representation function, respectively, shared for

each type.

Our aim is to seek a set of hard parameters shared policies
πK j that can maximize the expected global return Q(st , at) =

Est+1 :∞ ,at+1 :∞ [
∑∞

i=0 γ irt+1|st , at ,K(Zo,Za)]. The policies πK j are
also related to each other in terms of basic representation Za, Zo,
and low-level layers. We will now introduce the comprised each
component in detail, which is illustrated in Figure 2.

4.1. Common observation and action
representation

To well handle the heterogeneous agents and to improve the
effectiveness of parameter sharing, we attempt to cluster the agents
according to their types and then exert full parameter sharing
among unit type. Even though some role-based MARL (Wang
et al., 2020b; Christianos et al., 2021) do the partition of the agents
according to their representation latent space, we group our agents
based on the agent’s unit type.

To formalize the input and outputs from different types of
agents and to better architecture the hard parameter sharing
schemes, we propose a recurrent neural network (RNN) based
prediction model for learning the observation and action latent
representation that incentivizes including enough information such
that the next observations and rewards can be predicted when given
the actions and current observations.

As it is depicted in Figure 3, a collection of functions
Z0(oi,Kj, t) and Za(ai,Kj, t) are employed to estimate oit+1 and r

i
t+1,

respectively, from the agents’ limited view of the world. Due to the
fact that an agent cannot perceive the state or actions of another
agent, we define Ôi

:Oi × Ai → 1(Oi) and R̂i :Oi × Ai →

R to model the next observation and reward, respectively, based
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FIGURE 2

The framework of STSR includes a common representation derived from supervised learning, a semi-independent policy training scheme that

applies full shared parameters among agents of the same type and hard share among di�erent types, and an intrinsic/diversity-driven extra reward to

encourage environment exploration and enhance the representation that can more clearly distinguish the inputs and outputs of di�erent types.

FIGURE 3

RNN-based prediction model from which to learn the observation

and action representation embedding.

solely on the action and observation of an agent i. Our purpose in
learning these functions is to ensure a wide acceptable input/output
approximation and to establish an initial full share basis for a hard
parameter sharing scheme for all the agents regardless of their
types. Such prediction model training is due to be processed before
the reinforcement learning while the full-parameter shared basis
will be kept updated throughout the whole training process of
reinforcement learning.

In our proposal, we introduce an encoder fe and a decoder fp,
both parameterized by θ and depicted in Figure 3. The encoder
is solely conditioned on the agent’s identity. On the other hand,
the decoder is split into an observation decoder, f o

kj
, and a reward

decoder, f r
kj
, which receives the observation, action, and sampled

encoding z of agent i and try to predict the next observation and
reward. Unlike conventional autoencoders, oit and ait bypass the
encoder and are only received by the decoder. As a result, due to the
bottleneck, z can encode information only about the agent, such as

its reward function R̂i or observation transition model Ô
i
.

To formalize the process, we assume that each agent’s type
denoted as kj, represents its observation transition distribution and
reward function. We also assume that both the agent’s identity
and its observation transition distribution can be projected in
a latent space, z, through the posteriors q(z|kj) and p(z| tr =

(ot+1, ot , rt , at)). The objective is to find the posterior q(z|kj).
The encoder-decoder model is trained with samples from all

agents to learn from the experience of all agents, and it will
represent the collection of the agent-centered transition and reward

functions P̂
i
and R̂i for all i ∈ N. Given the inputs of the

decoder, the information of the agent type can only pass through
the sample z.

This model can be interpreted as a forward model, which is
trained by minimizing the following loss function:

Le (θe) = E(o,a,r,o′)∼D

[

∑

i

∥

∥fo
(

zai , oi, a−i

)

− o′i
∥

∥

2
2

+ λe
∑

i

(

fr
(

zai , oi, a−i

)

− r
)2

]

(1)

where fo and fr are predictors for observations and rewards,
respectively, and parameterized by θe. λe is a scaling factor, D is
a replay buffer, and the sum is carried out over all agents.

Minimizing the model loss can be done prior to reinforcement
learning. We sample actions ai ∼ Ai and store the observed
trajectories in a shared experience replay with all agents. We have
empirically observed that the data required for this procedure
is orders of magnitude less than what is usually required for
reinforcement learning, and it can even be reused for training the
policies, thus not adding to the sample complexity.
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4.2. Intrinsic rewards for environment
exploration and unit type identification

Multi-agent Reinforcement Learning (MARL) is an effective
method for addressing complex decision-making challenges
involving multiple agents, where external rewards are present. This
approach enables agents to interact with the environment to make
optimal decisions, motivated by rewards. A significant challenge for
those designing agents is defining a suitable reward function for
sequential decision-making tasks in Reinforcement Learning (RL).
Additional potential-based rewards, besides extrinsic rewards, do
not alter the order of agent behaviors. However, the choice
of potential-based or policy-based reward function used to
transform the original reward function can impact the sample and
computational complexity of RL agents learning from experience in
their environment. While this does not change the optimal policy,
it can influence the learning process for better or worse.

The aforementioned representation can facilitate the designing
of intrinsic rewards on 2 aspects: novelty rewards which encourage
the agent to take extra effort on efficient environmental exploration
and representability for diversity which can help to form
representation more widely identify a different kind of agent.

One of the main challenges in RL is the trade-off between
exploitation and exploration: agents must exploit the actions that
they know lead to high rewards, but they must also explore new
actions and states in order to discover new strategies that may lead
to even higher rewards. The data distance between the forward
prediction model can provide an additional source of motivation
for exploration, beyond the extrinsic rewards provided by the
environment.

For simplicity, we can define the state of the environment by
combining the observation and rewards of all agents, which can be
expressed as st = {(oit , r

i
t), i ∈ N}, t = 0 . . .∞. Let d(r1, r2) be

a distance metric between two representation vectors r1, r2 ∈ R
d.

One common distance metric is the Euclidean distance.
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where pmi is weight when calculating Qtot that we can obtain
from mixer layer. The reward function 2 assigns a positive reward
when the current state st is situated in a low-density region of
the representation space. This low-density region indicates that the
state is unique and hasn’t been encountered by the agent before.
The value of the reward is modified based on the discrepancy
between the density estimate determined by the mixer function,
denoted as pm, and the overall density estimate. This normalization
procedure guarantees that the reward stays within acceptable
limits and does not become unreasonably high. As a result, we
can determine the intrinsic reward of promoting environmental
exploration. It is worth noting that the emphasis on exploration
will decrease once the environment has been thoroughly explored.
Therefore, we will introduce a discount factor that will gradually
decrease during the training process.

FIGURE 4

Total rewards including both intrinsic rewards to encourage

environment exploration and to diverse representation upon agents’

type. Thick black lines illustrate data flow, thin black lines illustrate

rewards and red lines illustrate the loss to generate the intrinsic

rewards.

We have incorporated an additional intrinsic reward to our
design which aims to promote diversity in the representation
of the agent’s type. One of our key concepts is to implement a
specialization policy for agents of the same type. To encourage
this behavior, we implement an additional intrinsic reward system
that incentives the agent to have similar representations for the
same type when having the same kind of inputs and different
representations for different types. In order to create a reliable
representation-intrinsic reward, we utilize a method that involves
calculating the average representation of agents that are of the same
type when they receive a positive input. Conversely, we calculate
the average representation of the different types of agents to serve
as the negative input. By subtracting the negative reward from
the positive reward, we obtain a final representation reward. This
representation reward can be expressed in the following form:

rdt =
∑

i

pmi

[

1

Ni

(

∥

∥

∥
fo

(

zai , o
i
t , a

−i
t

)

− oi′t

∥

∥

∥

2

2

+λe

(

fr

(

zai , o
i
t , a

−i
t

)

− rit

)2
)

−
λh

Nj

(

∥

∥

∥
fo

(

zaj , o
i
t , a

−i
t

)

− oi′t

∥

∥

∥

2

2

+λe

(

fr

(

zaj , o
i
t , a

−i
t

)

− rit

)2
)]

, t = 0 . . .∞

(3)

Our total reward after accounting for both these 2 intrinsic
rewards is:

rtott = rt + λer
e
t + λdr

d
t , t = 0 . . .∞ (4)

This representation, which is demonstrated in Figure 4,
incentives intrinsic reward will be taken throughout the whole
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process of training accompanying the building up with the policy
common representation basis.

4.3. Common representation based
semi-independent policy training

The approach of full parameter sharing has shown remarkable
achievements among homogeneous agents. Nevertheless, when
extending it to a heterogeneous multi-agent environment,
challenges arise regarding how to handle different types of agents
with the same policy network that shares all parameters. This
extension creates a dilemma since sharing parameters among
agents with different characteristics can limit their potential
and hinder policy optimization. On the other hand, avoiding
parameter sharing altogether requires creating a complex decision-
making system with multiple policy networks, each with isolated
parameters. This alternative approach leads to slow convergence
and inefficient use of experience.

In order to effectively address this issue, we propose utilizing
full parameter sharing among agents of the same type, while
applying semi-parameter sharing to agents of different types.
Agents of the same type share inherent similarities, which
enables them to be scaled up with a consistent range of
decision-making capabilities. The success of parameter sharing
among homogeneous agents supports its application among
agents of the same type in a heterogeneous agent system,
where the group of heterogeneous agents can be viewed as a
collection of multiple sub-groups of homogeneous agents with
varying types.

To well utilize the similarities between different sub-groups,
we propose to apply hard parameter-sharing schemes. Hard
parameter sharing is a technique used in multi-task learning,
where a single neural network is trained to perform multiple tasks
simultaneously by sharing some of its layers among the tasks.
This approach can be effective and efficient because it allows the
network to learn and generalize across multiple related tasks, while
also reducing the total number of parameters needed to train
the model.

Mathematically, hard parameter sharing can be represented as
follows: Let x be the input to the network, y1 and y2 be the outputs
of two related tasks, and f be the shared layers of the network. Then,
the network can be represented as: y1 = g1(f (x)) and y2 = g2(f (x))
where g1 and g2 are task-specific output layers. In this way, the
shared layers are trained to extract relevant features from the input
that are useful for both tasks, while the task-specific output layers
are trained to map these features to the desired outputs for each
task. By sharing the parameters of the network across tasks, the
model can learn to generalize better and improve performance on
all tasks.

In the context of multi-agent reinforcement learning, hard
parameter sharing can also be useful when different agents
share common tasks or goals. For example, in a multi-agent
scenario where agents must cooperate to achieve a common
objective, such as in a game or robotics application, the agents
may share some common knowledge or features that can be
learned through a shared network. In our framework, multi-agent

reinforcement learning with hard-parameter sharing can be
expressed as:

max
ai

Q(s, ai) = max
ai

∞
∑

t=0

n
∑

i=1

EπjQi(f (st , ai); θj) (5)

f denotes the shared layers employed for hard-parameter sharing,
while πj=1...k represents the policies employed for all agents,
where agents of the same type apply the identical policy with full
parameter shared.

As illustrated in Figure 5, our proposed shared layer
embedding is identical to the common representation latent.
The representation latent handles all agent inputs and outputs
regardless of unit type, reflecting its parameter-sharing is applicable
among all agents. In this case, the representation latent can be
selected as the shared layer, initialized with its current parameters.
Empirically, this shared layer can be deemed as a separate branch
of the common representation, training via unit type based
reinforcement learning with the purpose to maximize overall value.
In the experiments section, we can prove the shared layer updated
with the reinforcement learning outperforms the one updated
with the representation latent. Meanwhile, the representation
latent is under training with the environment predictor for
better representation.

5. Experiment and results

In this section, we thoroughly evaluate our proposed method
from various perspectives. Firstly, we provide a comprehensive
assessment of its overall performance in different scenarios
and compare it with other mainstream algorithms to gauge its
effectiveness. Secondly, we conduct experiments with different
alternative flows and perform ablation studies to assess the impact
of each component. Thirdly, we conduct a detailed analysis of
the intermediate results to gain a better understanding of the
underlying principles, including the initial representation and
its subsequent updates, their distribution and representativeness,
shared layers, and the course of its training. Finally, we
attempt to validate the framework’s generalizability by testing its
representation transferability and its curriculum learning capacity.

5.1. Experiment setting

We have chosen the StarCraft II micromanagement (SMAC)
benchmark (Samvelyan et al., 2019) as our test-bed due to its
rich environments and high complexity of control. The SMAC
benchmark presents a series of challenging tasks, as agents must
learn policies in a large action space that includes four cardinal
directions, stop, take noop, or select an enemy to attack at each
time step. If there are ne enemies in the map, each ally unit’s
action space contains ne + 6 discrete actions. SMAC environment
is rich in all kinds of settings including a lot of homogeneous
agents. It is also a widely used setting where multiple agents
of distinct types coexist and must learn together, for which our
proposed method is mainly focused. The MMM2 is an example of
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FIGURE 5

The flow and structure for the hard-parameter-sharing based policy generation scheme, where the initial parameter is from the supervised env

prediction and will be later updated along with the type/agent layer.

such an environment that contains three types of units (marines,
marauders, and medivacs) with distinct attributes. One of the unit
types medivacs is particularly different, as it needs to learn how to
heal friendly units instead of attacking enemies.

Although our proposal is mainly concerned with
heterogeneous agents, it is quite capable to handle all kinds
of environments. To conduct a full assessment of our proposal, we
carry out tests on all kinds of settings, respectively, regardless of
either homogeneous agents or heterogeneous agents settings and
we compare the improvements in different settings.

SMAC consists of various maps which have been classified
as easy, hard, and super hard. It also contains variate group
agents of homogeneous or heterogeneous. Even though our main
proposal is aimed at heterogeneous scenarios, the method is
also applicable to the homogeneous and can also outperform its
original method.

To fully evaluate its overall performance on different scenarios,
we have conducted a thorough evaluation of our approach by
benchmarking it across all 14 scenarios within the SMAC suite.
This allows us to assess its performance across a range of
settings. Additionally, we present some of the results obtained
from this evaluation. Furthermore, we have compared our
proposal with other value-based MARL algorithms that are
considered state-of-the-art, including VDN (Sunehag et al., 2018),
QMIX (Rashid et al., 2020), QPLEX (Wang et al., 2021),
some role-based MARL method including ROMA (Wang et al.,
2020a), and RODE (Wang et al., 2020b) and an agent-specific
modules based parameter-sharing algorithm CDS (Li et al.,
2021).

To better understand the contribution of each component, we
conducted an ablation study by comparing the performance with
and without various components. This series of tests were assigned
different names: STSR full denotes the setting where all components
were included, STSR No Representation Learning excluded the

common representation as the basis for hard-parameter sharing,
instead using a random basis initially. The STSR No Representation

Later-update setting did not update or learn the hard-parameter
sharing basis but only utilized the initial common representation.
Additionally, we examined the settings of STSR No re Reward and
STSR No rd Reward, which, respectively, excluded the exploration
reward and representation reward. Finally, the STSR No Hard-

Parameter-Share setting did not apply the hard parameter sharing
scheme and did not share parameters among different types of
agents.

In the next section, we will present and discuss the results of
these thorough evaluation and ablation tests.

5.2. Results and discussion

5.2.1. Overall performance
To assess the performance of the models or algorithms, the

experiments in this section were conducted 4 times using different
random seeds. Themedian performance is reported as performance
metrics. These metrics provide a comprehensive understanding
of the models or algorithms’ performance and account for the
variability that can occur due to stochasticity.

We conducted a comprehensive evaluation of our approach
by benchmarking it across all 14 scenarios, categorized in Table 1.
Due to space limitations, we present examples of one easy map
(3s vs. 5z) and all the super hard maps in Figure 6. Among
the tests presented, our proposed method STSR demonstrated the
best performance in scenarios 3s5z vs. 3s6z and MMM2, and
ranked second in scenarios 3s5z and 27m vs. 30m. These
results are not surprising, as our proposal primarily focuses on
heterogeneous agents’ settings. Compared to role-based methods
that cluster agents based on their properties CDS (Li et al.,
2021) which seeks to achieve the maximum diversity among

Frontiers inNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fnins.2023.1201370
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zhao et al. 10.3389/fnins.2023.1201370

TABLE 1 Categories of the SMAC scenarios and their corresponding

di�culties, ally units, and agents type.

Di�culties Name Ally units Agents
type

Easy 2s3z 2 Stalkers & 3 Zealots Heterogeneous

3s5z 3 Stalkers & 5 Zealots Heterogeneous

1c3s5z 1 Colossus, 3 Stalkers
& 5 Zealots

Heterogeneous

5 m_vs._6m 5 Marines Homogeneous

10 m_vs._11m 10 Marines Homogeneous

Hard 2s_vs._1sc 2 Stalkers Homogeneous

3s_vs._5z 3 Stalkers Homogeneous

2c vs. 64zg 2 Colossi Homogeneous

Bane vs. bane 20 Zerglings & 4
Banelings

Heterogeneous

Super hard 3s5z_vs_3s6z 3 Stalkers & 5 Zealots Heterogeneous

6h−vs. 8z 6 Hydralisks Homogeneous

27 m_vs_30 m 27 Marines Homogeneous

Corridor 6 Zealots Homogeneous

MMM2 1 Medivac, 2
Marauders & 7
Marines

Heterogeneous

individualized behaviors from the shared network., our proposal
outperforms in heterogeneous settings, particularly in the speed
of convergence. Clustering agents of the same kind and sharing
parameters among them is a natural choice. We believe that our
proposed agent clustering method is more stable and consistent,
enabling more efficient use of generated experience to train
policy networks. In contrast, role-based methods may require
more interactions with the environment to better understand the
agents’ properties and assign roles, which may cause a delay in
convergence. The size of the agents in these 2 scenarios may be
well-suited for our proposed method. In the map 3s5z vs.

3s6z there are 3 Stalkers and 5 Zealots, while in the map MMM2
there is 1 Medivac, 2 Marauders, and 7 Marines. The size of each
agent type is not too large or too small, making it appropriate
to share the same type of parameters. In contrast, in the map
bane vs. bane there are 20 Zerglings and four Banelings. The
size of the Zerglings is too large and may require clustering in
advance. One surprising outlier is the easy scenario 3s5z for which
QPLEX exhibits the best performance, surpassing our proposal and
the role-based method by a large margin. We hypothesize that
this is because these maps do not require significant exploration
or distributed policy training. The limited experience can be
better utilized by training on a single, fully-parameter-shared
network.

In contrast to achieving the best performance on heterogeneous
agent scenarios, our proposed STSR is less efficient in homogeneous
agent settings compared to its counterparts from role-based
algorithms such as RODE (Wang et al., 2020b) and ROMA (Wang
et al., 2020a), and diversity oriented parameter sharing algorithm
CDS (Li et al., 2021). Role-based algorithms employ different

principles in clustering small groups of agents automatically and
then apply role-based policies to improve the overall performance,
whileour approach relies purely on the agents’ unit types. CDS
(Li et al., 2021) leverages information-theoretical regularization to
maximize the mutual information between agents’ identities and
their trajectories with the purpose to promote learning sharing
among agents while keeping necessary diversity. Thus for the
scenarios with homogeneous agents which cannot be clustered and
achieve sufficient diversity from the environmental exploration and
agents behavior the performance of our approach is comparatively
lower than the aforementioned counterparts. Empirically, we have
observed that the performance on scenarios with homogeneous
agents can be enhanced by employing random clustering as an
initial step. We plan to conduct a detailed investigation of this
phenomenon in our forthcoming research on clustering size, the
initial settings, etc.

Our method introduces a hierarchical parameter sharing
scheme, wherein parameters are fully shared among agents of
the same type and partially shared among agents of different
types through hard parameter sharing. By sharing parameters,
agents can leverage each other’s experiences and exploit common
patterns in the environment based on their similarities. This
approach simplifies training and enables efficient knowledge
transfer. In contrast, role-based MARL assigns specific roles or
tasks to individual agents, defining their unique responsibilities
and objectives. Each agent possesses its own set of parameters
optimized for fulfilling its designated role. Roles can be predefined
or learned during training. This approach fosters specialization
and coordination among agents, as they concentrate on specific
tasks or functions. While role-based MARL excels in handling
complex scenarios and adapting to diverse environments, it may
necessitate more intricate training algorithms and coordination
mechanisms. CDS (Li et al., 2021) propose an information-
theoretical regularization to maximize the mutual information
between agents’ identities and their trajectories, which encourages
extensive exploration and diverse individualized behaviors. It
introduce agent-specific modules in the shared neural network
architecture, which are regularized by L1-norm to promote
learning sharing among agents while keeping necessary diversity.
Compared to our proposed STSR and role-based methods, CDS
(Li et al., 2021) allows for more flexibility in fostering agent
specialization and achieving diversity in individualized behaviors.
However, without clustering-based group tactics, it results in low
efficient utilization of experience.

5.2.2. Ablation study
To better understand the contributions of each component,

we conducted an ablation study on three scenarios with
the best performance: 27m vs. 30m, 3s5z vs. 3s6z, and
MMM2. Among these scenarios, 3s5z vs. 3s6z and MMM2

are heterogeneous, while 27m vs. 30m is homogeneous. The
performance of the ablation study can be viewed in Figure 7.
According to the results we presented, all components make
positive contributions to the overall performance. Among all
the curves, STSR No Representation Later-update had the worst
performance, implying that the original representation from
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FIGURE 6

Performance comparison with baselines on all super hard maps and one easy map (3s5z). The baselines compromise VDN (Sunehag et al., 2018),

QMIX (Rashid et al., 2020), QPLEX (Wang et al., 2021), role based algorithms ROMA (Wang et al., 2020a), RODE (Wang et al., 2020b), and CDS (Li et al.,

2021).

supervised learning is not sufficient for a hard-parameter sharing
basis, and a later updated data procedure is necessary. Meanwhile,
the curves STSR No Representation Learning are not as good as
STSR full on all scenarios, which means that even if an initial value
settled on the hard-parameter sharing basis may not be sufficient,
it can still help to quickly approach the proper basis. For the
scenario 27m vs. 30m, there is no difference in performance
between STSR full, STSR No Hard-Parameter-Share, and STSR No

rd Reward. This result is not surprising since these two components
mainly work for heterogeneous agents, and 27m vs. 30m is
a homogeneous scenario. The comparison between STSR No rd
Reward and STSR full on the other two scenarios shows that
the application of rd can help to more quickly approach the
hard-parameter sharing layer, especially at the beginning. Such
a contribution is decreased following the later update of the
sharing layer. The reward re can help achieve better performance
on all scenarios regardless of whether they are homogeneous or
heterogeneous (presented on STSR No re Reward), by encouraging
environment exploration. The performance of STSR full suggests
that the utilization of hard-parameter sharing may not approach
the capability to largely improve performance, but it does speed up
the training process.

In conclusion, the ablation study found that all components
make positive contributions to overall performance. The study
also showed that even an initial value settled on the hard-
parameter sharing basis may not be sufficient, but it can still
help to quickly approach the proper basis. The utilization of
hard-parameter sharing may not largely improve performance, but

it does speed up the training process. The application of rd can
help to more quickly approach the hard-parameter sharing layer,
especially at the beginning, and such a contribution decreases
following the later update of the sharing layer. The reward re can
help achieve better performance in all scenarios by encouraging
environmental exploration.

5.3. Diverged representation embedding
training

In our proposal, we introduce a novel approach for
representation embedding. Initially generated through self-
supervised learning, the representation embedding is duplicated
and diverged into two branches. One branch is updated using
reinforcement learning to handle the observation for RL, while
the other branch is continuously updated to guide the intrinsic
reward. Although these two branches serve different purposes, they
function similarly to the representation of the common agent’s
observation and action. To gain a deeper understanding of the
functions and capabilities of these two embedding representations,
we conducted an experiment comparing their centralization and
clustering properties. To achieve this, we projected the embeddings
onto a 2D space, as depicted in Figure 8, using the scenario MMM2
as an illustrative example.

In the MMM2 scenario, which comprises a heterogeneous
composition of 1 Medivac, 2 Marauders, and 7 Marines facing
1 Medivac, 3 Marauders, and 8 Marines, it is essential to
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FIGURE 7

Ablation study on 3 best-performing scenarios. All components make positive contributions to the overall performance.

foster effective cooperation among different agent types to fully
exploit the advantages of each unit. Our observation revealed
that while both forms of embedding clustered within their
respective groups, their concentration levels varied. This indicates
that both embeddings are capable of effectively distinguishing
the observations and actions of different unit types, albeit with
varying degrees of concentration, resulting in distinct functional
characteristics.

The self-supervised embedding, which is supervised by self-
supervised learning, exhibited a higher level of concentration,
while the RL-led embedding showed slightly more diversity
among individual points. We hypothesize that the self-supervised
embedding prioritizes forming distinctive representations for each
unit type, reinforced by intrinsic rewards. Hence, the dense
concentration in the self-supervised embedding as a result of
this objective. On the other hand, the RL embedding focuses on
obtaining maximum rewards, the distinctiveness of representation
for each individual agent will access a more proper reaction for
each agent. Therefore, the RL embedding aims to strike a balance
between representing the unit type and the individual agent’s
characteristics.

5.3.1. Representation transferability and
curriculum learning

In this paper, we propose a method that can transfer learned
policies to new agents without requiring the entire system to be
retrained. This is achieved by duplicating common representations
and sharing parameters among agents of the same type. An
additional benefit of this approach is that it can be easily applied to
tasks involving curriculum learning, where agents of different types
are gradually introduced. To accomplish this, we first identify the
type of the incoming agents, then average the outputs of agents of
the same type from the updated representation. Next, we duplicate
the policy parameters of the agent type and apply them to the new
agent. By duplicating policies and representations, we ensure that
learned policies can be transferred to tasks with varying numbers of
agents. This makes our proposedmethod versatile and applicable to
a wide range of tasks without the need for additional training.

We evaluated the transferability of our method on the
SMAC benchmark by sorting allies and enemies based on their

relative distances to an agent and including information on
the nearest ones while keeping the observation length fixed.
Figure 9 shows the win rates of the policy learned from the
map 3s5z vs. 3s6z on various maps without further policy
training. In the original task, 3 Stalkers and 5 Zealots face 3
Stalkers and 6 Zealots. We designed 2 types of maps which,
respectively, increased the number of Stalkers and Zealots for
both the number of allies and enemies to test the transferability
of different agents’ types. We observed that the transferability
of STSR was evident from the learned policy and still has a
good performance on new maps especially when both sides
increase their agents’ numbers. Additionally, our proposed method
is easy to extend for the transferring to the increased size
of agents which may help to provide a promising result in
curriculum learning.

6. Conclusion and future work

Overall, this research provides a fresh perspective on addressing
the challenges of parameter sharing in multi-agent reinforcement
learning, particularly in heterogeneous environments. The
proposed approach not only enables agents to learn from each
other but also improves the overall performance of the system.
These contributions allow for specialization among heterogeneous
agents while still promoting experience sharing, and make it
easier to incorporate the hard-parameter-sharing scheme. The
proposed method outperforms current mainstream algorithms,
particularly for heterogeneous agents, and can be considered
a more general and fundamental structure for heterogeneous
agent reinforcement learning. Our work is the first to introduce
a multi-task network parameter-sharing scheme to MARL and
to utilize a supervised learning method for generating a shared
input/output representation. Additionally, our proposed intrinsic
reward is based on the prediction of supervised learning and
its input/output representation, which can stimulate more
exploration and enhance the representability of this representation
without requiring extra effort. Overall, our contributions
provide a promising direction for addressing the challenges
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FIGURE 8

Visualization of representation embeddings of scenario MMM2 projected to 2D space on step 2500, updated, respectively, through ever-existing

self-supervised learning and RL. There are 3 kinds of points representing 3 kinds of agents type for scenario MMM2, which are marines, marauders, and

medivac.

FIGURE 9

Transferability on the unseen maps on 3s5z vs. 3s6z without further training on the new maps.

in MARL and improving performance for heterogeneous
agents.

Based on our experiments, it was observed that one of the
bottlenecks in our work is its focus solely on scenarios with
heterogeneous agents. It is not well-suited to scenarios with
homogeneous agents, and even for heterogeneous scenarios with
a large group of the same kind of agents. In comparison with
role-based MARL methods, a smaller clustered parameter-sharing
group is required. We have empirically noted that a random
clustering of homogeneous agents can outperform the baselines
and our proposed work. For our future work, we plan to conduct
further research to gain a better understanding of the principles
behind this observation andmake appropriate improvements to the
parameter-sharing groups.
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