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Single-view multi-human pose
estimation by attentive
cross-dimension matching

Wei Tian*, Zhong Gao and Dayi Tan

Institute of Intelligent Vehicles, School of Automotive Studies, Tongji University, Shanghai, China

Vision-based human pose estimation has been widely applied in tasks such as

augmented reality, action recognition and human-machine interaction. Current

approaches favor the keypoint detection-based paradigm, as it eases the learning

by circumventing the highly non-linear problem of direct regressing keypoint

coordinates. However, in such a paradigm, each keypoint is predicted based on

its small surrounding region in a Gaussian-like heatmap, resulting in a huge waste

of information from the rest regions and even limiting the model optimization. In

this paper, we design a new k-block multi-person pose estimation architecture

with a voting mechanism on the entire heatmap to simultaneously infer the key

points and their uncertainties. To further improve the keypoint estimation, this

architecture leverages the SMPL 3D human body model, and iteratively mines

the information of human body structure to correct the pose estimation from

a single image. By experiments on the 3DPW dataset, it improves the state-

of-the-art performance by about 8 mm on MPJPE metric and 5 mm on PA-

MPJPE metric. Furthermore, its capability to be employed in real-time provides

potential applications for multi-person pose estimation to be conducted in

complex scenarios.

KEYWORDS

attentive learning, multi-person pose estimation, single-image pose estimation, keypoint
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1. Introduction

Vision-based human pose estimation has been favored in tasks of augmented reality,

action recognition, human-machine interaction, etc. However, estimating human poses from

a single image is a persistent challenge for the research community. In traditional algorithms,

manually designed human body models are adopted to obtain local representations

and global pose structures. However, the complexity of the human pose is far beyond

the representation ability of hand-crafted features. In recent years, various human pose

estimation technologies have been progressed driven by deep learning algorithms and

large datasets.

The current mainstream 2D Human Pose Estimation (HPE) models can be divided

into two categories: regression-based method and detection-based method. The former

attempts to learn the direct mapping from an image to human keypoint (e.g, joint)

coordinates (Toshev and Szegedy, 2014), which is yet a highly nonlinear problem and

difficult to learn. The latter has dominated HPE for years due to high performance and

intends to predict location heatmaps of parts or key points (Newell et al., 2016; Chu et al.,

2017). However, the heatmaps are typically with low feature resolution and each keypoint

only focuses on a small local region, resulting in a large waste of propagated gradients from

the rest regions during model optimization.

Considering that current methods do not make full use of the information of human

body structure, we propose a new k-block human pose estimation approach. Given a

forecasted heatmap, this approach employs a voting mechanism over the entire heatmap

to calculate keypoint coordinates and their corresponding uncertainties. Thus, compared to

the traditional form, more feature information can be utilized through the increased number
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of back-propagated gradients, and non-informative key points (e.g.,

by occlusion) will be given less attention during learning.

Due to the lack of depth information, the traditional 2D pose

estimation often yields keypoint ambiguity. However, the human

body structure based on 3D coordinates can better alleviate this

problem. Leveraging the Skinned Multi-Person Linear (SMPL) 3D

structure model of human body (Loper et al., 2015), we design

an iterative coordinate matching strategy between 2D and 3D

key points. The matching is optimized by using the Singular

Value Decomposition (SVD) algorithm. The 2D coordinates can be

corrected based on the predicted 3D key points and the optimized

corresponding Euclidean transforms.

Compared with other human pose estimation schemes, we

focus onmining the prior structure information of the human body

itself and use the information of key points to reconstruct the pose

model. With the new designed k-block module and corresponding

optimization algorithm, the human body pose information can

be iteratively corrected and the final output is based on the

combination of the predicted human 2D/3D pose estimation.

2. Related works

2.1. 2D human pose estimation

As aforementioned, the direct regression learning of keypoint

coordinates is difficult because it is a highly nonlinear problem,

which lacks learning robustness. In comparison, the heatmap

learning has a dense pixel information supervision, but the

resolution of the heatmap is usually low due to downsampling

operations such as pooling and strided convolution in the model,

which limits the accuracy of the final estimated coordinates.

A typical effort to this problem is the design of Hourglass

module (Newell et al., 2016). It uses an hourglass-shaped model

to gradually restore the features compressed in high-dimensional

space to the original scale. Detail information such as faces and

hands are captured by local features, which are restored and

fused in the corresponding heatmaps with the same dimensions

of features. Further efforts such as data stream adjustment (Bulat

et al., 2020) and high-resolution (Sun et al., 2019) are also proposed

to improve the network efficiency.

In addition to the keypoint detection, another problem that

should be faced in the multi-person pose estimation is how

to divide a large number of recognized pose key points into

corresponding human bodies. The existing solutions are mainly

divided into the top-down and the bottom-up paradigms. The

former is achieved with a two-stage pipeline, which firstly employs

off-the-shelf detectors on the input image to locate region of

interests (RoI, denoted by bounding boxes) of human bodies, which

are then individually processed by single-person pose estimators.

But such approaches may be suboptimal since the pose estimation

results are significantly affected by the detection accuracy, the

focus of these methods is on the exploration of more efficient

detectors (He et al., 2017; Ren et al., 2017). In contrast, the bottom-

up methods firstly predict the key points of all persons in the

image and then group them into different human bodies. The

difficulty lies in how to correctly assemble the joint points. A

typical approach is the OpenPose (Cao et al., 2017). It uses the

Part Affinity Fields (PAF) module to predict the Part Confidence

Maps and Part Affinity Fields on the entire image, which are

further matched based on the learned local association fields. In

other approaches, Newell et al. performed simultaneous detection

and grouping with the Associative Embedding (Newell et al.,

2017). They designed a new deep network structure to generate

location heatmaps and associative embedding tags for each joint,

distinguishing between different human bodies by tags. Although

the processing speed of bottom-up methods is relatively fast and

even real-time applicable (Cao et al., 2017; Nie et al., 2018), their

performance is greatly affected by the complex backgrounds or

occlusions. Therefore, motion information has been considered in

recent works (Ohashi et al., 2020; Wang et al., 2020), which yet

require video frames instead of a single image as inputs.

2.2. 3D human pose estimation

In mainstream models, the 3D human pose estimation is

defined as the estimation of 3D human joint points. Related

methods are mainly divided into two strategies: one-stage

estimation and two-stage estimation. The one-stage methods

directly estimate 3D poses from the input image in the

presentations such as 3D heatmaps (Pavlakos et al., 2017), position

maps (Sun Y. et al., 2021), and depth information (Liu et al.,

2021). In contrast, the two-stage methods firstly estimate 2D

human poses and then uplift them to the 3D space via pre-learned

structural information (Zhou et al., 2016, 2017) or regression

models (Martinez et al., 2017; Sun et al., 2017). Since two-stage

methods are highly dependent on accurate 2D pose estimators,

the combination of powerful backbone networks (Simonyan and

Zisserman, 2015; Sun S. et al., 2021) became a trend in achieving

impressive performance. However, as the human body structure

information is implicitly modeled by neural networks, there is

no guarantee that the output 3D skeleton in these methods is

consistent with the real ones.

Aside from the 3D skeletons, the prior statistics about human

body structure have also drawn increased research attention. A

representative is the SMPL human body model (Loper et al., 2015),

which is utilized to parameterize the output targets in model-

based 3D pose estimation methods. Compared with model-free

methods, these approaches directly predict controllable parameters,

which facilitates an end-to-end 3D pose estimation without

secondary adjustment, such as the SMPLify model proposed

by Bogo et al. (2016). Since the mapping from an image to

the shape space and the relative rotation of body parts is hard

to learn, forms of intermediate representations and supervision

are chosen to alleviate this problem, such as contours, semantic

part segmentation, and 2D heatmaps. For example, Kanazawa

et al. (2018) designed the adversarial priors and iterative error

feedback (IEF) loops to reduce the difficulty of regression.

Arnab et al. (2019) exploited temporal context information. Guler

and Kokkinos (2019) used partial voting expressions and post-

processing to improve regression networks. Kolotouros et al.

(2019) leveraged an optimization paradigm to provide additional

3D supervision from unlabeled images. The hybrid inverse

kinematics solution (HybrIK) (Li et al., 2021) leveraged the twist-

and-swing decomposition to transform the 3D joints to shape

estimation via both Kinematics and inverse Kinematics modeling
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FIGURE 1

An overview of proposed multi-person pose estimation framework. Reproduced with permission from the o�cial 3DPW benchmark, available at

https://virtualhumans.mpi-inf.mpg.de/3DPW/.

and circumvented direct learning the abstract parameters of the

general human body models.

In this paper, we propose a novel monocular multi-person

pose estimation framework by exploiting the advantages of both

2D and 3D strategies. For backbone, this framework employs the

Deformable DETR model (Zhu et al., 2021) (left part of Figure 1).

It serves as a multi-person detector as well as a provider of

reference regions and image features for the k-block module, which

covers the entire heatmap information by a voting mechanism.

Additionally, the k-block introduces uncertainties to 2D keypoint

estimation, so that occluded joint points are given lower weights

in the learning process, as they are less informative and can be

inaccurately estimated, resulting in higher uncertainties. We also

leverage an SMPL-based parametric model with a 2D–3D iterative

optimization process. The core of our optimization algorithm is to

estimate the optimal transformmatrix and depths through iterative

fitting between 2D and 3D relative coordinates. In this way, an

accurate pose estimation can be obtained step by step without

requring depth information.

3. Proposed method

3.1. 2D human characterization based on
k-block structure

As previously introduced, the existing detection-based 2D pose

estimation paradigm is designed to predict the location heatmap

of key points, but is limited by the insufficient computational

resolution. Moreover, most values on the heatmap are set to zero

except for small local region surrounding the joints (Figure 4B),

thus having no effect on the estimation of joint point coordinates.

This fact forces a lot of back-propagated gradients to suppress

predictions at non-joint positions, not only leading to a less efficient

overall learning, but also making the model preferentially predict

zero values.

To address these problems, we propose the k-block-based

single-person pose estimation module, as illustrated in Figure 2.

The input image is firstly processed by the backbone network to

extract a feature tensor with a size of w × h pixels and l channels.

With a further convolution in the channel dimension, a new tensor

is predicted with k channels, which is equal to the number of to be

predicted joint points. The tensor is further fed into the k-block

module to generate the voting matrices. The joint points of the

human body are finally predicted according to the corresponding

voting results. The detailed calculation process is shown in Figure 3.

Here, we denote the i-th channel of input tensor as a heatmap

(with a size of w × h). The k-block module firstly accumulates

heatmap values in both u- and v-directions. The obtained vectors

zu and zv are then considered as the coordinate voting weights of

the corresponding joint point in the u- and v-direction. By applying

the Softmax operation on both weighting vectors, the normalized

weight distributions z
′
u and z

′
v are obtained. Given a vector with a

length of n, it generates an enumeration vector e = [1, 2, ...n], which

corresponds to the sequence of row or column IDs. The element-

wise product of the normalized weight distribution z∗ and the

enumeration sequence e is thus the distribution of corresponding

voting values. The predicted joint coordinates can be calculated by

summing up of the voting values. Additionally, we denote the joint

coordinate uncertainty ci,u/v as the standard deviation of the voting

values, i.e., the more concentrated the vote distribution is, the lower

the uncertainty will be.

A comparison of Gaussian heatmap used in traditionalmethods

and the k-block weights predicted in our approach is illustrated

in Figure 4. In order to achieve a sufficient accuracy for the joint

location, Gaussian heatmaps often require a larger resolution (e.g.,

128 × 128 pixels). The non-joint areas are indicated in black

in Figure 4B, in which a large number of gradients are used to

suppress non-zero predictions. This part of the gradients has

little effect on the prediction of joint points, resulting in a slow

convergence of the model. Moreover, it still consumes a lot of

computation in these areas in the forward inference stage, although

their predictions are not considered. However, for heatmaps with

larger Gaussian kernels, although more pixels are involved in the

joint point estimation, the location accuracy can be reduced due to

the reduction of the gap between predicted values.

In this paper, a new k-block structure is designed and the

coordinate values of human joints are calculated from all heatmap
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FIGURE 2

k-block-based 2D single-person pose estimation.

FIGURE 3

k-block prediction process.

FIGURE 4

Comparison of Gaussian heatmap and k-block weights. (A) Input. (B) Gaussian (128 × 128). (C) k-Block (32 × 32).

elements at the same time, which greatly reduces the waste of

gradients based on Gaussian heatmap prediction, so that it can

use less computation (e.g., with a resolution of 32 × 32 pixels,

which is yet still larger than the small local joint region in

Gaussian heatmap) to obtain more gradient propagation to achieve

similar accuracy.

In our proposed approach, each joint point estimation is

regarded as a Gaussian distribution. Given an estimated coordinate

xi (i.e., ui or vi) and its ground truth x̂i, the estimation error fe(xi)

follows the Gaussian distribution, interpreted as

fe(xi) =
1√
2πci

exp(− (xi − x̂i)
2

2c2i
) (1)

with the standard deviation ci. By applying the logarithm form of

(1) and considering all joint points, the loss for k-block module is
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expressed as

LKB =
∑

i

(log(
√
2πci)+

(xi − x̂)2

2c2i
)+ ωc

∑

i

1

2
c2i , (2)

where ωc represents the weight of the additional regularization

term and is empirically set to 0.2. The set of inferred 2D joint points

are denoted as P2D = {p2D,1, ..., p2D,k}.

3.2. 3D human characterization based on
SMPL parameters

The SMPL (Loper et al., 2015) is a vertex-based three-

dimensional model containing a fixed set of parameterized

expressions based on the statistics of a large amount of real human

body data. In this paper, the SMPL model is selected as the prior

structure of the rigid human body, since it can accurately express

different postures and movements. It should be noted that the

original SMPL model also needs a set of root coordinates to

further determine the 3D coordinates of the joint point. In this

paper, we focus on the spatial relation between the 3D coordinates

(e.g., relative to the body center), thus it requires no additional

corresponding root points. Here, we implement an additional

output head after the decoder of Derformable DETR (Zhu et al.,

2021) to infer both the human body shape parameter β and the

pose parameter θ from an input image, as illustrated in the middle

part of Figure 1.

The complete shape parameters consist of a total of 50 items

with only the first 10 open-sourced. Statistics show that most of

the parameter values are in the range from –1.5 to +1.5. This paper

chooses the Smooth-L1 loss as the shape loss function and adjusts

its second-order loss range to (–1.5, 1.5), interpreted as

Lshape =
∑

i

{

2
9 (βi − β̂i)

2, |βi − β̂i| ≤ 1.5

| 23 (βi − β̂i)| − 0.5, |βi − β̂i| > 1.5
, (3)

where βi is the predicted i-th element of shape parameter β in the

SMPL model and the symbolˆindicates the ground truth.

Additionally, we introduce the Quaternion notation to avoid

the ambiguity problem induced by Euler angles used in the original

SMPL. Let the normalized vector of the rotation axis be (x′, y′, z′)
and the rotation angle be α ∈ (−π ,π]. The pose parameter of

SMPL can be expressed as

θ = (x′ sin
α

2
, y′ sin

α

2
, z′ sin

α

2
, cos

α

2
). (4)

Considering that theQuaternion representation is a normalized

vector and its element value is in the range of (−1, 1), the loss

function of the pose parameter is selected as an L1 loss with an

additive regularization term:

Lpose = ‖θ − θ̂‖1 + ωp

∣

∣1− ‖θ‖22
∣

∣ , (5)

where θ i represents the i-th element of θ and ωp denotes the weight

of the regularization term and empirically set to 1.

Based on the inferred shape parameter β and pose parameter

θ , we can estimate the 3D joint point coordinates according to

the SMPL model. The computation details can be referred to

work (Loper et al., 2015). The point set is coordinate-normalized

(by removing the mean and rescaling with the reciprocal of

standard deviation) and denoted asQ3D = {q3D,1, ..., q3D,k}.

3.3. 2D-3D keypoint optimization

To correct the prediction results, especially for 2D joint points,

we resort to the idea of 3D pointmatching. Generally, given two sets

of matched 3D points P = {p1, p2, ..., pk} and Q = {q1, q2, ..., qk},
the aim is to find a set of Euclidean transforms {R, t} to minimize

their alignment errors. The optimal transform {R∗, t∗} can be

obtained by solving the Least Squares problem as

(R∗, t∗) = argmin

k
∑

i

1

2
‖Rpi + t − qi‖22. (6)

If the mean values of both sets P and Q are removed, which

means their center are aligned at the origin, we obtain

t∗ = t = 0. (7)

Thus, Eq. (6) can be reformulated as

R∗ = argmin

k
∑

i

1

2
‖Rpi − qi‖22. (8)

The square term of above equation can be calculated as

‖Rpi − qi‖22 = p⊤i pi − p⊤i R
⊤qi − q⊤i Rpi + q⊤i qi. (9)

Noting that (q⊤i Rpi)
⊤ = p⊤i R

⊤qi, by discarding constant

terms, Eq. (8) can be further simplified as

R∗ = argmax

k
∑

i

q⊤i Rpi = argmax tr(Q⊤RP)

= argmax tr(RPQ⊤),

(10)

where P and Q denote the matrix forms of point sets. Leveraging

the SVD decomposition, it obtains PQ⊤ = U6V⊤. Equation (10)

can then be reformed as

R∗ = argmax tr(RU6V⊤) = argmax tr(6V⊤RU). (11)

Since R, U , and V are all orthogonal matrices, the matrixM =
V⊤RU is also orthogonal. Thus, we obtain

1 = m⊤
i mi =

∑

j

m2
i,j → m2

i,j ≤ 1 → |mi,j| ≤ 1, (12)

where mi is the i-th row ofM and mi,j is the j-th element of mi. As

6 = diag[σ1, ..., σk] is a diagonal matrix, there is

tr(6M) =
∑

i

σimi,i ≤
∑

i

σi. (13)
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FIGURE 5

Multi-scale information for multi-person pose estimation.

FIGURE 6

Deformable DETR-based multi-person pose estimation.

Obviously, only withmi,i = 1 can tr(6M) be maximized. Then,

M becomes a unit matrix, which is

I = M = V⊤R∗U . (14)

By solving the above equation, we obtain the optimal rotation

matrix R∗ = VU⊤.
If the depths of 2D joint points are known, with the

above solution, we can correct the 2D joint points with their

corresponding 3D coordinates estimated by the SMPL model, as

illustrated in the right part of Figure 1. This is based on the fact

that the SMPL is built on the statistics of a large set of real human

bodies. Thus, its representation about the spatial relation between

joint points should be more consistent with the real ones compared

to the k-block-based estimation. Since the predicted 2D joint points

are depthless, we consider their depths as additional to be optimized

parameters in the entire optimization process. The main idea is

to firstly lift the 2D key points into 3D space by assigning them

with initial depth values, which are then gradually optimized by

the 3D matching according to the solved rotation matrix. With

iterations in this process, the accuracy of the estimated depth, the

solved rotationmatrix and the corresponding 2D coordinates of 3D
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FIGURE 7

Trend of loss with di�erent hyperparameters set (Case1:

λshape = 0.4, λpose = 0.4, λSMPL = 0.4, λDET = 0.25, λKB = 0.25; Case2:

λshape = 0.25, λpose = 0.25, λSMPL = 0.25, λDET = 0.25, λKB = 0.25;

Case3: λshape = 0.25, λpose = 0.25, λSMPL = 0.25, λDET = 0.25,

λKB = 0.4; Case4: λshape = 0.2, λpose = 0.25, λSMPL = 0.15, λDET = 0.4,

λKB = 0.3).

TABLE 1 Exploration on performance of di�erent multi-person pose

estimation strategies with ↓ indicating that lower values are better.

Multi-scale FPN Correction MPJPE (mm)↓
X 58.5

X 57.9

X X 57.2

key points are progressively improved. Here the z-axis is defined

as aligned with the depth direction, which is perpendicular to the

image plane.

During the optimization, we also introduce the uncertainties of

estimated 2D keypoint locations by the k-block module. Since the

joint points in occluded or low-light areas are often estimated more

inaccurately due to less information, their uncertainties will be high

and their matching errors should be less weighted. Thus, Eq. (8) can

rewritten as

R∗ = argmin
∑

i

1

2
wi‖Rpi + qi‖2. (15)

The weight wi is set to 1/ci, which is the reciprocal of the

uncertainty ci. We further define a diagonal weight matrix W =
diag[w1, ...,wk]. Leveraging Eq. (10), the above equation can be

reformed as

R∗ = argmax tr(RP⊤WQ) = argmax tr(6V⊤RU) (16)

with the new SVD decomposition P⊤WQ = U6V⊤. This can be

considered as a weighted 2D coordinate correction process based

on SMPL parameters. Detailed steps of this process are listed in

Algorithm 1, where the iteration number is empirically set to 3.

Input:

2D keypoint set P2D with coordinate matrix P2D,

diagonal uncertainty matrix C2D; Normalized 3D

keypoint set Q3D with coordinate matrix Q3D.

Output:

Corrected 2D keypoint coordinates P2D.

1: Calculate mean vector p2D and standard deviation

vector σ 2D of P2D.

2: Lift P2D to 3D space by assigning initial depth

z = 0;

3: Normalize P2D to the same center and scale of Q3D;

4: Calculate product: S = P⊤
2DC

−1
2DQ3D;

5: SVD decomposition: S = U6V⊤, and obtain rotation

matrix R∗ = VU⊤;

6: Ensure det(R∗) = 1, so that R∗ is a rotation matrix;

7: Correct z-coordinates of P2D based on Q3D and R∗;

8: Repeat step 4 to 7 to optimize R∗ and z-coordinates

of P2D;

9: Restore non-normalized P2D based on Q3D, R∗, p2D

and σ 2D;

10: return Corrected P2D.

Algorithm 1. Weighted 2D coordinate correction based on SMPL

parameters.

3.4. Multi-person detection and pose
estimation

Since pedestrians can appear in the image with different

scales due to their sizes or distances in the 3D world space,

the representation ability of features only extracted from a single

layer of neural network becomes insufficient. Hence, the multi-

person pose estimation scheme should be adapted to multi-

scale image information. Considering the multi-layer convolution

characteristics of the deep neural network itself, the deeper the

layer is, the greater information amount a single neuron will

capture, i.e., a deeper layer corresponds to a greater receptive field.

Therefore, we can extract features from different layers of the

backbone network to obtain the multi-scale information, as shown

in Figure 5. Although such a multi-scale feature manipulation

yields mere computational overhead, it has shortcomings like that

the features from shallow layers are with relative low semantic

information, limiting the prediction performance, while the deep

layers are with relatively low resolution, leading to insufficient

information amount within an RoI.

Referring to the Feature Pyramid Network model (FPN), we

add an additional information recovery branch to the backbone

(i.e., the ResNet). As shown on the left side of Figure 6, the bottom-

up process indicates the feedforward feature calculation in the

original model. As the layer deepens, the corresponding feature

map gradually becomes downsampled. The top-down process is

the gradual feature restoration toward the original image size. By

fusing the information from different levels, the shallower layer

obtains both higher resolution and richer semantic features. For

inference, according to bounding box sizes, feature maps from the

corresponding FPN layer are selected to be cropped and sent to

Frontiers inNeuroscience 07 frontiersin.org

https://doi.org/10.3389/fnins.2023.1201088
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Tian et al. 10.3389/fnins.2023.1201088

FIGURE 8

Examples of results under di�erent multi-person pose estimation strategies. (A) Multi-scale. (B) FPN. (C) FPN and correction.

the k-block module to estimate the pose of each individual person.

Additionally, we adopt the RoI Align (He et al., 2017) to avoid the

dislocation of feature tensors caused by quantization operations.

To further improve the pedestrian detector performance, we

employ the Deformable DETR framework (Zhu et al., 2021), as

illustrated in Figure 6. In terms of single-frame pose estimation,

the Deformable DETR model provides the candidate regions of

detected persons and their corresponding image features for the

k-block module. Thus, a simultaneous multi-person detection and

pose estimation can be achieved. In addition to the detection

bounding boxes, we also introduce another output head to

the original Deformable DETR to regress the shape and pose

parameters β and θ of the SMPL model. The SMPL model is

further applied in the iterative optimization process introduced

in Section 3.3 to correct the predicted 2D key points, resulting

in the final architecture proposed in this paper as shown in

Figure 1. The total loss function for training the entire architecture

is interpreted as

Ltotal = λshapeLshape + λposeLpose + λSMPLLSMPL+
λKBLKB + λDETLDET ,

(17)

where LDET denotes the object detection loss defined in the

Deformable DETR (Zhu et al., 2021), LSMPL represents the squared

errors of keypoint coordinates predicted by the SMPL, and the

subscripted term λ indicates the corresponding weight of each loss.

4. Experiments and evaluations

4.1. Experimental setups

Here we choose two mainstream datasets, i.e.,

3DPW (Von Marcard et al., 2018) and Human3.6M (Ionescu

et al., 2011, 2014), for experiments. The 3DPW is a single-view

multi-person 3D pose dataset containing 60 video sequences (24

TABLE 2 Comparison with state-of-the-art multi-person pose estimators.

Model MPJPE (mm)↓ PA-MPJPE (mm)↓
HMR (Kanazawa et al., 2018) 130.0 81.3

SPIN (Kolotouros et al.,

2019)

96.9 59.2

ROMP (Sun Y. et al., 2021) 76.7 47.3

HybrIK (Li et al., 2021) 74.1 45.0

DynBOA (Huang et al.,

2020)

65.5 40.4

Ours 57.2 35.5

for training, 24 for test, and 12 for validation) shot in outdoor

environments such as forests, streets, playgrounds, etc. This dataset

also includes a large number of 2D/3D pose annotations, 3D body

scans, and SMPL parameters. The Human 3.6M is a multi-view

single-person 3D pose dataset captured in an indoor space. It

contains 3.6 million 3D human poses and corresponding videos

(50 FPS) from 15 scenes, with keypoint annotations of both 2D/3D

positions and angles. For evaluation, the video is downsampled at

a ratio of 5/64 to eliminate redundancy.

Since our proposed method adopts predicted 3D key points

to assist the correction of predicted 2D keypoint coordinates,

3D annotations are employed in supervising the module for

3D keypoint prediction learning, which is also one of the main

reasons in choosing above datasets for evaluation. In experiments,

the proposed architecture is implemented by the PyTorch on a

computer platform with a CPU of Intel i9@3.50 GHz, a GPU of

NVIDIA RTX 3090 and a memory of 32 GB. During training,

we adopt the Adam optimizer with a learning rate of 1e-3. The

manual selection of hyperparameters, based on experience, has a

substantial effect on the outcome of training. Consequently, various

hyperparameters were designed and promptly evaluated with a
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FIGURE 9

Example of prediction results by di�erent multi-person pose estimators. (A) HMR. (B) SPIN. (C) HybrIK. (D) Ours.

TABLE 3 Runtime comparisons with di�erent estimators.

Method FPS Backbone Device

RepNet (Wandt

and Rosenhahn,

2019)

10 Stacked hourglass network NVIDIA TITAN X

VIBE (Kocabas

et al., 2020)

10.9 ResNet-50 1070Ti GPU

ROMP (Sun Y.

et al., 2021)

20.8 HRNet-32 1070Ti GPU

ROMP (Sun Y.

et al., 2021)

30.9 ResNet-50 1070Ti GPU

Ours 9 DETR NVIDIA RTX 3090

consistent number of iterations in order to choose the suitable

configuration. It can be seen in Figure 7 that when the weights

λshape, λpose, and λSMPL of 3D pose estimation are relatively small

and the weight λDET of the human detection box is relatively large,

there is a minimum loss trend (case 4). This may be due to the fact

that the human detection box is the foundation of the top-down

approach and its accuracy will directly influence the subsequent

2D/3D pose estimation. To this end, the weights for loss terms

are empirically set as: λshape = 0.2, λpose = 0.25, λSMPL = 0.15,

λDET = 0.4 and λKB = 0.3.

TABLE 4 Comparison with state-of-the-art single-person pose

estimators.

Model MPJPE
(mm)↓

Input
frames

Training
ratio

V
id
eo

VIBE (Kocabas

et al., 2020)

65.6 16 50%

Bundle (Arnab

et al., 2019)

63.3 190 100%

Att3DPose (Liu

et al., 2020)

45.1 243 100%

Si
n
gl
e

Im
g.

RepNet (Wandt

and Rosenhahn,

2019)

89.9 1 100%

SMPLify (Bogo

et al., 2016)

80.7 1 50%

HMR (Kanazawa

et al., 2018)

56.8 1 50%

Ours 65.8 1 10%

For evaluation, we choose metrics of Mean Per Joint Position

Error (MPJPE) and the Procrustes Alignment Mean Per Joint

Position Error (PA-MPJPE), calculated as follows:

MPJPE = 1

k

k
∑

i

‖pi − pi‖2, (18)
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FIGURE 10

Example of multi-person pose estimation results (Red points:

original output coordinates of the k-block module; Blue points:

results by unweighted 3D correction algorithm; Green points:

results by uncertainty-based weighted correction algorithm).

PA−MPJPE = 1

k

k
∑

i

‖p′i − p′i‖2, (19)

where pi refers to the predicted position of the i-th joint point while

pi indicates the corresponding ground truth. The p′i also denotes

the position of the i-th joint point, yet with the predicted skeleton

firstly aligned to its ground truth by rotation, translation and

scaling. To facilitate a fair comparison with other mainstream pose

estimators on above benchmarks, we calculate the corresponding

3D coordinates of predicted 2D key points by using the optimized

depths and the given camera parameters. Thus, position errors can

be measured in the 3D space.

4.2. Evaluation on multi-person pose
estimation

In the first experiment, we explore the performance of

different strategies for multi-person pose estimation introduced in

Section 3.4, i.e., the direct multi-scale information fusing scheme,

the FPN-based scheme and the SMPL correction-based scheme. For

a fair comparison, all schemes adopt the Deformable DETR as base-

detector and are evaluated on the 3DPW dataset. The results are

reported w.r.t. the MPJPE metric in Table 1.

Obviously, introducing FPN module improves the mean joint

position error by 0.6 mm according to the MPJPE metric, which

proves that the top-down feature restoration process in the FPN

is more efficient than the direct feature combination of different

scales. By integrating the SMPL correction algorithm, the MPJPE

is further reduced by 0.7 mm, demonstrating the benefit of 3D

human body structure prior in the 2D keypoint prediction task.

The processing speed of our entire architecture is about eight–nine

FPS, which can be applied in real-time use cases. A qualitative

comparison is also shown in Figure 8. As depicted, the direct

multi-scale information fusion yields relative large estimation

errors (Figure 8A). By only introducing the FPN module, the

improvement is limited (Figure 8B). By further deploying the SMPL

correction algorithm, the estimation errors at the end of the torso,

on the arms and on the legs are compensated (Figure 8C).

We also compare the pose estimation results of our proposed

architecture with those by other mainstream multi-person

pose estimators including HMR (Kanazawa et al., 2018),

SPIN (Kolotouros et al., 2019), ROMP (Sun Y. et al., 2021),

HybrIK (Li et al., 2021) and DynBOA (Huang et al., 2020).

Results of compared methods are listed in Table 2. It can be

seen that the model based on k-block and SMPL parameter

estimation proposed in this paper has reached a new level of

state-of-the-art performance on the 3DPW dataset. It outperforms

other approaches by an error reduction of about 5 mm w.r.t.

the PA-MPJPE metric. In terms of the MPJPE metric, a larger

accuracy gain is obtained, which is 8.3 mm. Examples of pose

prediction results are shown in Figure 9. To be noted, since some

of compared methods are not open-sourced, we only illustrate

the prediction results of methods whose codes are available. As

can be seen, in complex activities such as couple dancing, the key

points at the end of body parts (e.g., arms and legs) can be easily

misdetected in mainstream pose estimators while our method can

still accurately locate these key points, proving its strong scene

adaptability. Furthermore, we compare the inference time of the

proposed method to the published results of other approaches,

whose specific results are presented in Table 3. The use of DETR,

with its large number of network parameters, inevitably sacrifices

inference speed in order to achieve good results.

4.3. Evaluation on single-person pose
estimation

Although our proposed architecture is designed aiming at the

multi-person pose estimation task, it can still be applied for single-

person pose estimation. Here, we evaluate our architecture on the

Human3.6M dataset. As this dataset consists of millions of images

and our computation resources are limited, we train our approach

only on 10% of the training set. The evaluation results are reported

in Table 4. As can be seen, the video-based pose estimators generally

outperform single-view-based approaches. This can be attributed to

additional motion information extracted from consecutive frames.

However, the increased accuracy comes at the cost of processing a

large number of frames, such as the top-rankedmethod Att3DPose,

which requires 243 input frames. As to ourmethod, its performance

is comparable to the video-based VIBE (Kocabas et al., 2020) and

Bundle (Arnab et al., 2019), and surpasses the singe-view-based

RepNet (Wandt and Rosenhahn, 2019) and SMPLify (Bogo et al.,

2016). Although the SMPLify is also an SMPL-based model, we

achieve a position error reduction of about 15 mm by adopting the

iterative optimization of 2D–3D key points, further demonstrating

its advantages. However, our method is still with an error gap of 9

mm to the method HMR (Kanazawa et al., 2018), which is learned

on half of the training data. As our model is only learned on 10% of

the training data, there is still potential to improve its performance.
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FIGURE 11

Prediction results under low-illumination (left) and with occlusion (right).

FIGURE 12

Example of negative results caused by occlusion with significant errors on legs. (A) Self-occlusion. (B) Occlusion by other people. (C) Occlusion by

object.

4.4. Exploration on uncertainty weighting

The essence of k-block module is not only to predict the 2D

key points but also to estimate their uncertainties based on the

large heatmap information. In this experiment, we qualitatively

explore its influence on the keypoint weighting in the optimization

process. As illustrated in Figure 10, we depict the key points

directly predicted by the k-block module in red, the ones corrected

by SMPL yet without considering uncertainties in blue, and

those corrected by the uncertainty-based weighted optimization

in green. As can be seen, key points directly predicted by

the k-block module are with obvious errors such at the head,
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elbows, writs, and ankles. By applying the correction algorithm

with the 3D SMPL model, the keypoint errors at the end of

body parts are only reduced to some extent (e.g., the hand

of the right person in Figure 10). By introducing uncertainty-

based weighting in the optimization process, the keypoint errors

are further reduced and the estimated skeleton looks more

realistic. The uncertainty-based weighting is also beneficial to use

cases under low-illumination or with occlusion, where individual

key points become difficult to predict due to deteriorated

image information. However, by considering uncertainties in

the optimization, we can still obtain relative accurate keypoint

prediction by fitting the informative body parts with the 3D shape

and pose estimated by the SMPL model (Figure 11), validating the

proposed approach.

5. Conclusion and discussion

In this paper, we present a new single-view multi-person pose

estimation approach. It manifests improvements over existing

approaches in two main aspects: Firstly, it proposes a k-block

module to simultaneously calculate the 2D key point coordinates

and their uncertainties, which improves the extraction of heatmap

features and facilitates the attentive learning of more informative

key points. Secondly, it employs a 3D shape and pose estimation

based on the SMPL model and further proposes an uncertainty-

weighted correction algorithm to iteratively align the estimated 3D

coordinates with the predicted 2D key points. By experiments on

the 3DPW benchmark, it surpassing state-of-the-art approaches

by a gain of about 8 mm on MPJPE metric and 5 mm on

PA-MPJPE metric. Additionally, it is real-time applicable and

preforms robust against complex scenarios. Nonetheless, when

the human body is subjected to self-occlusion or occlusion (see

Figure 12), there is an ambiguity in depth estimation, which has a

consequential impact on 3D pose estimation. Therefore, it is worth

noting several important considerations for the future work: (1)

incorporating an angle-axis representation or a regularization term

to represent rotation; (2) improving the model accuracy for node

coordinates through the utilization of multi-perspective images

and designing a lighter, more compact model through network

coding schemes.
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