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Introduction: Intracranial hemorrhage detection in 3D Computed Tomography 
(CT) brain images has gained more attention in the research community. The 
major issue to deal with the 3D CT brain images is scarce and hard to obtain the 
labelled data with better recognition results.

Methods: To overcome the aforementioned problem, a new model has been 
implemented in this research manuscript. After acquiring the images from the 
Radiological Society of North America (RSNA) 2019 database, the region of 
interest (RoI) was segmented by employing Otsu’s thresholding method. Then, 
feature extraction was performed utilizing Tamura features: directionality, 
contrast, coarseness, and Gradient Local Ternary Pattern (GLTP) descriptors to 
extract vectors from the segmented RoI regions. The extracted vectors were 
dimensionally reduced by proposing a modified genetic algorithm, where the 
infinite feature selection technique was incorporated with the conventional 
genetic algorithm to further reduce the redundancy within the regularized vectors. 
The selected optimal vectors were finally fed to the Bi-directional Long Short 
Term Memory (Bi-LSTM) network to classify intracranial hemorrhage sub-types, 
such as subdural, intraparenchymal, subarachnoid, epidural, and intraventricular.

Results: The experimental investigation demonstrated that the Bi-LSTM based 
modified genetic algorithm obtained 99.40% sensitivity, 99.80% accuracy, and 
99.48% specificity, which are higher compared to the existing machine learning 
models: Naïve Bayes, Random Forest, Support Vector Machine (SVM), Recurrent 
Neural Network (RNN), and Long Short-Term Memory (LSTM) network.
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1. Introduction

Intracranial hemorrhage is a critical disease that causes severe 
disability and even death (Morotti et al., 2018; Remedios et al., 2020). 
Intracranial hemorrhage is caused by various pathologies, such as 
cerebral aneurysms, dural arteriovenous fistulas, hypertension, vasculitis, 
trauma, cerebral amyloid angiopathy, cerebral arteriovenous 
malformation, venous sinus thrombosis, and hemorrhagic conversion of 
ischemic infarction (Cheruiyot et  al., 2021). On the other hand, 
hemorrhagic disease is caused by the elimination of path interaction and 
excessive leakage of blood in the vessels. The main risk factors for 
hemorrhagic disease are leakage in veins, infected blood vessel walls, 
high blood pressure, and head trauma. CT is an effective and 
non-invasive imaging technique for recognizing intracranial hemorrhage 
when compared to other imaging techniques such as histology, x-rays, 
MRIs, ultrasound, etc. (Duperron et al., 2019). In addition, hemorrhage 
is easily detected on CT images because human blood has a high density 
compared to brain tissue, but the density is lower than bone (Karki et al., 
2020). The hemorrhage clots on the CT images are based on external 
factors like volume, position, slice intensity, scanning angle, and density.

Accurate detection of bleeding is crucial for physicians to perform 
clinical interventions (Lee et al., 2019; Patel et al., 2019). However, the 
manual intervention carried out by physicians is a time-consuming task. 
Therefore, an automated intracranial hemorrhage model is essential 
(Huang et al., 2019; Sage and Badura, 2020). In the last decades, several 
artificial intelligence and deep learning algorithms have been successfully 
employed for medical image analysis, such as breast cancer detection, skin 
cancer detection, grading of diabetic retinopathy, etc. Also, artificial 
intelligence (AI) algorithms ensure proper detection to facilitate timely 
diagnosis, which significantly reduces the mortality rate. There are already 
several algorithms for intracranial hemorrhage detection based on deep 
learning models. However, most of the existing models face difficulties in 
segmenting intracranial hemorrhage regions in 3D brain scans because 
of their scarce nature (Raghavendra et al., 2021). Additionally, both the 
validation and training datasets are limited in the existing reported 
studies. In most of the previous studies, the developed model’s 
performance was only validated at the scan level rather than at the slice-
by-slice verification level. In this manuscript, an efficient and accurate 
model for intracranial hemorrhage recognition was implemented.

The main contributions are as follows:

 • First, we  used Otsu’s thresholding technique for region 
segmentation in the collected brain images and performed hybrid 
feature extraction (GLTP descriptor and Tamura features) to 
extract discriminative vectors. The hybrid feature extraction 
significantly reduced the semantic gap between the feature subsets, 
which helped to obtain significant classification performance.

 • Next, we  proposed a modified genetic algorithm for feature 
optimization, where an infinite scheme is used to reduce 
redundancy in the genetic algorithm. The feature optimization 
effectively decreases the computational complexity and time of 
the proposed framework.

 • Then, we used a Bi-LSTM network in order to classify intracranial 
hemorrhage types: subdural, intraparenchymal, subarachnoid, 
epidural, and intraventricular. The efficacy of the Bi-LSTM-based 
modified genetic algorithm was tested using evaluation metrics 
such as the Dice coefficient, Jaccard coefficient, Matthews 
Correlation Coefficient (MCC), accuracy, the F1 Score, 
specificity, and sensitivity.

The organization of this study is as follows: studies related to 
intracranial hemorrhage are reviewed in Section 2. Next, the 
mathematical explanations and the simulation results of the Bi-LSTM-
based modified genetic algorithm are given in Sections 3 and 4, 
respectively. The conclusion of this study is given in Section 5.

2. Literature review

Kumar et al. (2022) introduced an entropy-based segmentation 
framework for effective intracranial hemorrhage detection utilizing 
CT images. The developed framework includes a skull removal model, 
an edge-based active contour model, a thresholding model, and a 
fuzzy C-Means (FCM) algorithm for automatic cluster selection. 
While the incorporation of several models increases the computational 
complexity of the framework. Vrbančič et al. (2019) used transfer 
learning with the grey wolf optimization algorithm to detect 
hemorrhage in the CT brain images. The numerical outcomes show 
that the presented method outperforms the conventional methods by 
using different evaluation measures, but it has a computational 
problem in finding the best possible solutions. Wang et al. (2020) used 
the U-Net model for intracranial hemorrhage detection utilizing CT 
images. Alis et  al. (2022) implemented an RNN model to detect 
intracranial hemorrhage on non-contrast head CT images. On the 
other hand, U-Net and RNN models were suitable for hemorrhage 
detection but computationally expensive. Kuo et al. (2019) used Deep 
Convolutional Neural Network (D-CNN) for intracranial hemorrhage 
detection on CT images. As specified above, the CNN model needs an 
enormous amount of data for model training, which is 
computationally expensive.

Li et al. (2021) developed U-Net for the automatic detection and 
segmentation of intracranial hemorrhage strokes in 3D-CT brain 
images. Additionally, adversarial training was adopted to enhance 
segmentation accuracy. The experimental evaluations demonstrated 
the robustness, effectiveness, and advantages of the developed U-Net 
model in intracranial hemorrhage lesion diagnosis. However, the 
implemented U-Net model requires larger amounts of data to attain 
significant classification results. Burduja et  al. (2020) utilized the 
Bi-LSTM network and ResNeXt-10 model for feature selection and 
intracranial hemorrhage subtype classification. In this literature, 
human evaluations were conducted to compare the accuracy level of 
the developed model with that of highly trained doctors. Deep 
learning models like ResNeXt-10 were computationally costly because 
they required higher-end graphics processing units to process the 
larger unstructured databases. Mansour and Aljehane (2021) 
integrated Kapur’s threshold with the elephant herd optimizer for 
region segmentation. Next, the Inception V4 network was 
implemented for vector extraction, and then classification was 
performed employing a multi-layer perceptron. The extensive 
experiment showed the effectiveness of the presented model, and 
furthermore, the results were evaluated under different dimensions.

Wang et al. (2021) used 2D CNN for precise lesion detection and 
subtype classification of intracranial hemorrhage. The experimental 
results confirmed that the developed 2D CNN model achieved robust 
and high classification performance, but it was computationally costly. 
Imran et al. (2021) introduced a fully convolutional network named 
U-Net for effective intracranial hemorrhage lesion segmentation and 
classification. As mentioned earlier, deep learning models like U-Net 
are computationally costly. In addition, Anupama et al. (2022) first 
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utilized the Gabor filtering technique for removing noise from the raw 
brain images. Further, a grab-cut with a synergistic deep-learning 
model was used for intracranial hemorrhage segmentation. Finally, a 
CNN model was applied to classify the subtypes of hemorrhage. In the 
numerical analysis section, the developed model has achieved higher 
classification results in terms of specificity, recall, and accuracy. Lee 
et al. (2020) presented an artificial neural network for effective lesion 
detection in intracranial hemorrhage. Simulation outcomes 
demonstrated that the developed model effectively reduced the 
diagnosis time with good diagnostic performance, but that it has high 
variance and bias when processing unbalanced databases.

Gautam and Raman (2021) have performed pre-processing 
operations such as normalization and contrast enhancement to improve 
the quality of the collected raw CT images. Then, the denoised brain 
images were fed to the 13-layer CNN model to classify the types of 
strokes. As mentioned earlier, the CNN model requires larger amounts 
of data to obtain superior results. Hssayeni et al. (2020) utilized a U-Net 
model to segment intracranial hemorrhage lesions from 3D CT images. 
As shown in the resulting segment, the U-Net model has higher 
segmentation performance using Jaccard and Dice coefficients with 
5-fold cross-validation. Ye et al. (2019) integrated 3D CNN and RNN for 
better detection of intracranial hemorrhage diseases. Hence, the 
presented model effectively classified five subtypes, such as subarachnoid, 
epidural, intraventricular, subdural, and cerebral parenchymal, in 3D CT 
images. However, the hybrid deep learning models were computationally 
complex and consumed more computational time to process the data 
(Wang et al., 2022, 2023). To overcome the above issues and improve 
intracranial hemorrhage detection, a new Bi-LSTM-based modified 
genetic algorithm has been introduced in this research study.

3. Methods

In this study, the proposed framework has five steps, such as 
Database Description: RSNA 2019 database, Region Segmentation: 
Otsu’s thresholding technique, Feature Extraction: GLTP descriptors 
and Tamura features, Feature Optimization: modified genetic 
algorithm, and Classification: Bi-LSTM network. The flow diagram 
of the proposed framework is shown in Figure 1.

3.1. Database description

The effectiveness of the developed Bi-LSTM-based modified 
genetic was tested on an online benchmark database. The undertaken 
database has 25,272 images with 870,301 brain slices, and the acquired 
images were then labeled by the annotators as five classes: subdural, 
intraparenchymal, subarachnoid, epidural, and intraventricular. In the 
acquired database, the annotators did not have details about the 
patient’s medical history, the acuity of their symptoms, prior 
examinations, OR the patient’s age. The brain images of the acquired 
database are shown in Figure 2.

3.2. Region segmentation

After the acquisition of the brain images, region segmentation 
was performed by employing Otsu’s thresholding, which helped 
determine the maximum separability of the classes such as subdural, 

intraparenchymal, subarachnoid, epidural, and intraventricular (Feng 
et al., 2017). In this technique, the selected pixel intensity value of the 
image is related to the average pixel intensity value to improve the 
segmentation results. First, the acquired 3D brain scans were 
portioned into two binary regions, i.e., dark T1 and light T0 regions, 
which were mathematically represented in Eqs 1, 2, with l  being 
represented as histogram bins.

 
T t0 0 1= …{ }, , ,.

 (1)

 
T t t l l1 1 1= + … −{ }, , , ,.

 (2)

In this scenario, the threshold value was set as t = 0 5. , where it 
effectively discriminated between the overlapping intracranial 
hemorrhage classes (Al-Rahlawee and Rahebi, 2021; Tan et al., 2021; 
Dutta et al., 2022). The optimal threshold value t = 0 5.  was found by 
minimizing the weight group variance based on the distinct group’s p i( ) 
probability, and it was mathematically represented in Eq. 3.
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In the 3D brain images, the variance σ σb ft and t2 2( ) ( ) , 
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The optimal threshold was found with lower class varianceσw
2 , 

and was mathematically represented in Eq. 6. After the segmentation 
of the intracranial hemorrhage regions, feature extraction was 
performed using GLTP descriptors and Tamura features.

 σ σ σw b b f fw t t w t t2 2 2= ( )× ( ) + ( )× ( ) (6)

3.3. Extraction of discriminative vectors

After region segmentation, the discriminative vectors were 
extracted by implementing the GLTP descriptor and Tamura features. 
In this manuscript, three Tamura features fTamura like directionality, 
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contrast, and coarseness were implemented for the extraction of 
discriminative vectors from the segmented regions. First, directionality 
generated the edge probability of the image histograms by quantizing 
the edge angles, with this procedure helping to sharpen the image 
edges. Second, contrast-enhanced the gray level in the segmented 
regions by distributing the pixel intensity value. Third, coarseness 
mainly relied on the texture scale and repetition rates in the brain 
images to find patterns with different structures. A total of 3,492 
vectors were extracted from the segmented region utilizing the 
Tamura features (Karmakar et al., 2017; Tao and Lu, 2018; Das et al., 
2019; Yu et al., 2020).

In addition to this, GLTP is a texture descriptor that encodes 
the local texture of the segmented images by quantizing the pixel 
intensity value into three discrimination levels and by estimating 
the gradient magnitude. The GLTP ensures the texture patterns 
even under conditions of illumination variations and random noise. 
First, the horizontal and vertical approximations (G Gi j, ) of the 
segmented images were obtained using the Sobel Feldman operator. 
Then, the gradient magnitude Gi j,  of each brain image was obtained 

by integrating Gi and Gj  – this was mathematically represented 
in Eq. 7.

 G G Gi j i j, = +2 2

 (7)

A threshold value t  was used around the Center Gradient Gc  
value of 3 3×  neighborhood image pixels to distinguish both smooth 
and highly textured regions fromGi j, , − this was mathematically 
specified in Eq. 8 (Holder and Tapamo, 2017; Fekri-Ershad, 2020).
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Where SGLTP is the quantized value of the neighborhood image 
pixels. The gradient values below G tc −  were quantized to −1, gradient 
values above G tc +  were quantized to 1 and then the gradient values 

FIGURE 1

Flow diagram of the proposed framework.

FIGURE 2

Recorded 3D brain images.
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falling between G tc +  andG tc −  were quantized to zero. The obtained 
three-level discrimination coding was high-dimensional, and further, 
SGLTP was categorized into –ve NGLTP and + ve PGLTP decimal codes, 
which were mathematically given in Eqs 9, 10.

 
N S S i j S v
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In the next step, the GLTP histogram values were computed from 
NGLTP and PGLTP for each brain image m n× , as mentioned in 
Eqs 11, 12.
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Where r c,( ) denote rows and columns in the GLTP-encoded 
images, M N,( ) specify the width and height of the images, and 
α τ=  represents the GLTP code, which ranges between zero and 
255. Finally, HNGLTP

 and HPGLTP  values were integrated to generate the 
final vectors FGLTP . A total of 1,926 vectors were extracted using 
the GLTP texture descriptor. By using the feature level fusion 
technique, the extracted vectors of the GLTP descriptor and Tamura 
features were integrated, and further dimensionality reduction was 
carried out by employing a modified genetic algorithm.

3.4. Vector optimization

After extracting 5,418 discriminative vectors, optimization was 
carried out by implementing a modified genetic algorithm. In the 
existing research studies, a conventional genetic algorithm was used 
to determine the relevant vectors for disease classification. In recent 
decades, many variations of genetic operations have been used to 
further improve optimization performance. An extensively utilized 
method in the traditional genetic algorithm is entropy, which 
measures the database homogeneities to identify the mutual 
information among the extracted vectors, which helps in determining 
the active vectors.

However, a modified genetic algorithm uses a simple entropy 
function to find the active vectors. In the proposed algorithm, the 
conditional entropy value was determined for both the output vectors 
and the regularized vectors based on an infinite feature selection 

technique. The implemented algorithm aims at identifying the 
maximum relevance between the output vectors and the regularized 
vectors, which reduces the redundancy within the regularized vectors. 
In a modified genetic algorithm, the initial population is equal to the 
subset of the regularized vectors that are assumed to be the active 
vectors of the pre-defined outputs. In addition, the fitness function is 
determined based on the entropy measure by improving the mutual 
state of the conditional entropy function between the output and the 
regularized vectors, as mentioned in Eq. 13.

 
Fitness

T l
l

f c

c
= ×( ) + ×

−







α γ β

| | | |
| |  

(13)

The modified genetic algorithm stops when it reaches the 
maximum number of generations, which is 100. γ  indicates the 
classification accuracy,α 0 1,[ ], β α= −1 , Tf  indicate the extracted 
vectors, and lc represents the chromosome length. In addition, the 
crossover operations improved the diversity of genetics to identify the 
active regularized vectors (Mirjalili, 2019; Mirjalili et al., 2020; Katoch 
et al., 2021). The flow diagram of the modified genetic algorithm is 
specified in Figure 3.

In a modified genetic algorithm, the selection operations 
performed for identifying the active vectors are performed by 
reducing the redundancy based on the fitness function. The assumed 
parameters of the modified genetic algorithm are: mutation function 
is 0.1, population type is bit string, generation is 100, fitness function 
is entropy, elite count is 2, crossover function is 0.80, and population 
size is equal to the extracted vector length. From the extracted 5,418 

FIGURE 3

Flow diagram of the modified genetic algorithm.
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FIGURE 5

The architecture of the Bi-LSTM network.

vectors, a total of 2,932 vectors were selected for classification. The 
fitness comparison between the genetic algorithm and the modified 
genetic algorithm is shown in Figure 4.

3.5. Classification using the bi-LSTM 
network

In the final phase, the 2,932 selected vectors were fed to the 
Bi-LSTM network to categorize the subtypes of intracranial 
hemorrhage: subdural, intraparenchymal, subarachnoid, epidural, and 
intraventricular. The LSTM is an updated version of the RNN, and it 
uses memory cells to control three gates: input, output, and forget gates. 
This helps store the temporal state. In a conventional LSTM network, 
the input and output gates are utilized to handle the input and output 
flows of the memory cells. Further, the forget gate is connected to the 
memory cells to transmit the output information from the current 
neuron to the subsequent neurons. The information is stored in the 

memory cells, while the input has higher activation. Additionally, the 
information is transferred to the next neuron while the output has 
higher activation. The LSTM gates input it , forget ft, cell ct, and output 
gate ot  are mathematically represented in Equations (14–17). The 
architecture of the Bi-LSTM network is shown in Figure 5 (Alhussein 
et al., 2020; Shahid et al., 2020).

 i W h W a bt ih t ia t i= + +( )−σ 1  (14)

 f W h W a bt fh t fa t f= + +( )−σ 1  (15)

 c f c i W h W a bt t t t ch t ca t c= + + +( )− − 1 1tanh  (16)

 o W h W a bt oh t oa t= + +( )−σ 1 0  (17)

FIGURE 4

Fitness comparison between the genetic algorithm and the modified genetic algorithm.
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Where,  denotes pointwise multiplication, W  and b  are work 
coefficient values, a A tt

F= [ ]∈,.   denote quasi-periodic vectors, ht−1 
is the output of the previous LSTM unit, tanh .( ) denotes a hyperbolic 
tangent function, and σ .( ) indicates a sigmoid function. The output 
of the LSTM ht is mathematically expressed in Eq. 18.

 h o ct t t= ( ) tanh  (18)

The element ht  contains information about the previous time 
steps of an output gate and a cell state. The cell state c t Tt | ,={ }1 2,..  
learns memory information of a A tt

F= [ ]∈,.   for a longer and 
shorter period based on dependency relations. In this work, the 
Bi-LSTM was implemented to address the concerns of the 
conventional LSTM, where it perfectly works on the previous 
content, but failed to use future content. In the Bi-LSTM network, 
the input flows in both forward and backward directions that helps 
in preserving the future and past information. The parameters 
considered in the Bi-LSTM network are as follows: maximum 
epochs are 100, execution environment is graphics processing units, 
gradient threshold is one, learning rate is 0.001, and batch size is 27. 
Hence, the extensive experimental investigation of the Bi-LSTM-
based modified genetic algorithm is presented in the next section.

4. Simulation results

In this study, the Bi-LSTM-based modified genetic algorithm was 
analyzed in the Matlab 2020 software environment on a computer 
with 128 GB of RAM, with a Quadro K1200 CUDA device, a 4 TB 
hard disk, a 3.70GHz Intel ® Xenon ® central processing unit (E5-1630 
v4), and a Windows 10 (64-bit) operating system. The effectiveness of 
the Bi-LSTM-based modified genetic algorithm was validated in terms 
of the Dice coefficient, Jaccard coefficient, MCC, accuracy, specificity, 
F1 score, and sensitivity. In this application, the Dice coefficient was 
used to compare the pixel-wise agreement between ground truth and 
a segmented region. Then, the Jaccard coefficient ranged from zero to 
one, where one shows perfect region overlap and zero indicates no 
overlap. The mathematical formulas of the Dice and Jaccard 
coefficients are depicted in Eqs 19, 20.

 
Dice coefficient TP

TP FP FN
 =

+ +
×

2

2
100

 
(19)

 
Jaccard coefficient TP

TP FP FN
 =

+ +
×100

 
(20)

In addition to this, evaluation metrics such as MCC, accuracy, 
specificity, F1 Score, and sensitivity were utilized to analyze the 
classification performance of the Bi-LSTM-based modified genetic 
algorithm, where FN, TN, FP, and TP denote false negative, true 
negative, false positive, and true positive values. The mathematical 
representation of the MCC, accuracy, specificity, F1 Score, and 
sensitivity is specified in Eqs 21–25.

 
MCC TP TN FP FN

TP FP TP FN TN FP TN FN
=

× − ×

+( ) +( ) +( ) +( )
×100

 
(21)

 
Accuracy TP TN

TP TN FP FN
=

+
+ + +

×100

 
(22)

 
Specificity TN

TN FP
=

+
×100

 
(23)

 
F score TP

FP TP FN
1

2

2
100− =

+ +
×

 
(24)

 
Sensitivity TP

TP FN
=

+
×100

 
(25)

Where TP indicates that the intracranial hemorrhage regions are 
accurately classified as the intracranial hemorrhage regions, TN 
indicates that the healthy regions are accurately classified as the 
healthy regions, FP indicates that the intracranial hemorrhage regions 
are classified as the healthy regions, and finally, FN denotes that the 
healthy regions are classified as the intracranial hemorrhage regions.

4.1. Quantitative investigation

The segmentation outcomes of the proposed framework are 
specified in Table  1. The adopted segmentation model;Otsu’s 
thresholding effectiveness was compared with three existing models: 
FCM, K-means, and kernel-based FCM. According to Table 1, Otsu’s 
thresholding model obtained 88.42% of the Dice coefficient and 
82.03% of the Jaccard coefficient, where the obtained results were the 
maximum with respect to the existing models. Otsu’s thresholding 
considers the maximum inter-class variance between the target images 
and the background region based on the threshold selection rule. The 
graphical representation of the segmentation results is shown in 
Figure 6.

The classification results of the proposed model are specified in 
Tables 2, 3. Particularly, the classification results of different classifiers 
with and without feature optimization techniques are given in Table 2. 
As specified there, the experimental results of different classifiers: 
Naïve Bayes, Random Forest, SVM, RNN, LSTM, and Bi-LSTM are 
given with and without utilizing a feature optimization technique 
called the modified genetic algorithm. After feature extraction, the 
direct feeding of vectors to the Bi-LSTM model obtained 98.76% of 
the F1 score, 97.72% of the MCC, 98.21% of sensitivity, 97.69% of 
classification accuracy, and 97.77% of specificity, which are all higher 
compared to other classifiers.

TABLE 1 Segmentation results of the proposed model.

Segmentation 
models

Dice coefficient 
(%)

Jaccard 
coefficient (%)

K-means clustering 70.84 70.02

FCM 72.03 74.44

Kernel-based FCM 78.92 70.82

Otsu’s thresholding 88.42 82.03

The bold values represent the proposed model results.
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TABLE 2 Classification results by varying the classifiers.

Classifiers F1 Score (%) MCC (%) Sensitivity (%) Accuracy (%) Specificity (%)

Without feature optimization

Naïve Bayes 90.32 89.98 90.90 92.20 90.92

Random Forest 92.84 92.03 93.50 94.92 92.06

SVM 94.02 94.34 94.44 95.50 94.38

RNN 95.59 95.58 96.61 96.38 95.40

LSTM 97.60 96.07 97.90 96.95 96.55

Bi-LSTM 98.76 97.72 98.21 97.69 97.77

With modified genetic algorithm

Naïve Bayes 92.30 93.29 94.30 95.40 96.84

Random Forest 94.98 96.97 96.34 96.58 96.90

SVM 97.84 97.93 97.82 97.06 97.86

RNN 98.90 98.75 98.87 98.64 98.64

LSTM 99.12 99.04 99.14 99.33 98.96

Bi-LSTM 99.30 99.12 99.40 99.80 99.48

The bold values represent the proposed model results.

In addition, feeding optimal vectors selected by the modified 
genetic algorithm to the Bi-LSTM model achieved 99.30% of the F1 
score, 99.12% of the MCC, 99.40% of sensitivity, 99.80% of accuracy, 
and 99.48% of specificity. The obtained experimental results are 
higher compared to the existing machine learning classifiers: Naïve 
Bayes, Random Forest, SVM, RNN, and LSTM network in 
intracranial hemorrhage detection. The graphical representation of 
the classification results by varying the classifiers is shown in Figure 7. 
In Bi-LSTM, the input flowed in two directions, which preserved the 
past and future feature information, helping to achieve better 
classification results.

Additionally, the classification results obtained by varying the 
optimizers are represented in Table  3. In this scenario, the 
Bi-LSTM network is evaluated with different optimizers such as 
Particle Swarm Optimizer (PSO), Artificial Bee Colony (ABC), 
Firefly Optimizer, Genetic Algorithm, Grasshopper Optimization 
Algorithm (GOA), and Modified Genetic Algorithm. By looking 

at Table  3, the Bi-LSTM network with a modified genetic 
algorithm has obtained higher outcomes: 99.30% of the F1 Score, 
99.12% of the MCC, 99.40% of sensitivity, 99.80% of accuracy, and 
99.48% of specificity. In this research, the modified genetic 
algorithm effectively selected optimal vectors from the total 
extracted vectors, which reduced the computational complexity to 
linear based on the input size and order of magnitude. On the 
other hand, the computational time was 54.28 s, which is lower 
compared to the existing models. A graphical representation of 
the classification results by varying the optimizers is shown in 
Figure 8.

The experimental outcomes of the Bi-LSTM-based modified 
genetic algorithm for different cross-fold validations are indicated 
in Table  4. As shown there, the developed Bi-LSTM-based 
modified genetic algorithm was tested by different k-fold cross-
validations, such as 3-fold, 5-fold, 8-fold, and 10-fold. According 
to Table  4, the Bi-LSTM-based modified genetic algorithm 

FIGURE 6

Representation of the segmentation results.
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achieved better classification results 5-fold with respect to other 
cross-fold validations. In this research, the cross-fold validations 
improved the computational time and decreased the variance and 

bias of the Bi-LSTM-based modified genetic algorithm. The 
graphical representation of the Bi-LSTM-based modified genetic 
algorithm for different cross-fold validations is shown in Figure 9.

TABLE 3 Classification results by varying the optimizers.

Bi-LSTM network

Optimizers F1 Score (%) MCC (%) Sensitivity (%) Accuracy (%) Specificity (%)

ABC 93.20 90.34 93.80 94.15 93.26

PSO 94.16 93.60 94.98 95.06 94.20

Firefly 95.26 94.74 95.70 95.98 95.43

GOA 96.55 95.44 96.44 96.95 96.58

Genetic algorithm 97.98 97.80 96.66 98.64 98.66

Modified genetic algorithm 99.30 99.12 99.40 99.80 99.48

The bold values represent the proposed model results.

FIGURE 7

Classification results by varying the classifiers.

FIGURE 8

Classification results by varying the optimizers.
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4.2. Comparative investigation

The numerical investigation between existing algorithms and the 
proposed Bi-LSTM based modified genetic algorithm is indicated in 
Table  5. Burduja et  al. (2020) integrated both ResNeXt-101 and 
Bi-LSTM for intracranial hemorrhage detection in 3D-CT brain 

images. In the resulting phase, the developed deep learning model 
obtained 72.86% sensitivity, 97.83% accuracy, and 99% specificity. 
Wang et al. (2021) implemented a 2D CNN model for better detection 
of intracranial hemorrhage diseases. The extensive experiments 
confirmed that the implemented model had 95.84% sensitivity, 95% 
accuracy, and 94.85% specificity. Anupama et al. (2022) introduced a 

TABLE 4 Experimental outcomes of the Bi-LSTM-based modified genetic algorithm for different cross-fold validations.

K-fold cross-validations

Evaluation metrics 3-fold 5-fold 8-fold 10-fold

F1 Score (%)
Modified genetic algorithm 98.76 99.30 96.60 95.68

Without modified genetic algorithm 98.58 99.10 97.21 94.32

MCC (%)
Modified genetic algorithm 98.36 99.12 97.84 96.05

Without modified genetic algorithm 97.22 98.64 97.43 95.40

Sensitivity (%)
Modified genetic algorithm 98.50 99.40 98.44 97.20

Without modified genetic algorithm 98.82 99.21 97.76 96.56

Accuracy (%)
Modified genetic algorithm 98.36 99.80 98.86 97.12

Without modified genetic algorithm 98.33 99.35 98.65 97

Specificity (%)
Modified genetic algorithm 98.03 99.48 99.14 98.80

Without modified genetic algorithm 97.30 99 97.60 97.54

The bold values represent the proposed model results.

FIGURE 9

Graphical representation of the Bi-LSTM-based modified genetic algorithm for different cross-fold validations.

TABLE 5 Numerical investigation between the existing and the proposed Bi-LSTM-based modified genetic algorithm.

Models Sensitivity (%) Accuracy (%) Specificity (%)

ResNeXt-101 with Bi-LSTM (Burduja et al., 2020) 72.86 97.83 99

2D CNN (Wang et al., 2021) 95.84 95 94.85

Synergistic deep learning model (Anupama et al., 2022) 94.01 95.73 97.78

OGRU-CSA (Sengupta and Alzbutas, 2022) 99.25 99.36 99.40

Parallel deep convolutional model with boosting mechanism (Asif et al., 2023) 96.50 97.70 –

Bi-LSTM-based modified genetic algorithm 99.40 99.80 99.48
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synergistic deep-learning model that achieved 95.73% accuracy, 
97.78% specificity, and 94.01% sensitivity. Sengupta and Alzbutas 
(2022) combined the Optimized Gated Recurrent Unit (OGRU) with 
the Cuckoo Search Algorithm (CSA) for the effective detection of 
intracranial hemorrhage in the 3D-CT brain images. The simulation 
outcomes demonstrated that the ORGU-CSO model obtained 99.25% 
sensitivity, 99.36% accuracy, and 99.40% specificity. Asif et al. (2023) 
initially used the ResNet101-V2 model to extract potential vectors 
from the slices. Then, the Inception-V4 model was used to capture the 
spatial information from the second path. Finally, the outputs of the 
ResNet101-V2 and Inception-V4 models were fed to the light gradient 
boosting machine for intracranial hemorrhage detection, and the 
presented model achieved 96.50% sensitivity and 97.70% accuracy on 
the RSNA 2019 database. Regarding the comparative works, the 
Bi-LSTM-based modified genetic algorithm achieved high 
classification results in intracranial hemorrhage detection with 99.40% 
sensitivity, 99.80% accuracy, and 99.48% specificity.

4.3. Discussion

As mentioned earlier, feature optimization and classification are 
integral parts of this manuscript. The proposed modified genetic 
algorithm used a simple entropy function to find the active vectors 
from the total extracted vectors. The conditional entropy value was 
calculated for the output vectors and the regularized vectors in the 
modified genetic algorithm based on an infinite feature selection 
technique. The modified genetic algorithm found the maximum 
relevance between the output vectors and the regularized vectors, 
which reduced the redundancy of the regularized vectors and the 
computation time. The computation time of the proposed model was 
54.28 s, which is limited compared to the existing models. The selected 
vectors were fed to the Bi-LSTM model for disease-type classification. 
The effectiveness of the proposed framework is depicted in Tables 1–5.

5. Conclusion

In this study, the Bi-LSTM-based modified genetic algorithm was 
implemented for the early diagnosis of intracranial hemorrhage. 
After the acquisition of brain samples, the intracranial hemorrhage 
segmentation was carried out using Otsu’s thresholding technique, 
and further, the feature extraction was performed by combining the 
GLTP texture descriptor and Tamura features. The semantic gap 
between the extracted feature subset was reduced by integrating the 
global and local vectors, which improved the classification 
performance. Additionally, the higher-dimensional extracted vectors 
were reduced by proposing a modified genetic algorithm. Hence, the 

selection of optimal vectors or dimensionality-reduced vectors was 
fed to the Bi-LSTM network to classify intracranial hemorrhage 
sub-types (subdural, intraparenchymal, subarachnoid, epidural, and 
intraventricular). The extensive experiment showed that the proposed 
Bi-LSTM-based modified genetic algorithm achieved 99.40% 
sensitivity, 99.80% accuracy, and 99.48% specificity, with the achieved 
simulation results being higher than the comparative models, 
synergistic deep learning, CNN, ResNeXt-101, and ResNeXt-101 with 
a Bi-LSTM network. On the other hand, the Bi-LSTM-based 
modified genetic algorithm displayed a low computational time of 
54.28 s, and the selection of discriminative vectors reduced the system 
complexity to linear. As a future extension, a deep learning model 
with an effective metaheuristic-based optimization algorithm can 
be developed to recognize subarachnoid hemorrhages, which could 
be tested in real-time on larger databases.

Data availability statement

Publicly available datasets were analyzed in this study. This 
data can be  found at: https://www.kaggle.com/c/
rsna-intracranial-hemorrhage-detection.

Author contributions

JS: visualization, conceptualization, formal analysis, and 
resources. RA: methodology, project administration, supervision, 
resources, investigation, and manuscript - review and editing. PF-G 
and BF-G: data curation, validation, and manuscript – original draft. 
All authors contributed to the article and approved the 
submitted version.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

References
Alhussein, M., Aurangzeb, K., and Haider, S. I. (2020). Hybrid CNN-LSTM model for 

short-term individual household load forecasting. IEEE Access 8, 180544–180557. doi: 
10.1109/ACCESS.2020.3028281

Alis, D., Alis, C., Yergin, M., Topel, C., Asmakutlu, O., Bagcilar, O., et al. (2022). A 
joint convolutional-recurrent neural network with an attention mechanism for detecting 
intracranial hemorrhage on noncontrast head CT. Sci. Rep. 12:2084. doi: 10.1038/
s41598-022-05872-x

Al-Rahlawee, A. T. H., and Rahebi, J. (2021). Multilevel thresholding of images with 
improved Otsu thresholding by black widow optimization algorithm. Multimed. Tools 
Appl. 80, 28217–28243. doi: 10.1007/s11042-021-10860-w

Anupama, C. S. S., Sivaram, M., Lydia, E. L., Gupta, D., and Shankar, K. (2022). 
Synergic deep learning model–based automated detection and classification of brain 
intracranial hemorrhage images in wearable networks. Pers. Ubiquit. Comput. 26, 1–10. 
doi: 10.1007/s00779-020-01492-2

https://doi.org/10.3389/fnins.2023.1200630
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.kaggle.com/c/rsna-intracranial-hemorrhage-detection
https://www.kaggle.com/c/rsna-intracranial-hemorrhage-detection
https://doi.org/10.1109/ACCESS.2020.3028281
https://doi.org/10.1038/s41598-022-05872-x
https://doi.org/10.1038/s41598-022-05872-x
https://doi.org/10.1007/s11042-021-10860-w
https://doi.org/10.1007/s00779-020-01492-2


Sengupta et al. 10.3389/fnins.2023.1200630

Frontiers in Neuroscience 12 frontiersin.org

Asif, M., Shah, M. A., Khattak, H. A., Mussadiq, S., Ahmed, E., Nasr, E. A., et al. 
(2023). Intracranial hemorrhage detection using parallel deep convolutional models and 
boosting mechanism. Diagnostics 13:652. doi: 10.3390/diagnostics13040652

Burduja, M., Ionescu, R. T., and Verga, N. (2020). Accurate and efficient intracranial 
hemorrhage detection and subtype classification in 3D CT scans with convolutional and 
long short-term memory neural networks. Sensors 20:5611. doi: 10.3390/s20195611

Cheruiyot, I., Sehmi, P., Ominde, B., Bundi, P., Mislani, M., Ngure, B., et al. (2021). 
Intracranial hemorrhage in coronavirus disease 2019 (COVID-19) patients. Neurol. Sci. 
42, 25–33. doi: 10.1007/s10072-020-04870-z

Das, D., Mahanta, L. B., Ahmed, S., Baishya, B. K., and Haque, I. (2019). Automated 
classification of childhood brain tumours based on texture feature. Songklanakarin J. Sci. 
Technol. 41, 1014–1020. doi: 10.14456/sjst-psu.2019.128

Duperron, M.-G., Tzourio, C., Schilling, S., Zhu, Y.-C., Soumaré, A., Mazoyer, B., et al. 
(2019). High dilated perivascular space burden: a new MRI marker for risk of 
intracerebral hemorrhage. Neurobiol. Aging 84, 158–165. doi: 10.1016/j.
neurobiolaging.2019.08.031

Dutta, K., Talukdar, D., and Bora, S. S. (2022). Segmentation of unhealthy leaves in 
cruciferous crops for early disease detection using vegetative indices and Otsu 
thresholding of aerial images. Measurement 189:110478. doi: 10.1016/j.
measurement.2021.110478

Fekri-Ershad, S. (2020). Bark texture classification using improved local ternary 
patterns and multilayer neural network. Expert Syst. Appl. 158:113509. doi: 10.1016/j.
eswa.2020.113509

Feng, Y., Zhao, H., Li, X., Zhang, X., and Li, H. (2017). A multi-scale 3D Otsu 
thresholding algorithm for medical image segmentation. Digit. Signal Process. 60, 
186–199. doi: 10.1016/j.dsp.2016.08.003

Gautam, A., and Raman, B. (2021). Towards effective classification of brain 
hemorrhagic and ischemic stroke using CNN. Biomed. Signal Process. Control 63:102178. 
doi: 10.1016/j.bspc.2020.102178

Holder, R. P., and Tapamo, J. R. (2017). Improved gradient local ternary patterns for 
facial expression recognition. EURASIP J. Image Video Process. 2017:42. doi: 10.1186/
s13640-017-0190-5

Hssayeni, M. D., Croock, M. S., Salman, A. D., Al-khafaji, H. F., Yahya, Z. A., and 
Ghoraani, B. (2020). Intracranial hemorrhage segmentation using a deep convolutional 
model. Data 5:14. doi: 10.3390/data5010014

Huang, J. L., Woehrle, T. A., Conway, P., McCarty, C. A., Eyer, M. M., and Eyer, S. D. 
(2019). Evaluation of a protocol for early detection of delayed brain hemorrhage in head 
injured patients on warfarin. Eur. J. Trauma Emerg. Surg. 45, 481–487. doi: 10.1007/
s00068-018-0924-9

Imran, R., Hassan, N., Tariq, R., Amjad, L., and Wali, A. (2021). Intracranial brain 
Haemorrhage segmentation and classification. IKSP J. Comput. Sci. Eng. 1, 52–56.

Karki, M., Cho, J., Lee, E., Hahm, M.-H., Yoon, S.-Y., Kim, M., et al. (2020). CT 
window trainable neural network for improving intracranial hemorrhage detection by 
combining multiple settings. Artif. Intell. Med. 106:101850. doi: 10.1016/j.
artmed.2020.101850

Karmakar, P., Teng, S. W., Zhang, D., Liu, Y., and Lu, G. (2017). “Improved Tamura 
features for image classification using kernel based descriptors” in In 2017 international 
conference on digital image computing: Techniques and applications (DICTA) (USA: 
IEEE), 1–7.

Katoch, S., Chauhan, S. S., and Kumar, V. (2021). A review on genetic algorithm: past, 
present, and future. Multimed. Tools Appl. 80, 8091–8126. doi: 10.1007/
s11042-020-10139-6

Kumar, I., Bhatt, C., and Singh, K. U. (2022). Entropy based automatic unsupervised 
brain intracranial hemorrhage segmentation using CT images. J. King Saud Univ. 
Comput. Inform. Sci. 34, 2589–2600. doi: 10.1016/j.jksuci.2020.01.003

Kuo, W., Hӓne, C., Mukherjee, P., Malik, J., and Yuh, E. L. (2019). Expert-level 
detection of acute intracranial hemorrhage on head computed tomography using deep 
learning. Proc. Natl. Acad. Sci. 116, 22737–22745. doi: 10.1073/pnas.1908021116

Lee, J. Y., Kim, J. S., Kim, T. Y., and Kim, Y. S. (2020). Detection and classification of 
intracranial haemorrhage on CT images using a novel deep-learning algorithm. Sci. Rep. 
10:20546. doi: 10.1038/s41598-020-77441-z

Lee, H., Yune, S., Mansouri, M., Kim, M., Tajmir, S. H., Guerrier, C. E., et al. (2019). 
An explainable deep-learning algorithm for the detection of acute intracranial 
haemorrhage from small datasets. Nat. Biomed. Eng. 3, 173–182. doi: 10.1038/
s41551-018-0324-9

Li, L., Wei, M., Liu, B., Atchaneeyasakul, K., Zhou, F., Pan, Z., et al. (2021). Deep 
learning for hemorrhagic lesion detection and segmentation on brain CT images. IEEE 
J. Biomed. Health Inform. 25, 1646–1659. doi: 10.1109/JBHI.2020.3028243

Mansour, R. F., and Aljehane, N. O. (2021). An optimal segmentation with deep 
learning based inception network model for intracranial hemorrhage diagnosis. Neural 
Comput. & Applic. 33, 13831–13843. doi: 10.1007/s00521-021-06020-8

Mirjalili, S. (2019). “Genetic algorithm” in Studies in computational intelligence 780, 
evolutionary algorithms and neural networks. ed. S. Mirjalili (Cham: Springer), 43–55.

Mirjalili, S., Dong, J. S., Sadiq, A. S., and Faris, H. (2020). “Genetic algorithm: theory, 
literature review, and application in image reconstruction” in Nature-inspired optimizers: 
Theories, literature reviews and applications. eds. S. Mirjalili, J. Song Dong and A. Lewis 
(Cham: Springer), 69–85.

Morotti, A., Dowlatshahi, D., Boulouis, G., Al-Ajlan, F., Demchuk, A. M., Aviv, R. I., 
et al. (2018). Predicting intracerebral hemorrhage expansion with noncontrast computed 
tomography: the BAT score. Stroke 49:e297. doi: 10.1161/STROKEAHA.118.022010

Patel, A., van de Leemput, S. C., Prokop, M., Ginneken, B. V., and Manniesing, R. 
(2019). Image level training and prediction: intracranial hemorrhage identification in 
3D non-contrast CT. IEEE Access 7, 92355–92364. doi: 10.1109/ACCESS.2019.2927792

Raghavendra, U., Pham, T.-H., Gudigar, A., Vidhya, V., Rao, B. N., Sabut, S., et al. 
(2021). Novel and accurate non-linear index for the automated detection of 
haemorrhagic brain stroke using CT images. Complex Intell. Systems 7, 929–940. doi: 
10.1007/s40747-020-00257-x

Remedios, S. W., Roy, S., Bermudez, C., Patel, M. B., Butman, J. A., Landman, B. A., 
et al. (2020). Distributed deep learning across multisite datasets for generalized CT 
hemorrhage segmentation. Med. Phys. 47, 89–98. doi: 10.1002/mp.13880

Sage, A., and Badura, P. (2020). Intracranial hemorrhage detection in head CT using 
double-branch convolutional neural network, support vector machine, and random 
Forest. Appl. Sci. 10:7577. doi: 10.3390/app10217577

Sengupta, J., and Alzbutas, R. (2022). Intracranial hemorrhages segmentation and 
features selection applying cuckoo search algorithm with gated recurrent unit. Appl. Sci. 
12:10851. doi: 10.3390/app122110851

Shahid, F., Zameer, A., and Muneeb, M. (2020). Predictions for COVID-19 with deep 
learning models of LSTM, GRU and bi-LSTM. Chaos Solit. Fractals 140:110212. doi: 
10.1016/j.chaos.2020.110212

Tan, Z. Y., Basah, S. N., Yazid, H., and Safar, M. J. A. (2021). Performance analysis of 
Otsu thresholding for sign language segmentation. Multimed. Tools Appl. 80, 
21499–21520. doi: 10.1007/s11042-021-10688-4

Tao, H., and Lu, X. (2018). Smoky vehicle detection based on multi-scale block 
Tamura features. SIViP 12, 1061–1068. doi: 10.1007/s11760-018-1254-4

Vrbančič, G., Zorman, M., and Podgorelec, V. (2019). “Transfer learning tuning 
utilizing Grey wolf optimizer for identification of brain hemorrhage from head CT 
images” in StuCoSReC 2019: Proceedings of the 6th student computer science research 
conference. eds. J. R. I. Fister, A. Brodnik, M. Krnc and I. Fister (Koper, Slovenia: 
University of Primorska Press), 61–66.

Wang, S., Fan, Y., Jin, S., Takyi-Aninakwa, P., and Fernandez, C. (2023). Improved 
anti-noise adaptive long short-term memory neural network modeling for the robust 
remaining useful life prediction of lithium-ion batteries. Reliab. Eng. Syst. Saf. 
230:108920. doi: 10.1016/j.ress.2022.108920

Wang, J. L., Farooq, H., Zhuang, H., and Ibrahim, A. K. (2020). Segmentation of 
intracranial hemorrhage using semi-supervised multi-task attention-based U-net. Appl. 
Sci. 10:3297. doi: 10.3390/app10093297

Wang, X., Shen, T., Yang, S., Lan, J., Xu, Y., Wang, M., et al. (2021). A deep learning 
algorithm for automatic detection and classification of acute intracranial hemorrhages 
in head CT scans. NeuroImage 32:102785. doi: 10.1016/j.nicl.2021.102785

Wang, S., Takyi-Aninakwa, P., Jin, S., Yu, C., Fernandez, C., and Stroe, D. I. (2022). An 
improved feedforward-long short-term memory modeling method for the whole-life-
cycle state of charge prediction of lithium-ion batteries considering current-voltage-
temperature variation. Energy 254:124224. doi: 10.1016/j.energy.2022.124224

Ye, H., Gao, F., Yin, Y., Guo, D., Zhao, P., Lu, Y., et al. (2019). Precise diagnosis of 
intracranial hemorrhage and subtypes using a three-dimensional joint convolutional 
and recurrent neural network. Eur. Radiol. 29, 6191–6201. doi: 10.1007/
s00330-019-06163-2

Yu, Y., Cao, H., Yan, X., Wang, T., and Ge, S. S. (2020). Defect identification of wind 
turbine blades based on defect semantic features with transfer feature extractor. 
Neurocomputing 376, 1–9. doi: 10.1016/j.neucom.2019.09.071

https://doi.org/10.3389/fnins.2023.1200630
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://doi.org/10.3390/diagnostics13040652
https://doi.org/10.3390/s20195611
https://doi.org/10.1007/s10072-020-04870-z
https://doi.org/10.14456/sjst-psu.2019.128
https://doi.org/10.1016/j.neurobiolaging.2019.08.031
https://doi.org/10.1016/j.neurobiolaging.2019.08.031
https://doi.org/10.1016/j.measurement.2021.110478
https://doi.org/10.1016/j.measurement.2021.110478
https://doi.org/10.1016/j.eswa.2020.113509
https://doi.org/10.1016/j.eswa.2020.113509
https://doi.org/10.1016/j.dsp.2016.08.003
https://doi.org/10.1016/j.bspc.2020.102178
https://doi.org/10.1186/s13640-017-0190-5
https://doi.org/10.1186/s13640-017-0190-5
https://doi.org/10.3390/data5010014
https://doi.org/10.1007/s00068-018-0924-9
https://doi.org/10.1007/s00068-018-0924-9
https://doi.org/10.1016/j.artmed.2020.101850
https://doi.org/10.1016/j.artmed.2020.101850
https://doi.org/10.1007/s11042-020-10139-6
https://doi.org/10.1007/s11042-020-10139-6
https://doi.org/10.1016/j.jksuci.2020.01.003
https://doi.org/10.1073/pnas.1908021116
https://doi.org/10.1038/s41598-020-77441-z
https://doi.org/10.1038/s41551-018-0324-9
https://doi.org/10.1038/s41551-018-0324-9
https://doi.org/10.1109/JBHI.2020.3028243
https://doi.org/10.1007/s00521-021-06020-8
https://doi.org/10.1161/STROKEAHA.118.022010
https://doi.org/10.1109/ACCESS.2019.2927792
https://doi.org/10.1007/s40747-020-00257-x
https://doi.org/10.1002/mp.13880
https://doi.org/10.3390/app10217577
https://doi.org/10.3390/app122110851
https://doi.org/10.1016/j.chaos.2020.110212
https://doi.org/10.1007/s11042-021-10688-4
https://doi.org/10.1007/s11760-018-1254-4
https://doi.org/10.1016/j.ress.2022.108920
https://doi.org/10.3390/app10093297
https://doi.org/10.1016/j.nicl.2021.102785
https://doi.org/10.1016/j.energy.2022.124224
https://doi.org/10.1007/s00330-019-06163-2
https://doi.org/10.1007/s00330-019-06163-2
https://doi.org/10.1016/j.neucom.2019.09.071


Sengupta et al. 10.3389/fnins.2023.1200630

Frontiers in Neuroscience 13 frontiersin.org

Appendix

Parameters Definition

T1 Dark regions

T0 Light regions

l Histogram bins

p i( ) Probability of distinct group

t Threshold value

r c,( ) Rows and columns in the acquired 3D brain images

σ σb ft and t2 2( ) ( )
Variance of light and dark regions in the 3D brain images

µ µb ft and t( ) ( )
Mean of light and dark regions in the 3D brain images

w t and w tb f( ) ( )
Weight of the light and dark regions in the 3D brain images

σw2
Lower class variance

fTamura Tamura features

(G Gi j, )
Horizontal and vertical approximations

Gi j,
Gradient magnitude

SGLTP Quantized value of the neighborhood image pixels

Gc Center gradient

M N,( ) Width and height of the images

γ Classification accuracy

Tf
Extracted vectors

lc Chromosome length

it Input gate

ft Forget gate

ot Output gate

ct Cell state

FN, TN, FP, and TP False negative, true negative, false positive, and true positive



Pointwise multiplication

b Bias value

a A tt F= [ ]∈,. 
Quasi-periodic vectors

ht−1 Output of the previous LSTM unit

tanh .( ) Hyperbolic tangent function

σ .( ) Sigmoid function
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