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Repairing injuries to the nervous system has always been a prominent topic 
in clinical research. Direct suturing and nerve displacement surgery are the 
primary treatment options, but they may not be suitable for long nerve injuries 
and may require sacrificing the functionality of other autologous nerves. With 
the emergence of tissue engineering, hydrogel materials have been identified as 
a promising technology with clinical translation potential for repairing nervous 
system injuries due to their excellent biocompatibility and ability to release or 
deliver functional ions. By controlling their composition and structure, hydrogels 
can be  Functionalized and almost fully matched with nerve tissue and even 
simulate nerve conduction function and mechanical properties. Thus, they are 
suitable for repairing injuries to both the central and peripheral nervous systems. 
This article provides a review of recent research progress in functionalized 
hydrogels for nerve injury repair, highlighting the design differences among 
various materials and future research directions. We  strongly believe that the 
development of functionalized hydrogels has great potential for improving the 
clinical treatment of nerve injuries.
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Introduction

The nervous system is a crucial component of living organisms, composed of the brain, 
spinal cord, and peripheral nervous tissue, and consists of abundant neurons and supportive 
glial cells that form neural circuits, regulating life activities and transmitting physiological 
information (Brodal, 2004; Sanes et al., 2011). In general, nerve damage or injury may result in 
the death of endogenous nerve cells at the lesion site, making spontaneous regeneration 
challenging and leading to abnormal or deteriorating organ functions, and even patient death. 
For instance, spinal cord fractures or dislocations due to accidents such as trauma, traffic 
accidents, falls, or sports injuries can cause nerve damage, leading to gradual deterioration of 
organ functions and consciousness below the injury site, and even paralysis in severe cases. 
Moreover, the high morbidity and mortality rates of nerve damage make it a significant public 
health issue worldwide, causing enormous psychological pain and economic burden to patients 
and their families (Karsy et al., 2019). Therefore, nerve injury repair is a topic of great interest, 
and the induction of nerve cell regeneration in the damaged area to restore the neural circuit 
and recover patients’ motor function is currently a crucial issue in the field of basic medical 
research and clinical transformation practice related to nerve damage treatment.
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In the meantime, recent advances in tissue engineering and 
regenerative medicine have highlighted three crucial factors that play 
a key role in reshaping neural tissue structure and function. These 
include seed cells, biomaterial scaffolds, and bioactive factors (Schmidt 
and Leach, 2003; Gu et al., 2014). Usually, neural stem cells are used 
as seed cells for neural repair, and biomaterial scaffolds act as carriers 
for both seed cells and bioactive factors during stem cell 
transplantation. Other than that, an ideal biomaterial scaffold should 
provide anchoring sites for stem cells to adhere and grow, as well as 
induce their proliferation and differentiation within the 
microenvironment, ultimately leading to the formation of functional 
neural tissue with mechanical stability.

As a scaffold material widely used in neural tissue engineering, 
hydrogel has the following properties. Hydrogels are highly porous 
network materials that result from crosslinking hydrophilic 
polymers through both physical and chemical processes (Ullah 
et al., 2015). They possess excellent biocompatibility, and as such, 
are widely used in the diagnosis and treatment of various diseases 
(Hoffman, 2012; Caló and Khutoryanskiy, 2015). The 
physicochemical and structural microenvironment of hydrogels 
resembles that of the extracellular matrix of neural tissue, and their 
viscoelastic property is highly compatible with biological tissue. 
Moreover, hydrogels provide attachment sites and a three-
dimensional space for the growth, migration, proliferation, and 
differentiation of transplanted neural cells. Additionally, hydrogels 
exhibit tissue affinity on their soft and wet surfaces, making them 
ideal for in vivo cell scaffolding (Nisbet et al., 2008). To clarify, this 
mini review is structured around various strategies for distinct 
hydrogel material designs; however, it is important to note that due 
to differences in cellular microenvironments, cell types, and post-
injury repair capabilities between the central and peripheral 
nervous systems (CNS and PNS, respectively), the responses to 
biomaterials vary. Consequently, the requirements for material 
design diverge as well. For instance, when designing biomaterials, 
the degradability of the material is a crucial factor. Biomaterials 
designed for CNS repair must degrade within an appropriate time 
frame to prevent long-term disruption to surrounding tissues, while 
in PNS repair, the degradation rate of biomaterials should 
correspond with the rate of nerve regeneration to ensure adequate 
support for nerve growth. Another example is the variation in 
biomaterial types for CNS and PNS injuries. CNS injury repair 
materials may encompass scaffolds, gels, nanoparticles, and other 
components with the primary aim of providing physical support, 
promoting cell growth and differentiation, and releasing growth 
factors. In contrast, PNS injury repair materials typically involve 
nerve conduits, biofilms, and the like, with the main functions of 
guiding nerve growth and supplying extracellular matrix support. 
Furthermore, drug delivery to the CNS can be challenging due to 
the blood–brain barrier. As a result, when designing biomaterials 
for CNS repair, it is worth considering the development of materials 
with drug carrier capabilities to enhance the efficiency of drug 
delivery to the damaged site. In PNS repair, however, the limitation 
imposed by the blood–brain barrier is less significant. In summary, 
the design of biomaterials for CNS and PNS injury repair 
necessitates a comprehensive understanding of their distinct 
biological, biomechanical, and biocompatibility aspects. Thus, this 
article reviews the fundamental research in neural injury repair that 
utilizes various functionalized hydrogels, explores their potential 

for clinical practice, and discusses the synthesis strategies and 
application conditions of different types of hydrogels (Figure 1).

The supporting role: fundamental and 
key function of hydrogels in repairing 
nerve injuries

Hydrogels play a crucial role in nerve injury repair by providing 
physical support, enhancing mechanical and guiding capabilities, and 
promoting nerve regeneration and repair. The polymer chains within 
hydrogels can be crosslinked to form a three-dimensional network 
that enhances their mechanical properties, such as toughness, 
strength, and elasticity, allowing them to closely mimic physiological 
tissue structures (Lesný et al., 2002; Ma et al., 2022). Furthermore, the 
strength and elasticity of hydrogels can be adjusted by controlling 
their crosslinking density and structure, and subsequent adsorption 
of water molecules can increase their toughness and durability. The 
three-dimensional network structure formed by hydrogels at the 
microscale provides physical support to the surrounding tissues and 
cells, promoting oriented cell growth, facilitating the generation of 
new neural tissue and blood vessels, and enhancing the supply of 
oxygen and nutrients to support neural cell growth and regeneration 
(Deligkaris et al., 2010; Xia and Chen, 2022). Moreover, hydrogels can 
effectively fill damaged areas of neural tissue, reducing tissue gaps, 
forming supportive structures, and aiding in neural tissue repair 
(Štulík and Syková, 2008). Hydrogels can also be used as a carrier for 
bioactive molecules, making them a promising biomaterial for 
promoting neural tissue regeneration and repair (Ma et al., 2022).

Overall, the supportive role of hydrogels in neural injury repair is 
based on their formation of a three-dimensional network with 
uniform micro-pores, excellent biocompatibility, and the ability to 
promote neural regeneration and repair. The combination of these 
advantageous properties makes hydrogels a crucial and effective 

FIGURE 1

Schematic illustration showing the classification of functionalized 
hydrogels and remote control to realize the various functions.
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material for nerve repair, resulting in the survival and functional 
recovery of neurons, and providing hope for the millions of people 
affected by nerve injuries.

Application of various functionalized 
hydrogels in neural injury repair

Dopamine-functionalized hydrogels

Dopamine, a neurotransmitter, participates in numerous 
physiological and pathological processes of the CNS, including 
emotion, behavior, memory, attention, motivation, and reward (Wise, 
2004; Iversen and Iversen, 2007). Furthermore, dopamine plays a 
crucial role in regulating the morphology, growth, and migration of 
neurons to the site of injury, which impacts the formation and 
connection of neurons and contributes to the growth, development, 
and repair of neurons (He et al., 2022; Lindholm and Saarma, 2022; 
Silva et al., 2022). Recent studies have revealed that dopamine also 
facilitates the growth and development of neurons, promotes synaptic 
formation and connection, and encourages the differentiation of 
neurons, allowing them to assume different roles in the nervous 
system (Kim et al., 2002; Chinta and Andersen, 2005). Therefore, 
incorporating dopamine into hydrogels can potentially enhance the 
ability of hydrogels to promote neural regeneration and repair.

The neural regulatory function of dopamine makes it a promising 
candidate for combining with hydrogels for nerve injury repair. 
Studies have shown that the failure of axonal regeneration in the CNS 
is closely related to the formation of glial scar after injury (Chen and 
Zhu 2016). However, dopamine-functionalized hydrogels have been 
found to be effective in promoting the differentiation of neural stem 
cells (NSCs) and the growth of synapses, inhibiting the formation of 
glial scars following spinal cord injury, and facilitating axon 
regeneration (Zhou, 2018).

Furthermore, regarding the optimization of dopamine binding to 
hydrogels, several studies have shown that it can be achieved through 
chemical reactions (Carballo-Molina et al., 2016; Adil et al., 2017), or 
by physisorption (Yang et al., 2012; Pei et al., 2020). The most common 
approach for dopamine-functionalized hydrogels is the oxidative 
polymerization reaction of dopamine under alkaline conditions, 
which generates a polymer compound called polydopamine (Tang 
et al., 2019; Chen et al., 2020). Polydopamine can then covalently bond 
with numerous hydrogel materials, such as dopamine-functionalized 
poly (lactic-co-glycolic acid) (PLGA) hydrogel. Another approach to 
combine dopamine with hydrogels is physical adsorption, which 
depends on the interaction between the aromatic ring structure of 
dopamine molecules and the aromatic functional groups on the 
hydrogel surface (Kim et al., 2014; Soylu et al., 2021). For instance, 
dopamine can be physically adsorbed onto gelatin hydrogels to impart 
them with dopamine-functionalized characteristics. A thorough 
comprehension of the chemical and physical interactions between 
dopamine and hydrogels is crucial in developing dopamine-
functionalized hydrogels for neural repair applications.

Dopamine-functionalized hydrogels have shown promising 
potential in promoting neural stem cell adhesion and proliferation, 
with the ability to modulate the proliferation of neural stem cells 
through dopamine content adjustments. Moreover, these hydrogels 
have demonstrated an increase in the rate of neuronal differentiation, 

synapse formation promotion, and neural network development 
facilitation. Additionally, dopamine-functionalized hydrogels have 
been found to improve the survival rate of neural stem cells and 
enhance the regenerative capacity of neural tissue by modulating the 
extracellular environment of neural stem cells. As shown in Table 1, 
more and more studies have shown that the combination of dopamine 
and hydrogel is effective in repairing nerve injury.

Conductive hydrogels

The nervous system primarily communicates through electrical 
signals, which are critical in the development, maturation, and 
regeneration of nervous tissue. Inter-cellular signal transmission 
predominantly occurs via the extracellular matrix, and the integration 
of conductive substrates into the cellular microenvironment promotes 
inter-cellular electrical signal transmission. Therefore, maintaining the 
function of neurons heavily relies on the stimulation and transmission 
of electrical signals. Peripheral nerve injury can result in neurologic 
disorders, chronic pain, paralysis, and even disability by disrupting the 
electrical signal transmission between the brain and the body. 
Autologous nerve transplantation is commonly used to repair 
peripheral nerves; however, this method is affected by various factors 
such as a shortage of donors, long-term excessive tension, synaptic 
regeneration disorder, and severe nerve interruption that is difficult to 
suture. Conductive hydrogels have become a preferred alternative to 
autologous nerve transplantation due to their biocompatibility and the 
advantages of conductive polymers that can transmit electrical signals 
within nerve tissue. Additionally, conductive hydrogels have been 
found to effectively use electrical signals to promote neural tissue 
regeneration (Dong et al., 2020).

Extensive research has been conducted on biocompatible and 
conductive biomaterials that promote neural tissue regeneration 
(Guarino et al., 2013; Uz and Mallapragada, 2019; Park et al., 2020). 
Conductive hydrogels are a specific type of hydrogel material with 
electrical conductivity, containing conductive substances such as 
conductive polymers (polypyrrole, polyaniline, and polystyrene), 
metallic elements (silver, copper, gold, and iron), carbon materials 
(graphene, carbon nanotubes), and metal oxides (indium tin oxide, 
and aluminum oxide), as compared to traditional hydrogel materials 
(Wang et al., 2018; Zhou et al., 2022). These conductive substances can 
be  combined with hydrogels through direct mixing, chemical 
reduction, or electrochemical deposition.

Conductive hydrogels find application in electronic devices, 
biosensors, and smart medical fields (Xu et al., 2020). However, it is 
worth noting that the conductive properties of these materials can 
vary greatly. For example, while metals display excellent conductivity, 
their biocompatibility is relatively poor. On the other hand, carbon-
based materials can enhance the mechanical strength of hydrogels, but 
achieving homogeneous dispersion is challenging, which subsequently 
affects the conductivity performance. Conductive hydrogels have the 
potential to establish a neural-electronic interface that connects 
electrons and nerve cells, enabling electronic and ionic transport to 
simulate electrical signal transmission between nerve cells. Research 
has demonstrated that the conductive properties of conductive 
hydrogels can create an electrical stimulation environment that 
promotes the growth and regeneration of neural cells (Liu et al., 2017; 
Park et al., 2020; Cai et al., 2022). For example, conductive hydrogel 
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conduits with a gradient of growth factors can promote the 
regeneration of peripheral nerves and muscle fibers in mice, holding 
significant potential for repairing peripheral nerve injuries (PNIs) and 
muscle atrophy in diabetic patients (Liu et al., 2017; Park et al., 2020; 
Cai et al., 2022). Furthermore, using conductive polymer hydrogels to 
repair spinal cord injuries in mice has resulted in the regeneration of 
spinal cord neurons and the restoration of limb motor function (Zhou 
et al., 2018; Guo et al., 2019).

Conductive hydrogels, specifically poly (acrylic acid)/polypyrrole 
(PAA/PPy) hydrogels, have been successfully utilized as scaffold 
materials for facilitating the differentiation of neural stem cells into 
neurons under electrical stimulation, as reported by (Milani et al., 
2022). Additionally, the combination of these hydrogels and electrodes 
can be employed for neural electrical stimulation, modulation, and 
recording of neural electrical activity signals in the cerebral cortex, as 
mentioned in (Khan et  al., 2022). Conductive hydrogels not only 
possess suitable physicochemical properties for cell growth but also 
exhibit electrical conductivity, which enables them to provide 
additional electrical stimulation to nerve cells. This capability can 
support the restoration of interrupted conduction pathways and 
maintain the endogenous electrical microenvironment for nerve 
regeneration. Therefore, the interaction between conductive hydrogels 
and nerve cells is a critical area of research in the field of neural repair 
and is considered one of the popular technologies for achieving nerve 
regeneration and repair. As shown in Table 2, more and more studies 
have shown the effectiveness of conductive hydrogels for repairing 
nerve injury.

However, conductive materials present various challenges in their 
application within the field of biomedicine. Firstly, they may 
be difficult to process and degrade, with poor uniform dispersion of 
carbon-based materials. Surface modification and controlling 
polymerization conditions have been suggested as potential solutions 
to these issues. Secondly, further study is needed to fully understand 

the synergistic mechanism between electrical stimulation and 
conductive materials, to better meet the challenges of long-distance 
nerve injury repair. Finally, the long-term cytotoxicity, 
biocompatibility, and metabolism of conductive materials within the 
human body remain areas of active research focus (Khan et al., 2022).

Extracellular vesicles functionalized 
hydrogels

The nervous system communicates mainly through electrical 
signals, and in the CNS, neurons are responsible for signal 
transduction. The severe inflammatory reaction after nerve injury can 
lead to the death of neurons and the formation of glial scar, which 
affects the repair of CNS injury. Therefore, ideal CNS repair materials 
need to have properties that minimize the occurrence of inflammatory 
reactions (Raposo and Stahl, 2019). Studies have shown that 
extracellular vesicles (EVs) contain a diverse array of biological 
molecules, such as cell factors, proteins, and nucleic acids, and have 
multiple biological functions, including promoting cell proliferation 
and reducing inflammation (Raposo and Stahl, 2019). Previous studies 
have indicated that EVs derived from cells possess robust regenerative 
and reparative capabilities in various systems, including the 
musculoskeletal (Alcaraz et al., 2019), cardiovascular (Adamiak et al., 
2018), liver injury (Psaraki et  al., 2022), kidney injury (Aghajani 
Nargesi et al., 2017), traumatic brain injury (Mondello et al., 2018) and 
others. These vesicles have significant potential as a “cell-free” 
therapeutic approach for regenerative medicine and may serve as a 
replacement for stem cells. Notably, many cells in the peripheral 
nervous system, such as small glial cells and astrocytes, are capable of 
secreting different types of EVs, particularly following nerve injury.

And EVs can participate in protein synthesis in neurons, promote 
axonal regeneration, and inhibit axonal degeneration through various 

TABLE 2 Representative study of conductive hydrogels and their biological properties in nerve injury repair.

Hydrogel synthetic materials Nerve 
damage

Types of 
study

Effects on biological performances Ref.

Conductive hydrogel catheter with growth 

factor gradient

PNS In vivo Promote repairing of peripheral nerve injury and inhibit the 

atrophy of muscles for diabetics

Li et al. (2019)

Exosome-loaded conductive hydrogel CNS In vivo Promoting neural stem cell differentiation and axon regeneration Li et al. (2019)

Injectable and biodegradable conductive 

hydrogels

CNS In vitro Promote the differentiation of neural stem cells into neurons, 

inhibit the formation of glial cells and scars

Li et al. (2019)

Hybrid electrically conductive hydrogels PNS In vivo Promoting myelin regeneration of injured axons Li et al. (2019)

TABLE 1 Representative studies of dopamine-functionalized different hydrogels and their biological properties in nerve injury repair.

Hydrogel synthetic materials Nerve 
damage

Types 
of 
study

Effects on biological performances Ref.

A photothermal responsive cell-laden self-rolling 

poly-N-isopropylacrylamide (PNIPAM) hydrogel

PNS In vitro Promote the growth of Schwann cells Li et al. (2019)

Gelatin methacrylate (GelMA) CNS In vitro Supporting stem cell growth and improving neural 

differentiation of NSCs

Li et al. (2019)

Injectable hydrogels CNS In vivo Have a positive repair effect on spinal cord injury Li et al. (2019)

Gelatin methacryloyl (GelMA) hydrogel CNS/PNS In vivo Promoting the differentiation of mesenchymal stem cells 

into neuron-like cells

Li et al. (2019)
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mechanisms. One such mechanism involves the binding of vesicular 
membrane proteins with target cell membrane proteins through 
ligand-receptor interactions (Liu et al., 2021). Another mechanism is 
that vesicular proteins can activate signaling pathway proteins on the 
surface of target cells after vesicle degradation, leading to a series of 
biological responses (Guo et  al., 2021; Lee et  al., 2022). Loading 
functionalized hydrogels with EVs is a novel therapeutic approach that 
can promote neural repair through various pathways such as 
enhancing the proliferation and migration of neural cells, improving 
neuronal survival, and restoring function. Studies have shown that 
EVs derived from skin-derived precursor Schwann cells (SKP-SC-EVs) 
accelerate the recovery of motor, sensory and electrophysiological 
functions in rats, promote the growth of regenerative axons and the 
formation of myelin sheaths, reduce the atrophy of target muscles 
caused by denervation, and promote the neurite growth of motor 
neurons (MNs) and sensory neurons, which is helpful for PNI repair 
(Yu et al., 2021; Jiang et al., 2022; Zhang et al., 2022). This promising 
approach may hold significant potential for the development of 
regenerative medicine therapies for neural injury and 
degenerative disorders.

Various studies have demonstrated the potential of stem cell-
derived extracellular vesicles (EVs) and exosomes to reduce 
inflammation, inhibit cell apoptosis, and mitigate the impact of neural 
damage on surrounding tissues. For instance, researchers have loaded 
human mesenchymal stem cell-derived EVs onto chitosan-based 
functional hydrogels to repair peripheral nerve injury in rats. The 
results of the study indicated that the EV-loaded functional hydrogels 
promoted neuronal cells proliferation and migration, while reducing 
inflammation and cell apoptosis, leading to a significant improvement 
in neural damage repair (Ju et  al., 2023). Another study utilized 
exosomes derived from mouse neural stem cells loaded onto poly 
(ε-caprolactone) based functional hydrogels and reported a significant 
increase in the survival and regeneration of spinal cord neurons, 
accompanied by a reduction in inflammation and glial scar formation 
(Xie et al., 2022). Moreover, there have been studies loading exosomes 
containing miRNA into collagen hydrogels for neural injury repair, 
demonstrating that they not only promote neuronal growth and 
regeneration but also improve the structure and function of damaged 
neural tissue (Lei et al., 2019; Xu et al., 2021; Zhang et al., 2021). In 
this study, the 3D fiber-hydrogel scaffold delivered axon microRNA 
(miR) to the injured site and repaired it in a non-viral manner. In the 
presence of methylprednisolone, the role of axon miRs in promoting 
mature axon regeneration is not affected, which can reduce the 
inflammatory response. More importantly, axon miRs in the presence 
of methylprednisolone reduced cyst formation and provided a 
tendency to improve functional recovery (Zhang et al., 2021).

Despite the promising therapeutic effects of EVs in regenerative 
medicine research, such as tissue repair and regeneration, their 
naturally low quantity and difficulty in controlling them present 
challenges in terms of extraction efficiency and purification yield, 
which has limited their research and application (Ingato et al., 2016; 
Usman et al., 2018). Therefore, it is crucial to improve the quality and 
yield of EVs, which will be  a key focus for future research. 
Furthermore, before they can be effectively applied in clinical settings, 
more studies are needed to validate their safety and efficacy. But with 
the progress of technology, we  believe that these issues will 
be  addressed soon, and look forward to further development in 
this field.

Nanomaterials functionalized 
hydrogel

In recent years, research on nano-functionalized hydrogels for 
neural injury repair has gained significant attention due to the 
expanding and enhancing of hydrogel functionality by nanomaterials 
(Rafieian et al., 2019; Kailasa et al., 2022). Nanomaterials can provide 
more growth factors and cell adhesion molecules, promoting the 
regeneration and growth of neural cells, while hydrogels provide a 
supportive and protective environment that facilitates the directional 
growth of neural cells. Additionally, nanomaterials can serve as drug 
carriers, enhancing drug loading and release efficiency for neural 
repair drugs, and even enabling intelligent and precise controlled 
release. As a result, nanomaterial-based hydrogels offer promising 
potential for the development of effective neural injury repair 
strategies. Hydrogels can limit drug diffusion and degradation, thus 
increasing drug concentration and duration at the treatment site. 
Furthermore, nanomaterials can enhance the mechanical properties 
and stability of hydrogels, resulting in improved durability and 
lifespan of the material (Li and Mooney, 2016). With their large and 
specific surface area, nanoparticles can increase drug delivery 
efficiency, and in combination with hydrogels, the use of nanomaterials 
can minimize immune reactions. Composites of nanoparticle-metal-
hydrogel have been found to promote neuronal growth and have the 
potential to facilitate nerve regeneration and repair.

Nanoparticle biosensors have been combined with hydrogels to 
promote nerve regeneration and repair by enhancing neuronal 
proliferation and differentiation. Nanocarbon tube hydrogels have shown 
promise in nerve regeneration by promoting neuronal proliferation, 
reducing inflammation, and increasing the rate of neuronal regeneration 
(Ye et al., 2021). Similarly, nanoparticle proton pump hydrogels have 
been developed to reduce inflammation during nerve regeneration and 
promote neuronal regeneration, improving the effectiveness of nerve 
injury repair (Mendiratta et al., 2019). Graphene oxide nanosheets have 
also been incorporated into gelatin hydrogels to create a composite 
material for nerve regeneration, which has been shown to promote the 
proliferation and differentiation of neural stem cells and achieve nerve 
regeneration in vivo. The incorporation of micropatterns and bioactive 
substances into the inner wall of nerve-guide conduits (NGCs) can 
effectively regulate the behavior of Schwann cells, axon elongation, and 
macrophage phenotype, ultimately promoting the regeneration of 
injured nerves. In a recent study, 3/3, 5/5/, 10/10, and 30/30 μm linear 
micro-ribbons were prepared on poly (D, l-lactic acid-co-caprolactone) 
(PLCL) films. Surface ammonolysis and electrostatic adsorption of 
graphene oxide (GO) nanosheets were performed. This material has 
demonstrated great potential for promoting nerve regeneration (Zhang 
et al., 2020). Additionally, magnetic nanoparticle (MNPs) and gelatin 
hydrogel composites have been developed, which exhibit a significant 
magnetic guiding effect, facilitating the directional differentiation of 
neural stem cells and promoting nerve regeneration (Pavón et al., 2019). 
Curcumin-loaded mesoporous silica nanoparticles (MSN-CCM) 
dispersed in hydrogels have shown potential for assisting in the treatment 
of neurodegenerative diseases such as Alzheimer’s disease (Ribeiro et al., 
2022). Additionally, a dual responsive hydrogel based on poly 
N-isopropylacrylamide (PNIPAM) and polyacrylic acid (PAA) 
functionalized mesoporous silica nanoparticles (MSNs) has been shown 
to be  effective for killing tumor cells while also promoting tissue 
regeneration (Chen et al., 2017). Further, studies have demonstrated that 
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TABLE 3 Representative research of varying hydrogels functionalized by nanoparticles and their biological performances in neural injury repairing.

Nanomaterials Hydrogel Types of 
study

Effects on biological performances Ref.

MnO2 Hyaluronic acid hydrogel In vivo Remove active oxygen and increase the activity of 

mesenchymal stem cells, and enhance the efficient 

regeneration of spinal cord nerves

Li et al. (2019)

Polypyrrole Collagen/hyaluronan hydrogel In vivo Antioxidation and conductivity enhance nerve 

regeneration and functional recovery

Wu et al. (2021)

Zinc-oxide Chitosan hydrogel In vivo Improved mechanical strength and against 

infections

Joorabloo et al. (2022)

Polymeric gene Hyaluronic acid hydrogel In vitro More mature neurons were engrafted to the host 

brain tissue

Li et al. (2016)

Mesoporous silica Collagen hydrogel In vitro Neurite growth was improved Lee et al. (2013)

Polypyrrole N-isopropylacrylamide microgels In vivo Near-infrared-light responded delivery of glutamate Li et al. (2015)

Iron oxide Fibrin hydrogel In vitro Enhance the growth and differentiation neuronal 

precursor cells

Ziv-Polat et al. (2012)

Poly (lactic-co-glycolic 

acid)

Low/high-molecular-weight keratin 

hydrogel

In vivo Improve the growth and differentiation of bone 

marrow mesenchymal stem cells

Gong et al. (2020)

Gold Hyaluronic acid and pentenoate 

functionalized gelatin hydrogel

In vitro Enhance the neural stem cells regeneration and 

reorganization

Kiyotake et al. (2022)

Silver Polyacrylamide hydrogels In vivo Get electrical signals transmitted by neurons Rinoldi et al. (2022)

Graphene oxide Collagen hydrogel In vitro Promoting cell differentiation and inducing oriented 

cell growth

Santhosh et al. (2019)

the incorporation of lipid nanoparticles into hyaluronic acid-
functionalized hydrogels can help create an anti-inflammatory 
microenvironment and reduce immune response (Pavón et al., 2019). 
Currently, there is relatively limited research on the combination of 
hydrogels with nanomagnetic hyperthermia for neural injury repair. 
However, due to the potential benefits of hyperthermia, there may 
be significant applications in this area. We have found previous research 
demonstrating that a novel thermosensitive heparin-poloxamer (HP) 
hydrogel, delivering basic fibroblast growth factor (bFGF) and nerve 
growth factor (NGF), can be used for sciatic nerve compression injury 
in diabetic rats, promoting axonal and myelin sheath regeneration, and 
improving motor function recovery (Li et al., 2018). We believe that the 
combination of hydrogels with nanomagnetic hyperthermia has 
tremendous potential in neural injury repair and look forward to further 
progress in future studies (Pavón et al., 2019). Nanomaterials have shown 
promise in inhibiting the activity of inflammatory cells, which can help 
reduce inflammation, minimize immune reactions, and decrease 
immune rejection.

Table 3 provides a comprehensive overview of the growing body 
of research showcasing the effectiveness of using nanomaterials in 
combination with hydrogels for repairing neural injuries. These 
applications have been preliminarily validated in laboratory 
experiments, and some studies have progressed to animal and human 
trials. The combination of nanomaterials and hydrogels offers multiple 
advantages and has broad application prospects in neural tissue 
engineering. With further technological development, these materials 
are expected to play an even more significant role in the field of neural 
injury repair. It is excited to witness the potential of these materials 
and look forward to further advancements in this field.

Although nanomaterials hold great potential for the repair and 
regeneration of damaged tissues, their use in synthesizing new 
materials must consider potential immune responses and toxicity to 
tissues and organs, as well as issues of instability. Therefore, ensuring 
the biosafety and stability of nanomaterials is a crucial direction for 
future research in the field (Zheng et al., 2021).

The above paragraph describes different types of functionalized 
hydrogels, and the following materials have been specifically applied 
in cases of CNS or peripheral nervous system injuries. For instance, 
dopamine-modified chitosan hydrogels have been shown to improve 
cell survival, modulate immunity, and promote axonal regeneration 
(Liu et  al., 2022). Additionally, the construction of injectable silk 
fibroin/dopamine hydrogels has been found to be helpful in promoting 
the repair of spinal cord injuries (Ye et al., 2021).

A novel conductive hydrogel made from gelatin methacrylate 
(GelMA), hyaluronic acid methacrylate (HAMA), and poly 
(3,4-ethylenedioxythiophene): sulfonated lignin (PEDOT: LS) has 
shown promise in repairing spinal cord injuries and promoting 
neuronal differentiation of neural stem cells (Gao et  al., 2023). 
Additionally, bone marrow stem cell-derived exosomes (BMSC-
exosomes) have been found to bind to conductive hydrogels, 
enhancing axonal growth and promoting tissue repair (Fan et al., 
2022). The combination of a conductive hydrogel with chitosan to 
form a multifunctional double-layer hydrogel catheter has been shown 
to be effective for peripheral nerve injury repair (Deng et al., 2022). 
Finally, a rubber-like conductive hydrogel composed of gelatin, 
conductive polypyrrole, and tannic acid (referred to as GPT) has 
demonstrated the ability to promote peripheral nerve regeneration (Ye 
et al., 2021).
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Injectable thermosensitive hydrogels containing immunoregulatory 
extracellular vesicles have been found to help alleviate inflammation and 
promote nerve regeneration in cases of spinal cord injury (Zhang et al., 
2022). Additionally, the combination of exosomes derived from mouse 
neural stem cells with functional hydrogels based on poly (ε-caprolactone) 
has shown promise in promoting the survival and regeneration of spinal 
cord neurons, as well as reducing inflammation and glial scar formation 
(Xie et  al., 2022). Another study found that the use of human 
mesenchymal stem cell-derived extracellular vesicles combined with 
chitosan-based functional hydrogels is effective in repairing peripheral 
nerve injuries in rats (Ju et al., 2023).

A composite hydrogel consisting of polyvinyl alcohol (PVA) and 
molybdenum sulfide/graphene oxide (MoS2/GO) nanomaterials has been 
shown to promote the differentiation of neural stem cells into neurons for 
use in spinal cord injury repair (Chen et  al., 2022). Additionally, 
multifunctional biomimetic hydrogels based on graphene nanoparticles 
and sodium alginate have demonstrated the ability to simulate the 
microenvironment of nerve growth, reduce inflammatory factors, and 
contribute to the repair of peripheral nerve injuries (Ju et al., 2023).

Conclusion

Biomedical materials for neural tissue engineering must possess not 
only excellent biocompatibility but also specific neural conduction 
functions that promote cell-to-cell signaling. Hydrogels, which are 
gel-like polymers containing water, represent the most water-like scaffold 
materials that closely resemble human soft tissue and are crosslinked by 
either physical or covalent bonds. However, conventional hydrogels 
exhibit low strength, weak biological activity, and a single function, 
limiting their ability to meet the complex demands of neural injury 
repair. Recent studies have demonstrated that functionalized hydrogels, 
created through combination with other functional materials, can 
improve biocompatibility and responsiveness to various stimuli by 
regulating their composition and structure. These functionalized 
hydrogels effectively mimic the in vivo neural extracellular matrix 
microenvironment, facilitating efficient repair, replication, or 
differentiation of neural cells and achieving high matching of the elastic 
modulus between the biomaterials and neural tissue. Despite their 

potential for aiding in the repair of nerve tissue after injury, functionalized 
hydrogels are still plagued by various deficiencies, such as concerns 
related to biosafety and stability. Additionally, their practical 
implementation in clinical applications remains an area of ongoing 
exploration. However, with continued advancements in technology, 
I am optimistic that these issues will be successfully resolved, and look 
forward to the further development and refinement of this exciting field.
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