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Background: Crystallized intelligence (Gc) and fluid intelligence (Gf) are regarded

as distinct intelligence components that statistically correlate with each other.

However, the distinct neuroanatomical signatures of Gc and Gf in adults remain

contentious.

Methods: Machine learning cross-validated elastic net regression models were

performed on the Human Connectome Project Young Adult dataset (N = 1089)

to characterize the neuroanatomical patterns of structural magnetic resonance

imaging variables that are associated with Gc and Gf. The observed relationships

were further examined by linear mixed-effects models. Finally, intraclass

correlations were computed to examine the similarity of the neuroanatomical

correlates between Gc and Gf.

Results: The results revealed distinct multi-region neuroanatomical patterns

predicted Gc and Gf, respectively, which were robust in a held-out test set

(R2 = 2.40, 1.97%, respectively). The relationship of these regions with Gc and

Gf was further supported by the univariate linear mixed effects models. Besides

that, Gc and Gf displayed poor neuroanatomical similarity.

Conclusion: These findings provided evidence that distinct machine learning-

derived neuroanatomical patterns could predict Gc and Gf in healthy

adults, highlighting differential neuroanatomical signatures of different aspects

of intelligence.
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1. Introduction

General intelligence is defined as a general capability to
understand complex ideas, adapt flexibly to the changing
environment, solve problems, and engage in critical reasoning
(Neisser et al., 1996; Gottfredson, 1997). Markers of neural
substrates in brain regions and genetic biomarkers have been
closely linked to intelligence (Posthuma et al., 2002; Genç
et al., 2018), prompting the use of neuroimaging techniques to
uncover the neural signature of intelligence. Furthermore, general
intelligence has been postulated to consist of two independent
components, crystallized intelligence (Gc) and fluid intelligence
(Gf) (Cattell, 1943). While Gc reflects our ability to acquire
skills through knowledge and experience and is related to verbal
ability and general knowledge (Deary et al., 2007; Yuan et al.,
2018), Gf refers to the capacity for problem-solving and logical
reasoning and is suggested as one of the most important features
associated with various cognitive abilities (Varriale et al., 2018).
Despite the evidence that Gc and Gf are regarded as distinct
intelligence components that statistically correlate with each other
(Cattell, 1943; Li et al., 2004), it remains contentious whether
there are distinct neuroanatomical signatures of Gc and Gf in
adults.

An increasing number of functional magnetic resonance
imaging (MRI) studies have found that Gf is linked with
multiple cortical regions, which is postulated by the Parieto-
Frontal Integration Theory (P-FIT) (Gray et al., 2003; Jung
and Haier, 2007; Cipolotti et al., 2022). Based on P-FIT, Gf is
linked to the executive network, which includes the dorsolateral
prefrontal cortex, inferior and superior parietal lobules, and
anterior cingulate gyrus (Jung and Haier, 2007). This explains the
goal-directed behavior that is expressed by individual differences
in Gf (Barbey et al., 2013; Barbey, 2018). Additionally, substantial
evidence from structural MRI (sMRI) studies found higher Gc
expression, which remained stable over time. The Gc level was
associated with greater gray matter volume (GMV) reduction,
and thinning of the cortex thickness (CT) (Yuan et al., 2018).
Moreover, individual differences in Gc may depend on declarative
knowledge stored in the temporal lobe and inferior prefrontal
cortex, leading to widespread cortical region differences across
individuals (Martin and Chao, 2001; McClelland and Rogers,
2003; Gainotti, 2006). Furthermore, Gf and Gc exhibit distinct
trajectories of development (McArdle et al., 2000). However, these
studies investigated the neural substrates of Gc and Gf using
different models of modalities. These studies had small sample sizes
for brain-intelligence associations using MRI (Marek et al., 2022),
which led to low sensitivity for true effects (i.e., type I error) and
increased risk for false positives (i.e., type II error) (Button et al.,
2013).

Recently, studies started adopting larger samples to characterize
the neuroanatomical correlates of Gc and Gf. One study used
a large cohort of adults from the Human Connectome Project
(HCP) and reported higher performance in Gf, which was
associated with cortical expansion in regions related to working
memory, attention, and visuospatial processing. In contrast, Gc
was associated with thinner CT and higher cortical surface
area (CSA) in language-related networks (N = 740) (Tadayon
et al., 2020). Another Adolescent Brain Cognitive Development

study (N = 10,652) conducted a double generalized linear model
to assess the independent association between the mean and
dispersion of CT/CSA and intelligence. It was found that higher
intelligence in preadolescents was associated with higher mean CT
in orbitofrontal and primary sensory cortices but with lower CT
in the dorsolateral and medial prefrontal cortex, particularly in
the rostral anterior cingulate (Zhao et al., 2022). However, these
two studies were conducted using mass univariate approaches
without cross-validation (CV), which might increase the risks of
overfitting. In contrast, machine learning approaches with CV
can assess and prevent overfitting more effectively than univariate
approaches, ultimately leading to more generalized findings. One
example of a machine learning approach is elastic net regression
(ENR), which is an ideal approach to analyzing a large number
of inter-correlated variables or predictors (Zou and Hastie, 2005;
Owens et al., 2022). One study tested numerous machine learning
algorithms for their effectiveness in the context of neuroimaging
data and found that ENR models with CV performed well over
a range of sample sizes as compared to other approaches (Jollans
et al., 2019).

Several recent machine learning studies with CV
comprehensively investigated predictive intelligence. Two
moderately large studies (N = 415 and 392, respectively) found
that distinct functional and structural connections contributed to
the prediction of individual Gc and Gf (Dhamala et al., 2021), and
the findings revealed neurobiological features of the functional
connectome of Gc and Gf across the sexes (Dhamala et al., 2022).
Additionally, another study (N = 308) reported that absolute
GMV enabled significant predictions of individual intelligence
scores (Hilger et al., 2020). However, these studies had several
limitations. Firstly, the samples were enrolled from datasets with
a relatively small sample size (less than 500). Secondly, these
studies only investigated functional and structural connections or
one neuroanatomical measure, GMV, and their relationship with
intelligence. However, cortical GMV comprises CT and cortical
surface area (CSA), which are known to be distinct morphological
features of the cortical architecture (Tadayon et al., 2020). Both CT
and CSA have distinct developmental trajectories and uncorrelated
genetic backgrounds (Storsve et al., 2014), suggesting that CSA
and CT should be considered separate morphometric features in
neurodevelopment (Panizzon et al., 2009; Xu et al., 2023b).

To address these limitations, the current study used a machine
learning approach to predict Gc and Gf from CSA, CT, and
GMV. Data were drawn from the HCP, which remains one of
the largest studies to date with contemporaneously collected Gc,
Gf, and sMRI data. This study conducted ENR models with
the CV approach, which is well suited to assess the overfitting
and generalization of findings (Xu et al., 2023a). This approach
simultaneously investigates all brain morphological variables as
predictors of a target. Hence, this approach elucidates the
neuroanatomical structures that are uniquely important to Gc and
Gf. As a secondary strategy, this study also used a traditional
univariate approach (linear mixed effects modeling) to confirm
the presence of a univariate relationship between Gc and Gf and
the neuroanatomical features contributing to the ENR models.
Furthermore, intraclass correlation analyses were performed to
examine the neuroanatomical pattern similarity of Gc and Gf. This
study aimed to investigate whether Gc and Gf could be effectively
predicted in an independent sample using a machine learning
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approach and uncover the distinct neuroanatomical patterns of Gc
and Gf in adults.

2. Materials and methods

2.1. Participants

In this study, the HCP release S1200 dataset was used.
Participants were recruited at Washington University in St. Louis
over 2 days between August 2012 and October 2015 (Van Essen
et al., 2012). The protocols were approved by each institution’s
research ethics board. All participants provided written informed
consent in accordance with the Declaration of Helsinki. All
participants were young adults between 22 and 35 years old.
The exclusion criteria were as follows: history of psychiatric
disorder, substance abuse, neurodevelopmental disorder or
damage, cardiovascular disease, severe health conditions (such as
diabetes, multiple sclerosis, cerebral palsy, premature birth), or
MRI contraindications (large tattoos, non-removable piercings,
metal devices in the body or claustrophobia, etc.). The complete
details of the inclusion and exclusion criteria and the informed
consent for participants can be found in references (Van Essen
et al., 2012, 2013). Some participants were excluded from further
analysis due to the following reasons: missing sMRI scans, missing
demographic data, and missing behavioral data. A total of 1,089
participants (90.75% of the initial sample size) were included in the
final analysis (Table 1).

2.2. Intelligence assessment

Cognitive ability was assessed by the NIH Toolbox Cognition
Battery with extensively validated neuropsychological tasks
(Mungas et al., 2014). Two composite scores (crystallized cognition
composite and fluid cognition composite) were derived from the
scores of participants when performing NIH Toolbox Cognitive
Battery tasks (Mungas et al., 2014). Gc was measured by Picture
Vocabulary and Oral Reading Recognition Tests, which assessed
language and verbal skills. Likewise, Gf was measured using the
Dimensional Change Card Sort, Flanker Inhibitory Control and
Attention Test, Picture Sequence Memory, List Sorting Working
Memory, and the Pattern Comparison Processing Speed Test,
which broadly assessed processing speed, memory, and executive
functioning (Figure 1A).

2.3. MRI data acquisition and
pre-processing

In the HCP dataset, T1-weighted structural images were
collected using a 32-channel head coin on a 3T Siemens Skyra
scanner (Siemens AG, Erlanger, Germany) with the following
scanning parameters: isotropic resolution = 0.7 mm3, field of
view = 224 mm × 240 mm, matrix size = 320 × 320, repetition
time = 2,400 ms, echo time = 2.14 ms, inversion time = 1,000 ms,
flip angle = 8◦, and 256 sagittal slices. Data were reconstructed

and pre-processed using a modified version of the FreeSurfer
pipeline (Fischl et al., 2004) in FreeSurfer Image Analysis Suite
version 5.31 (Fischl, 2012). For details of acquisition parameters,
reconstruction, and pre-processing of the HCP sMRI data, see
references (Van Essen et al., 2012; Glasser et al., 2013) and
supplementary materials. All structural images were reviewed by
a technician immediately after acquisition to ensure scans were
without any significant problems (i.e., artifacts and substantial
movement). For a detailed explanation of HCP quality control,
check reference (Marcus et al., 2013). The quantitative measures of
CT and CSA for cortical regions were defined by the Desikan atlas
(Desikan et al., 2006), while the GMV for subcortical regions from
the ASEG parcellation and intracranial volume (ICV) was derived
in FreeSurfer (Fischl, 2012).

2.4. Data analyses

ENR model analyses (Figure 1) were conducted in Python
using Scikit-Learn (Pedregosa et al., 2011) and the Brain
Predictability toolbox (Hahn et al., 2021). LME model analyses were
performed using R (Version 4.1.32) and RStudio (“Ghost Orchid”
Release; see text footnote 2), with the lme4 package (Version 1.1-28)
(Bates et al., 2015).

1 http://surfer.nmr.mgh.harvard.edu

2 https://www.r-project.org/

TABLE 1 Demographic characteristics of sample (N = 1089).

Metric M (SD) or percent

Age 28.83 (3.68)

Sex

Female 54.27%

Male 45.73%

Total family income

<$10,000 7.16%

10K−19,999 7.99%

20K−29,999 12.49%

30K−39,999 12.03%

40K−49,999 10.38%

50K−74,999 20.75%

75K−99,999 13.50%

≥ 1,00,000 15.70%

Education level

≤ 11 years 3.49%

12 years 13.77%

13 years 6.34%

14 years 12.40%

15 years 6.06%

16 years 42.15%

≥ 17 years 15.79%

M, mean; SD, standard deviation. These demographic variables were used as covariates in the
following model analyses.
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FIGURE 1

Schematic of elastic net regression (ENR) model analyses conducted. ENR models were built in which crystallized intelligence or fluid intelligence
was the target, respectively, (A) and the predictors were regional sMRI variables (i.e., the cortical thickness and cortical surface area of each cortical
region, gray matter volume of each subcortical region, and total intracranial volume) (B). A modified coefficient of determination (R2) was calculated
as the measure of prediction accuracy for each model. All ENR analyses were repeated 10 times to ensure stability of findings across different
train/test splits and results across repetitions were averaged (C).

FIGURE 2

Prediction accuracy (R2) for elastic net regression models to predict crystalized intelligence (Gc) and fluid intelligence (Gf), respectively. “Mean”
indicate the mean R2 of all models built in the training phase. “Held Out” indicates the all R2 of all models from the training phase being tested on
the held-out test set. Error bars stand for standard error of mean.

Frontiers in Neuroscience 04 frontiersin.org

https://doi.org/10.3389/fnins.2023.1199106
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1199106 May 19, 2023 Time: 15:10 # 5

Xu et al. 10.3389/fnins.2023.1199106

FIGURE 3

Distinct neuroanatomical patterns were indexed by beta weights of different features including cortical surface area (CSA), and cortical thickness
(CT) of each cortical region, and gray matter volume (GMV) of each subcortical that predicted (A) crystalized intelligence (Gc) and (B) fluid
intelligence (Gf), respectively. Red-shaded brain regions or bars indicate positive beta weights, while blue-shaded brain regions or bars indicate
negative beta weights.

2.4.1. Elastic net regression model analyses
To remove the covariance (e.g., demographic variables,

including age, sex, total family income, and education level),
residual covariates were removed from a pool of variables,
comprising Gc and Gf. The ENR models were built with Gc or Gf
as the dependent variable. Hence, the predictors (i.e., independent
variables) of the model-building algorithm were regional sMRI
variables (i.e., the CT and CSA of each cortical region, the GMV
of each subcortical region, and total ICV; Figure 1B). The model
aimed to investigate neuroanatomical patterns that could predict
Gc and Gf.

A modified coefficient of determination (R2) was calculated as
a measure of accuracy for each model. All elastic net analyses were
repeated 10 times to validate findings across different train/test
splits, and the results across multiple repetitions were averaged
(Figure 1C).

Initially, 20% of the total participants were selected as the held-
out test set. For the remaining participants, a 5-fold CV was used
to build and test five separate elastic net regression models. In this
approach, the training data were split into five equal groups (i.e.,
“folds”). A model was then built using four of the 5-folds (i.e., the
training data) and tested on the 5-fold (i.e., the validation set) to
determine its accuracy. After five repetitions, with each fold serving
as the test set exactly once, the mean of the five models was used to
predict the held-out test set.

Within this 5-fold CV, hyperparameter tuning was performed
in the training set with a nested 3-fold CV. A random
hyperparameter search algorithm was used on 200 randomly
selected combinations of hyperparameters (Alibrahim and Ludwig,
2021). In the 3-fold CV, the training data were split into 3-folds in
each of the five model-building phases. Within each of the 3-folds,
200 randomly selected combinations of parameters were tested, and
the best combination was selected. The combination that yielded
the best accuracy from all the folds was used to build a model for
5-fold iteration in the outer loop.

2.4.2. Linear mixed effects model analyses
To better interpret elastic net regression analyses, a secondary

analysis was conducted to test the association of Gc and Gf with
each sMRI variable from the final elastic net regression model. The
linear mixed effects (LME) model analyzed each sMRI variable as
a fixed effect. Demographic variables (sex, age, education level, and
total family income) and ICV were fixed effects, and family ID was
used as a random effect. The Gc or Gf was the dependent variable.
The P < 0.05 after Bonferroni correction was used to indicate
significance. Regions included in ERN models were only considered
as neural correlates of Gc and Gf if they were also associated in the
same direction in the univariate analyses.

2.4.3. Intraclass correlation analyses
To examine the neuroanatomical distinctiveness of Gc and

Gf, absolute similarity coefficients (i.e., intraclass correlation
(ICC)) were calculated across the entire set of sMRI features.
The regression coefficients for each regional brain measure
from LME models and beta weights from ENR models served
as the elements of ICC analyses. The double-entry intraclass
correlations (McCrae, 2008), which accounted for absolute
similarities in magnitude and direction of the neuroanatomical
profiles of Gc and Gf, were used to quantify the degree of absolute
neuroanatomical similarity between Gc and Gf. These indices were
computed separately across CSA features, CT features, and GMV
features, and across all sMRI features again. The neuroanatomical
similarity between Gc and Gf was interpreted using cut-offs
based on “poor reliability/replicability” (ICC = 0.00−0.50),
“moderate reliability/replicability” (ICC = 0.50−0.75), “good
reliability/replicability” (ICC = 0.75−0.90), and “excellent
reliability/replicability” (ICC = 0.90−1.00) (Koo and Li, 2016).
Additionally, Pearson correlations were conducted in sMRI
features between Gc and Gf accordingly.
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3. Results

3.1. ENR models

The ENR model predicted Gc with R2 of 1.00% after a 5-
fold cross-validation. The R2 was 2.40% when predicting the
held-out test set across 10 repetitions of the ENR procedure
(Figure 2 and Supplementary Table 1). The pattern of regions
that contributed to the mode (beta weights ranging between
−0.3744 and 0.5356) included CSA and CT of the widespread
frontal, parietal, and temporal regions (e.g., rostral middle frontal
gyrus, medial orbitofrontal cortex, caudal middle frontal, posterior
cingulate cortex, and caudal anterior cingulate cortex), and GMV
of the subcortical regions, including the bilateral hippocampus and
left thalamus (Figure 3A). Brain regions with positive/negative
beta weights in the ENR model are reported in Supplementary
Table 2.

The ENR model predicted Gf with an R2 of 1.13% after a
5-fold cross-validation. The R2 was 1.97% when predicting the
held-out test set across 10 repetitions of the ENR procedure
(Figure 2 and Supplementary Table 1). The pattern of regions
that contributed to the mode (beta weights ranging between
−0.3866 and 0.4309) included CSA and CT of the widespread
frontal, parietal, and temporal regions (e.g., rostral middle frontal
gyrus, medial orbitofrontal cortex, caudal middle frontal, superior
and inferior parietal lobule, posterior cingulate cortex, and
caudal anterior cingulate cortex), and GMV of the subcortical
regions, including the bilateral nucleus accumbens and left
pallidum (Figure 3B). Brain regions with positive/negative beta
weights in the ENR model are reported in Supplementary
Table 3.

3.2. LME models

Linear mixed effects model analyses (Table 2) revealed the
association between Gc and the CSA of widespread cortical
regions (including bilateral rostral middle frontal gyrus, caudal
middle frontal, superior frontal gyrus, and parahippocampal
gyrus) and the GMV of subcortical regions (including the
bilateral hippocampus and left thalamus). However, Gf was
significantly associated with only CSA in limited cortical
regions (including bilateral the pericalcarine fissure). According
to the ENR model, the brain regions that were significant
in the LME model for both Gc and Gf are displayed in
Figure 4.

3.3. Neuroanatomical pattern similarity

intraclass correlation analyses of regression coefficients
indicated that all sMRI features had poor similarity with all ICC
below 0.50 between Gc and Gf (ICC = 0.1649−0.4761; Pearson’s
r = 0.2614−0.5184; Table 3). Similarly, beta weights of all sMRI
features reported poor similarity with all ICC below 0.40 between
Gc and Gf (ICC = 0.0817−0.3910; Pearson’s r = 0.0812−0.4851;
Table 3).

4. Discussion

This study aimed to provide a comprehensive examination
of distinct neuroanatomical patterns to predict Gc and Gf
in healthy adults using a cross-validated machine learning
approach. Results of this approach indicted that distinct
multi-region neuroanatomical patterns predicted Gc and
Gf, respectively, with robust prediction accuracy in a held-
out test set (R2 = 2.40% for Gc and R2 = 1.97% for Gf).
Univariate LME model analyses supported the results, where
the same brain regions identified in ENR models were
significantly associated with Gc and Gf. Additionally, ICC
findings exhibited poor neuroanatomical pattern similarity
between Gc and Gf, indicating distinct neuroanatomical
patterns to predict Gc and Gf. Taken together, these
findings provided evidence that machine learning-derived
distinct neuroanatomical patterns could predict Gc and Gf
in healthy adults.

Interestingly, the ENR model indicated that Gc was more
predictable than Gf from multi-region neuroanatomical patterns.
Previous research proposed that Gc and Gf exhibited distinct
developments and transformations across the lifespan (Cattell,
1967). While Gc is the ability to use previously learned
knowledge and life experience, which are thought to be
influenced by education and cultural factors, Gf is regarded
as the ability to solve new problems using logical reasoning
and adapt to unknown situations, which are thought to
be more dependent on biological processes (Heaton et al.,
2014). In this study, Gc reflected the scores of tasks such
as vocabulary and decoding, while Gf reflected the scores of
cognitive tasks including cognitive flexibility, working memory,
and information processing speed (Mungas et al., 2014). The
eloquent nature of the mapping between neuroanatomical
morphometry profile and language, including vocabulary and
reading as measured by Gc, may explain the higher variance
of the scores when compared to Gc, which relies on brain
functional networks for different cognitive functions. Another
possible explanation for the higher predictability of Gc relative
to Gf could be the impact of environment on neuroanatomical
morphometry (Maggioni et al., 2020). Additionally, Gc is
more stable throughout life and generally less susceptible to
factors that affect cognitive function (e.g., mood and stress)
(Riedel et al., 2002; O’Neill et al., 2020), resulting in the
higher predictability of Gc over Gf. Additionally, a previous
study found that cortical grey matter morphology provided
little information about Gf and was probably incapable of
predicting Gf (Oxtoby et al., 2019). This study validated this
claim, whereby a low CSA led to low Gf predictivity. In this
regard, Gf reflected higher cognitive functions, which were more
dependent on large-scale brain networks (Gray et al., 2003; Barbey,
2018).

Moreover, the feature of neuroanatomical morphometry most
linked to intelligence was CSA, which had more significant
associations with Gc and Gf than CT or subcortical GMV.
From the evolutionary perspective of the human cerebral cortex,
the brain region is theorized to be enlarged mainly by the
expansion of the surface area without a comparable increase in
its thickness (Rakic et al., 2009). This suggests that the frontal
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TABLE 2 Significant sMRI correlates of Gc and Gf in linear mixed effect models after Bonferroni correction.

Hemisphere Region B SE t PBonferroni R2

Gc

CSA

Right Middle temporal gyrus 0.0066 0.0011 6.2413 0.0000 0.0428

Left Rostral middle frontal gyrus 0.0033 0.0006 5.3011 0.0000 0.0342

Right Rostral middle frontal gyrus 0.0030 0.0006 5.0896 0.0001 0.0330

Left Lateral orbitofrontal cortex 0.0076 0.0016 4.8867 0.0002 0.0330

Left Middle temporal gyrus 0.0058 0.0011 5.0853 0.0001 0.0328

Right Precentral gyrus 0.0041 0.0009 4.7772 0.0003 0.0316

Left Inferior temporal gyrus 0.0046 0.0009 5.0032 0.0001 0.0310

Left Postcentral gyrus 0.0045 0.0009 4.8172 0.0003 0.0308

Right Superior temporal gyrus 0.0052 0.0011 4.6094 0.0007 0.0304

Right Postcentral gyrus 0.0043 0.0009 4.5031 0.0012 0.0284

Left Precentral gyrus 0.0038 0.0009 4.3840 0.0020 0.0283

Left Caudal middle frontal 0.0046 0.0010 4.4200 0.0017 0.0281

Right Insula 0.0070 0.0016 4.2863 0.0031 0.0278

Right Pars opercularis 0.0074 0.0017 4.4289 0.0017 0.0273

Right Superior frontal gyrus 0.0023 0.0006 4.0546 0.0084 0.0269

Left Superior temporal gyrus 0.0042 0.0011 4.0035 0.0104 0.0266

Left Precuneus 0.0039 0.0010 3.9497 0.0130 0.0261

Left Insula 0.0066 0.0016 4.0335 0.0092 0.0258

Left Superior frontal gyrus 0.0021 0.0005 3.8975 0.0161 0.0258

Right Fusiform gyrus 0.0040 0.0010 3.9316 0.0140 0.0252

Left Lateral occipital gyrus 0.0029 0.0008 3.8073 0.0232 0.0251

Left Rostral anterior cingulate 0.0106 0.0026 3.9977 0.0107 0.0249

Right Superior parietal lobule 0.0027 0.0007 3.7923 0.0246 0.0247

Left Supramarginal gyrus 0.0030 0.0008 3.7491 0.0292 0.0240

Right Posterior cingulate 0.0076 0.0020 3.8591 0.0189 0.0240

Right Parahippocampal gyrus 0.0151 0.0041 3.6537 0.0424 0.0235

Right Frontal pole 0.0332 0.0088 3.7840 0.0256 0.0233

Right Inferior temporal gyrus 0.0035 0.0010 3.6820 0.0380 0.0229

GMV

ICV 0.0000 0.0000 5.4403 0.0000 0.0380

Right Hippocampus 0.0044 0.0011 4.0211 0.0097 0.0265

Left Thalamus 0.0020 0.0005 3.9643 0.0123 0.0258

Left Hippocampus 0.0039 0.0010 4.0502 0.0086 0.0251

Gf

CSA

Left Pericalcarine fissure 0.0097 0.0023 4.3083 0.0028 0.0198

Right Precentral gyrus 0.0041 0.0011 3.8765 0.0175 0.0164

Right Lateral occipital gyrus 0.0035 0.0009 3.9168 0.0149 0.0159

Left Cuneus 0.0102 0.0027 3.8300 0.0212 0.0158

Right Pericalcarine fissure 0.0077 0.0021 3.6214 0.0479 0.0144

Gc, crystalized intelligence; Gf, fluid intelligence; sMRI, structural magnetic resonance imaging; B, unstandardized regression coefficient; SE, standard error; CT, cortical thickness; CSA: cortical
thickness; GMV, gray matter volume. FDR, false discovery rate; PBonferroni , P-value after Bonferroni correction; ICV, intracranial volume.
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TABLE 3 Neuroanatomical similarity between Gc and Gf in different sMRI features.

Neuroanatomical similarity Regression coefficients of LME models Beta weights of ENR models

r ICC r ICC

CSA features 0.4827 0.4761 0.0812 0.0817

CT features 0.5184 0.4579 0.3906 0.3910

GMV features 0.2614 0.1649 0.4851 0.2853

All sMRI features 0.4660 0.4388 0.2703 0.2712

Gc, crystalized intelligence; Gf, fluid intelligence; sMRI, structural magnetic resonance imaging. r represents Pearson’s r for the 156 sMRI features [68 indices of regional cortical surface area
(CSA) + 68 indices of regional cortical thickness (CT) + 20 indices of gray matter volume (GMV) separately] for Gc and Gf; ICC represent intraclass correlation (ICC) between these same
regions for Gc and Gf.

FIGURE 4

Brain map for cortical surface area (CSA) of cortical region and gray matter volume (GMV) of subcortical region identified as contributing to predict
crystalized intelligence (Gc) and (B) fluid intelligence (Gf), respectively, in elastic net regression (ENR) models and found to be significantly
associations in linear mixed effect (LME) models. Red indicates distinct brain regions identified in ENR and LME models for Gc; yellow indicates
distinct brain regions identified in ENR and LME models for Gf; blue indicted shared brain regions identified in ENR and LME models for both Gc
and Gf.

and parietal surface area are enlarged first, followed by increasing
thickness for young adults with higher intelligence. Evidence has
verified that CSA and CT possess distinct genetic bases and
developmental trajectories (Panizzon et al., 2009). Furthermore,
gene expression is inversely correlated with development (Vidal-
Pineiro et al., 2020). CSA and CT contribute to different aspects of
intelligence (Gc and Gf). This study revealed the poor similarity
between the neural correlates of Gc and Gf, evidenced by the
low ICC in both ENR and LME models. The poor similarity
between the neuroanatomical correlates of Gc and Gf supports
the concept of distinct neuroanatomical patterns, suggesting
that Gc and Gf may be “two sides of the same coin” (i.e.,
different aspects of intelligence have differential neuroanatomical
signatures).

This study had several noteworthy strengths. This is a study
for a machine learning-based approach to predict Gc and Gf using
multiple metrics of the brain (i.e., CT, CSA, and GMV). The brain
regions analyzed via the machine learning approach were largely
supported by a univariate LME model, which validated the distinct
brain regions to predict Gc and Gf. Additionally, the findings of
this study were largely consistent with previous univariate analyses

on the sMRI correlates of intelligence, highlighting the significance
of the neuroanatomical correlates of intelligence. Furthermore, Gc
and Gf were predicted by distinct neuroanatomical patterns with
poor pattern similarity, which exhibited different neural substrates
of distinct intelligence components in adults.

In retrospect, this study had several limitations. Firstly, the
study used a cross-sectional design, which would discredit claims
regarding the causality of the observed relationships. Future
longitudinal studies should be performed to address this issue (Xu
et al., 2018, 2019). Secondly, the current results are limited only
to sMRI data, which could be further validated by resting-state
functional MRI data or functional MRI data for related tasks (e.g.,
executive function) (Niu et al., 2020; Yang et al., 2020). Another
direction to be explored is to determine whether the predictive
model accuracy can be improved by an alternative machine
learning approach. There is work suggesting that convolutional
neural network modeling can outperform standard machine
learning algorithms (Abrol et al., 2021). While this approach
would require substantially more computational resources than
the current analysis, this may improve the accuracy of predictive
models.
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5. Conclusion

In summary, using a cross-validated elastic net regression
approach, this study indicated distinct neuroanatomical patterns
that predicted Gc and Gf with robust accuracy in healthy adults.
These findings verified the results of prior works to understand
the neuroanatomical foundations of intelligence and demonstrate
the utility of machine learning in this field of research. In
addition, the distinct structural neural correlates of Gc and Gf were
comprehensively studied and recognized for their involvement in
different individual cognitive functions.
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