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Background: The brain in resting state has complex dynamic properties and 
shows frequency dependent characteristics. The frequency-dependent whole-
brain dynamic changes of resting state across the scans have been ignored in 
Alzheimer’s disease (AD).

Objective: Coactivation pattern (CAP) analysis can identify different brain 
states. This paper aimed to investigate the dynamic characteristics of frequency 
dependent whole-brain CAPs in AD.

Methods: We utilized a multiband CAP approach to model the state space and 
study brain dynamics in both AD and NC. The correlation between the dynamic 
characteristics and the subjects’ clinical index was further analyzed.

Results: The results showed similar CAP patterns at different frequency bands, 
but the occurrence of patterns was different. In addition, CAPs associated with 
the default mode network (DMN) and the ventral/dorsal visual network (dorsal/
ventral VN) were altered significantly between the AD and NC groups. This 
study also found the correlation between the altered dynamic characteristics 
of frequency dependent CAPs and the patients’ clinical Mini-Mental State 
Examination assessment scale scores.

Conclusion: This study revealed that while similar CAP spatial patterns appear in 
different frequency bands, their dynamic characteristics in subbands vary. In addition, 
delineating subbands was more helpful in distinguishing AD from NC in terms of CAP.
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1. Introduction

Alzheimer’s disease (AD) is a typical neurodegenerative disease among older people, and 
its incidence is increasing every year. In the early stages of AD, individuals experience a 
decline in memory function. This decline is accompanied by progressive damage to various 
higher cognitive functions, ultimately leading to a gradual loss of the ability to live 
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independently and, eventually, death. The prevailing conventional 
view is that AD is mainly associated with excessive deposition of 
extracellular beta-amyloid protein (Aβ) in neurons and 
hyperphosphorylation of Tau protein in neuronal cells. The 
excessive accumulation of Aβ protein in the brain forms 
extracellular plaques or senile plaques, which have toxic effects on 
neurons. They can have a complex impact on a patient’s brain 
function (Masters et al., 2015). Therefore, the identification of brain 
abnormalities specific to the early stages of AD is crucial to the 
study of brain injury in AD.

Functional magnetic resonance imaging (fMRI) provides spatial 
and temporal information about the spontaneous activity of the 
brain, and its high spatial resolution allows us to explore the 
interactions between brain regions. Resting-state functional MRI 
(rs-fMRI) is the measurement of low-frequency fluctuations (LFFs) 
in the brain’s blood oxygen level-dependent (BOLD) signal. This 
helps reflect the brain’s spontaneous neural activity in the absence 
of a specific task (Raichle et al., 2001; Grodd and Beckmann, 2014). 
It has become one of the main imaging tools for exploring the 
neural mechanisms of the brain. Resting-state functional 
MRI-based brain function analysis is frequently employed in 
clinical research for various neurological disorders, including 
Alzheimer’s disease (Barkhof et  al., 2014), Parkinson’s disease, 
schizophrenia, depression, and more (Griffanti et al., 2016; Khazaee 
et al., 2016, 2017; Wang et al., 2016). Especially for some patients 
with cognitive impairment, it is difficult to perform cognitive tasks 
during MRI scanning. Therefore, resting-state fMRI provides an 
effective way to study the brain function of AD patients (Dosenbach 
et al., 2010).

Current methods of analyzing resting-state fMRI data, such as 
functional connectivity (FC), are often based on the assumption 
that brain activity is at a steady state (Arbabshirani et al., 2013). In 
recent years, it has been found that resting brain activation is not 
stable; instead, it transitions among multiple patterns. Moreover, 
the corresponding activation patterns and transition behaviors of 
patients with brain dysfunction were significantly different from 
those of healthy subjects (Griffanti et al., 2016; Khazaee et al., 2016, 
2017; Wang et  al., 2016). Therefore, considering only static 
functional connectivity is not sufficient to explain the time-varying 
dynamic information interactions of the brain; rather, the dynamics 
of functional connectivity should be  investigated to reveal the 
complex and variable mechanisms of brain networks. In recent 
years, a number of dynamic functional connectivity (dFC) methods 
have been developed that focus on the time-varying properties of 
functional connectivity in the brain. Sliding window correlation 
(SWC) is the most widely used method (Chang and Glover, 2010; 
Allen et al., 2014). It reflects the dynamics of brain networks by 
calculating functional connectivity over different periods of time. 
However, the sliding window method suffers from many limitations 
(Hindriks et al., 2016). In particular, the choice of window length is 
crucial. Long windows are insensitive to rapid changes in 
connectivity, while short windows are more susceptible to high-
frequency noise fluctuations (Leonardi and Van De Ville, 2015). 
Therefore, many alternatives to the sliding window method have 
emerged, such as time-frequency domain-based analysis, point 
process analysis (PPA) methods (Liu and Duyn, 2013; Chen et al., 
2015), sliding-window methods based on temporal functional 

modes (TFMs; Smith et  al., 2012), PPA-inspired coactivation 
patterns (CAPs; Liu and Duyn, 2013; Liu et al., 2018), etc.

In contrast to the sliding window-based approach, which 
considers spontaneous brain activity to be  slowly changing, 
Tagliazucchi et  al. proposed that information related to resting 
brain activity can be tied to discrete events and that point process 
analysis (PPA) which includes only relevant time points can contain 
the same information as conventional full-time course analysis 
(Tagliazucchi et  al., 2011, 2012, 2016). Based on this idea that 
meaningful information can actually be  obtained from the 
observation of individual frames, a new alternative to functional 
connectivity analysis is proposed.

Inspired by the PPA method, Liu and Duyn (2013) and  
Liu et al. (2018) extracted time frames with activation levels above 
a specific threshold in the region of interest (ROI) and obtained 
CAPs by a clustering algorithm. These CAPs are highly similar to 
those obtained by correlation analysis. Subsequent improvements 
to the CAP technique have been developed, such as the extension 
to a data-driven whole brain analysis method (Liu et al., 2013). This 
allows for the generation of CAPs with different activation patterns 
and avoids the effects of selecting a specific activation threshold of 
the ROI.

In addition, the brain has complex dynamic properties and is 
capable of generating oscillatory waves at many different 
frequencies. Synchronous oscillatory activities of neural networks 
are regarded as the key to realizing the function. Frequency-specific 
studies initiated by Buzsaki et al. found that neural networks in the 
mammalian forebrain display several oscillatory bands, and the 
average frequency of oscillations forms a linear relationship on the 
natural logarithmic scale. The adjacent frequencies were separated 
with a constant ratio. They suggested that the separate bands are 
generated by different oscillators, each possessing specific properties 
and physiological functions (Penttonen and Buzsáki, 2003; Buzsáki 
and Draguhn, 2004). This extended Buzsaki’s framework to 
low-frequency oscillations of the BOLD signal, subdividing the 
spontaneous BOLD waves into four different frequency ranges. 
Slow-2 (0.198–0.25 Hz) and slow-3 (0.073–0.198 Hz) were mainly 
confined to the white matter. Slow-4 (0.027–0.073 Hz) and slow-5 
(0.01–0.027 Hz) oscillations were clearly detected in the gray matter. 
The respiratory and heart signals were in the range of slow 2–3, 
while the oscillations underlying the resting-state functional 
connectivity were mainly in the range of slow 4–5 (Zuo et al., 2010). 
Several studies have shown that the low-frequency oscillation 
pattern and functional connectivity in MCI and AD is frequency 
dependent (Han et al., 2011; Wang et al., 2011; Liu et al., 2014; Li 
et  al., 2017). The pattern of disruption of spontaneous neural 
activity and the ALFF/fALFF of brain regions may also differ 
between subbands (slow-4 and slow-5; Han et al., 2011; Liu et al., 
2014). It has also been proposed that classifiers trained by fusing 
multiband ALFF and fALFF features have good performance in 
distinguishing NC, MCI and AD (Yang et al., 2018). In addition, it 
has been found that band segmentation significantly improves the 
accuracy of MCI classifiers using graph theory-based functionally 
connected networks (Wee et al., 2012). Another study found that 
the coupling between global functional connectivity (FC) and low 
frequency oscillatory amplitude (ALFF) in the brains of dementia 
patients showed abnormalities/losses in certain brain regions 
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compared to healthy subjects and that changes in this coupling were 
sensitive to band range (Mascali et al., 2015). Therefore, it seems 
necessary to further investigate the specific changes in brain regions 
in different frequency bands.

In this study, we used a multiband CAP approach to model the 
state space and study brain dynamics in AD and NC. Unlike 
previous studies, we  focus on the frequency dependence of the 
CAP. fMRI data in the original frequency band of 0.01–0.1 Hz (LFO 
band) were subdivided into the slow-5 band (0.01–0.027 Hz) and 
slow-4 band (0.027–0.073 Hz) to calculate the CAP. In addition, 
we used classical dynamic features of state occupancy (Occurrence), 
mean duration (Duration) and frequency of occurrence (EntryRate) 
of CAPs to measure changes in the dynamics of resting-state brain 
spontaneous activity. We further analyzed the correlation between 
the dynamic characteristics and the subjects’ clinical indices to 
explore potential relationships between altered brain dynamics and 
disease pathology.

2. Materials and methods

2.1. Participants

The subject fMRI data for this study were obtained from the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. 
ADNI is an open database resource available to all researchers 
around the world.1 The downloaded data for the subjects included 
3 T structural and functional MRI data and clinical index. The 
subjects were diagnosed with AD or normal control by the Mini-
Mental State Examination (MMSE) and Clinical Dementia Rating 
Scale (CDR) scores. In this study, we selected 42 AD patients and 42 
healthy elderly individuals from the database, excluding 12 subjects 
based on head motion parameters and registration results. The 
detailed demographic information is shown in Table 1.

Participants in this study were selected from the ADNI2. 
Resting-state functional MRI and T1 data were all obtained with a 
3.0 T Philips machine for consistency. The acquisition parameters 
were as follows: fMRI Scan. The scan parameters for the 
EPI fast imaging sequence were as follows: flip angle = 80°, 
matrix = 64 × 64 × 6,720, slice thickness = 3.3 mm, TR = 3,000 ms, 
TE = 30 ms, pixel spacing = 3.3 × 3.3 × 3.3 mm3. The scan parameters 
for the 3D weighted T1 structure image were as follows: 
acquisition plan = sagittal, flip angle = 9°, matrix = 256 × 256 × 170, 

1 https://adni.loni.usc.edu/

slice thickness = 1.2 mm, TR = 6.67 ms, TE = 3.1 ms, pixel 
spacing = 1 × 1 × 1.2 mm3.

2.2. Data preprocessing

Resting-state functional MRI data were preprocessed by the FSL 
toolkit and the AFNI toolkit. The preprocessing process was as follows: 
(1) removal of the first four time points to ensure that the data were 
from a stable magnetic field, (2) application of the 3dvolreg program 
of AFNI for each subject for head-motion correction (transition 
>2 mm or rotation >2°, 12 subjects were excluded), and spatially 
smoothed data by a Gaussian-distributed smoothing kernel with a 
half-peak width of 6 mm, (3) slice timing correction, (4) detrending 
linear trends and bandpass filtering to three frequency bands (0.01–
0.027 Hz, 0.027–0.073 Hz, 0.01–0.1 Hz), (5) alignment of each subject’s 
preprocessed fMRI to the MNI152 standard spatial template using the 
linear alignment FLIRT algorithm, and (6) regression of white matter 
signal and cerebrospinal fluid signal.

2.3. Whole brain coactivation pattern 
analysis

For all participants, we applied k-means clustering algorithms to 
identify whole-brain CAP with voxel resolution in three different 
frequency bands. The computational process for CAP is shown in 
Figure 1. The preprocessed fMRI data from three frequency bands 
are clustered separately. This division results in k clusters, and the 
spatial patterns corresponding to all fMRI frames within each cluster 
are averaged to generate a CAP. The four-dimensional fMRI data of 
each subject are formatted into T*N-dimensional vectors, where T 
is the number of frames and N is the number of voxels, and a single 
N-dimensional vector is the basic unit of k-means clustering. To 
determine the stable cluster result, we first subsampled the frames of 
each subject along the time dimension by calculating the variance of 
the N-dimensional vector within each frame. According to the 
method suggested by Allen et al. (2014), subject exemplars were 
chosen as the frames with local maxima in variance. The number of 
exemplar frames for each subject ranged from 10 to 15. In our study, 
the k-means algorithm was iterated 500 times on the subsampling 
frames, and the resulting centroids were then utilized as the initial 
value for clustering all time frames of subjects. The silhouette 
method was used to evaluate the clustering performance with 
numbers ranging from 2 to 20, and the optimal number of clusters 
was determined to be seven based on maximal silhouette across all 
the iterations, which was consistent with our previous research (Li 
et al., 2022).

2.4. Time-varying characterization of 
dynamic brain network states

The different CAPs obtained by clustering the data in different 
frequency bands represent different states of spontaneous brain 
activity in the resting state. The activity pattern of each state is 
described by calculating occurrence, entry rate, mean duration and 
transition probability in different frequency bands. This reflects the 

TABLE 1 Demographic and clinical information of subjects.

AD (n  =  33) NC (n  =  39) p value

Sex(female/male) 14/19 16/23 0.90

Age(mean ± SE) 73.35 ± 1.30 74.44 ± 1.07 0.51

MMSE(mean ± SE) 22.97 ± 0.42 28.87 ± 0.20 < 0.001

CDR(mean ± SE) 0.76 ± 0.08 0.00 ± 0.00 < 0.001
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resting brain functional network state characteristics of AD patients. 
Occurrence indicates the proportion of each CAP across all scans; 
entry rate refers to the number of times a state occurs, with consecutive 
occurrences counted as 1. Mean duration indicates the average length 
of CAP that can be  maintained before it transitions to the next. 
Transition probability indicates how often a state transitions from one 
to another. More transitions reflect that the system is unstable. The 
number of CAPs is determined by the proportion of NC, with CAPs 
ranked from 1 to 7 in decreasing order of proportion.

2.5. Statistical analysis

Subject demographic and clinical index information was 
statistically analyzed using SPSS26, with chi-square tests for sex and 

one-way analysis of variance (ANOVA) statistical methods for age. 
For the characteristics of CAPs (occurrence, entry rate, mean 
duration and transition probability, etc.), the independent samples 
t-test was used to analyze the statistical significance of the differences 
between groups, with statistical significance set at p < 0.05. Pearson 
correlations were performed between the characteristics of CAPs and 
the clinical MMSE index (p < 0.05).

3. Results

A total of 21 CAPs in three different frequency bands are shown 
in Figure 2. The seven CAP patterns in different frequency bands are 
shown vertically from left to right, where the order is determined by 
the proportion of occurrence of CAPs among NC subjects in 

FIGURE 1

Schematic diagram of the coactivation mode (CAP) calculation process.

FIGURE 2

Coactivation mode profiles at different frequency bands. The seven CAP patterns in different frequency bands are shown vertically from left to right, 
where the order is determined by the proportion of occurrence of CAPs among NC subjects in descending order.
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descending order, i.e., CAP 1 has the highest proportion, and CAP 7 
has the lowest proportion. We calculated the Z score for each CAP, 
and the value of voxels above positive or negative 1.5 times the 
standard deviation are shown in Figure 2.

3.1. LFO band

The results of the statistical analysis of the time-varying 
characteristics of each CAP in the LFO band are shown in 
Figures 3A–C. We only found that the characteristics of CAP3 were 
significantly decreased in the AD group compared with the NC 
group, including occurrence (p < 0.01), duration (p < 0.01) and entry 
rate (p < 0.05). The frequency of CAP1 was negatively correlated 
with subjects’ MMSE score (Figure  3D), and the occurrence of 
CAP3 was positively correlated with subjects’ MMSE scores 
(Figure 3E). The precuneus and superior parietal lobule showed 
activation in CAP1, mainly in areas 5 and 7 of Brodmann’s area, 
while inhibitory brain areas were mainly in the superior frontal 
gyrus, medial frontal gyrus, calcarine gyrus, lingual gyrus, occipital 
gyrus and cuneus, located in areas 9/10/17/18 of Brodmann’s area.
CAP2 has opposite activation patterns to CAP1. The spatial 
mapping of CAP3 mainly showed activation and inhibition in the 

primary visual cortex, default mode network and prefrontal-related 
brain regions (Figure 3F). Activated brain areas include the talar 
sulcus, lingual gyrus, occipital gyrus, cuneus and precuneus, 
primarily in regions 17 and 19 lingual of the Brodmann areas, while 
inhibitory brain areas are mainly in the prefrontal lobe, including 
the superior frontal gyrus, medial frontal gyrus and middle frontal 
gyrus, concentrated in regions 9 and 10 of the Brodmann areas. 
CAP6-CAP7 also exhibited opposite activation patterns. The 
activated brain region of CAP6 corresponded to the inhibitory 
brain region of CAP7, primarily involving the left middle frontal 
gyrus, right occipital gyrus, and right temporal gyrus, and located 
in areas 8/18/19/20 of Brodmann’s area. Conversely, the inhibitory 
brain region of CAP6 corresponded to the activated brain region of 
CAP7, mainly comprising the right middle frontal gyrus, left 
occipital gyrus and left temporal gyrus, these brain regions 
exhibited symmetry to the activated brain region.

3.2. Slow-5 band

The Slow-5 band is the low-frequency part of the full band. As 
shown in Figure  4, the occurrence of CAP3 and CAP5 was 
significantly decreased in the AD group, but the occurrence of 

FIGURE 3

Statistical results of time-varying characteristic in the LFO band. The comparison of occurrence between AD and NC in different CAPs (A). Duration of 
AD vs. NC in different CAPs (B). Entry rate of AD vs. NC in different CAPs (C). The correlation between entry rate for CAP1 and MMSE (D). The 
correlation between occurrence for CAP3 and MMSE (E). The spatial mapping of CAP3 in the LFO band (F).
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CAP2 was increased. Regarding characteristic duration, both CAP3 
and CAP5 significantly decreased in the AD group when compared 
with the NC group. The entry rate of CAP3 was decreased, and 
CAP2 was increased in the AD group. CAP1-CAP2 have opposite 
activation patterns. The precuneus and superior parietal lobule 
show inhibition in CAP1 and activation in CAP2. These regions 
belong to the default mode network, primarily in regions 5 and 7 of 
the Brodmann areas. In contrast, the activated brain areas of CAP1 
correspond to the inhibited brain areas of CAP2, mainly including 
the superior frontal gyrus, medial frontal gyrus, calcarine gyrus, 
lingual gyrus and occipital gyrus, concentrated in parts of the 
prefrontal lobule and primary visual cortex, regions 9/10/17, among 
others, of the Brodmann areas. CAP3  in this band is similar to 
CAP2, although CAP3 is also inhibitory in the temporal gyrus and 
angular gyrus of the temporal cortex (Brodmann area, BA 39) and 
in the posterior cingulate cortex (BA 23). The activated brain 
regions of CAP4 mainly contain the right inferior parietal lobule 
(BA 40), right postcentral gyrus (BA 2), right middle frontal gyrus 
(BA 9), left occipital gyrus, and left temporal gyrus, while the 
inhibitory brain regions are symmetrical to the activated brain 
regions. CAP5 mainly shows inhibition in the precentral gyrus and 
postcentral gyrus (BA 3 and 4) of the left brain but activation in the 
right, mainly containing the posterior cingulate (BA 23), the 
precuneus (BA 23), the angular gyrus, the occipital gyrus, and the 
middle orbital gyrus. The results of the correlation analysis of the 
CAP characteristics with the subjects’ MMSE scores are shown in 
Figure 5, which indicates that the altered characteristics of CAPs 
almost showed significant correlations with the clinical index. All 
characteristics of the CAP3 and the occurrence and duration of the 

CAP5 showed significant positive correlations with the MMSE. In 
contrast, the occurrence and entry rate of CAP2 showed significant 
negative correlations with MMSE scores.

3.3. Slow-4 band

The slow-4 band (0.027–0.073 Hz) is the high-frequency part of 
the full band. The occurrence, duration and entry rate of CAP1 in 
the slow-4 band were increased in the AD group compared with the 
NC group; however, those of CAP2 and CAP3 were decreased. In 
addition, the occurrence and entry rate of CAP4 were increased, 
and the duration of CAP5 was decreased (Figure 6). The activation 
patterns of CAP1-CAP4 in the slow-4 band are opposite. In CAP1, 
the main activation regions are the superior media and frontal 
gyrus (BA 9 and 10), while the inhibition regions are the precuneus 
and superior parietal lobe (BA 5 and 7), and CAP4 is the opposite. 
In CAP2, the main activated regions include the superior frontal 
gyrus, medial frontal gyrus, angular gyrus, anterior cingulate 
cortex, and posterior cingulate, concentrated in Brodmann’s area in 
areas 9/23/39, etc., while the inhibition regions are the cuneus (BA 
17) and lingual gyrus (BA 18). The activation pattern of CAP3 is 
mainly opposite to CAP2, with activation in the posterior cingulate 
(BA 23), cuneus (BA 17) and lingual gyrus (BA 18) and inhibition 
in the superior frontal gyrus (BA 9), medial frontal gyrus (BA 9), 
angular gyrus (BA 39) and anterior cingulate cortex. In CAP5, the 
main activation region is the postcentral/precentral gyrus (BA 3 
and 4), and the inhibition region includes the superior medial/
frontal gyrus (BA 9 and 10), angular/occipital gyrus (BA 39) and 

FIGURE 4

Statistical results of time-varying characteristic in the slow-5 band. The comparison of occurrence between AD and NC in different CAPs (A). Duration 
of AD vs. NC in different CAPs (B). Entry rate of AD vs. NC in different CAPs (C). The spatial mapping of CAP2/3/5 in the slow-5 band (D–F).
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precuneus/posterior cingulate (BA 7), as shown in Figure 7. Most 
of the altered characteristics in the slow-4 bands that significantly 
changed exhibited significant correlations with the cognitive index 
except for the duration and entry rate of CAP1 as shown in Figure 7.

3.4. Cross-band CAP correlations

From Figure 2, the CAPs in different frequency bands show 
similar patterns. To further explore the cross-band correlation of 
CAP activation patterns, we calculated the Pearson correlation of 
different CAPs between the two bands separately and obtained 
three CAP cross-band correlation matrices, as shown in Figure 8. 
From the matrix, we can find many elements with large correlation 
values or even close to one, such as CAP2 in the LFO band and 
CAP1 in the slow-5 band, CAP7 in the LFO band and CAP4 in the 
slow-5 band. These results indicate that the CAPs between 
different bands have similar patterns. However, it is intriguing to 
note that highly similar CAPs in different bands do not have the 
same number, which indicates that the similar CAPs between 
different bands do not maintain the same order of occurrence.

4. Discussion

Our study focused on resting-state fMRI data of patients with 
AD using whole-brain CAP analysis in multiple frequency bands. 
The findings revealed similar CAP patterns at different frequency 

bands, but the occurrence of patterns was different. Furthermore, 
there were significant alterations in CAPs associated with the 
default mode network (DMN) and the ventral/dorsal visual 
network (dorsal/ventral VN) when comparing the AD and NC 
groups. The findings also revealed that delineating subbands was 
more helpful in distinguishing AD from NC in terms of CAP.

The spatial mapping of all CAPs at different frequency bands 
and the results of the cross-band correlation matrix indicated that 
many CAPs between different frequency bands were highly 
similar. However, the occurrence of similar CAPs between 
different frequency bands was not consistent. For example, 
CAP 1 in the LFO band, CAP 2 in the slow-5 band, CAP 7 in the 
LFO band and CAP 4 in the slow-5 band exhibit highly similar 
spatial patterns, but their occurrence patterns differ. Conversely, 
CAPs like CAP 3 in the LFO band and CAP 6 in the slow-5 band 
share similar patterns and the same occurrence order. Similar 
results are seen between the LFO-slow-4 and slow-5-slow-4 bands. 
The resting brain constantly switches between multiple steady 
states (Chang and Glover, 2010; Smith et  al., 2012; Liu et  al., 
2013), and CAP divide spontaneous activity in the resting brain 
into multiple substates, i.e., patterns of repeated coactivation or 
deactivation of different brain regions, based on differences in the 
transient spatial activation patterns of the brain. Previous studies 
have shown that there are both similarities and differences in the 
activation of brain regions and network connections of different 
frequency bands in AD patients. Our results were consistent with 
these results. Each CAP represents a state of spontaneous brain 
activity in the resting state of the brain, and a similar pattern of 

FIGURE 5

Results of correlation analysis between typical CAP and MMSE scores in the slow-5 band. The correlation between duration for CAP3/5 and MMSE  
(A, B). The correlation between entry rate for CAP2/3 and MMSE (C, D). The correlation between occurrence for CAP2/3/5 and MMSE (E–G).
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brain activity can be repeated in different frequency bands, but 
the occurrence was altered. At present, there are relatively few 
studies on the use of the frequency dependent whole-brain CAP 
method in the analysis of resting-state fMRI data for neurological 
diseases. Hang et al. used the Frequency dependent CAP method 
to study schizophrenia and found that the spatial patterns of CAP 
remained consistent across different frequency bands, which is 
familiar with our findings (Yang et al., 2022).

The characteristics of CAPs associated with the DMN and 
ventral/dorsal visual network were altered significantly between the 
AD and NC groups. Some CAP patterns with activation or inhibition 
of DMN network-related brain areas were significantly different 
between AD and NC subjects. The CAP3 spatial map in the LFO 
band showed activation and inhibition in the primary visual cortex, 
the default mode network and prefrontal-related brain regions. The 
activated brain areas include the talar sulcus, lingual gyrus, occipital 
gyrus, cuneus and precuneus, which are mainly associated with 
some higher brain functions, such as episodic memory, visuospatial 
processing, self-reflection and consciousness (Cavanna and Trimble, 
2006; Xia et al., 2013). In CAP3, inhibitory brain areas encompass 
portions of the prefrontal lobe, including the superior frontal gyrus, 
medial frontal gyrus, and middle frontal gyrus, primarily 
concentrated in Brodmann areas 9 and 10. These regions are 

associated with higher-order cognitive functions like working 
memory and self-awareness (Boisgueheneuc et  al., 2006). In 
addition, there was a significant positive correlation between the 
state percentage of CAP3 and the cognitive level of the subjects. The 
patterns that were altered in the slow-5 band were CAP2, CAP3 and 
CAP5. Although, CAP3 also showed inhibition in the temporal 
gyrus and angular gyrus of the temporal cortex (area 39 of 
Brodmann’s subdivision) and in the posterior cingulate cortex (area 
23 of Brodmann’s subdivision). The posterior cingulate cortex is the 
central node of the default mode network, which is connected to 
intrinsic control networks and more active during periods of 
inattention (e.g., recall of episodic memories, self-programming, 
daydreaming). Conversely, the network is inhibited when attention 
is externally focused (e.g., working memory, meditation; Brewer 
et al., 2013). It has been found that the PCC is not only related to 
emotional processing but also plays a key role in cognitive 
functioning and that abnormalities in the PCC are often associated 
with cognitive impairments, including memory function and 
concentration problems (e.g., Alzheimer’s disease, traumatic brain 
injury, ADHD; Leech and Sharp, 2014). At a physiological level, the 
posterior cingulate cortex shows abnormalities in metabolic levels 
and synaptic connections early in the brain of AD patients (Scheff 
et al., 2015). The slow-5 band CAP5 shows activation in the posterior 

FIGURE 6

Statistical results of time-varying characteristic in the slow-4 band. The comparison of occurrence between AD and NC in different CAPs (A). Duration 
of AD vs. NC in different CAPs (B). Entry rate of AD vs. NC in different CAPs (C). The spatial mapping of CAP1/2/3/4/5 in the slow-4 band (D–H).
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cingulate cortex, angular gyrus and occipital gyrus and inhibition in 
the precentral gyrus and postcentral gyrus (Brodmann areas 3 and 
4), which are associated with the primary motor and sensory cortex 
of the brain. However, the inhibitory brain regions in this band also 
contained several of the typical DMN-related brain regions 
described above. Furthermore, the correlation analysis revealed that 
all of the above CAPs showed significant correlations with subjects’ 
MMSE scores. Our findings are consistent with previous studies that 
have found differences in some dynamic indicators of the default 
mode network (DMN) and ventral/dorsal visual network (dorsal/
ventral VN)-related CAP between AD and NC (Ma et al., 2020). The 
PCC, precuneus, angular gyrus and medial prefrontal lobes 
mentioned above belong to the typical DMN network, whereas the 
lingual gyrus, talar sulcus and cuneus belong to the typical dorsal 
and ventral visual networks. Damage to the DMN network and 
deterioration of higher visuospatial abilities have been recognized as 
early and prominent clinical signs of AD. Although the 
neurophysiological basis remains controversial, most previous visual 
task-based studies have concluded that this is due to dysfunction of 
the visual perceptual stream associated with cognition (Franceschi 
et al., 2007; Paxton et al., 2007). In addition, another fMRI study 
showed altered interactions between the PCC or precuneus and the 
visual perceptual network in MCI and AD compared to NC in a 

visual task (Krajcovicova et al., 2017). Our result is consistent with 
this finding and suggests that the interaction between the PCC or 
precuneus and the visual perceptual network is altered in AD and 
MCI patients. This has shown that the higher-order visual processing 
dysfunction seen in AD and MCI patients may arise from inefficient 
communication mechanisms between these regions.

Based on CAP analysis, delineating subbands was more helpful 
in distinguishing AD from NC. Our dynamic characterization of the 
CAP in the two groups of subjects in different frequency bands 
revealed that the only CAP that differed between AD and NC in the 
LFO band was CAP  3, while the number of CAP patterns with 
component differences increased to three in the slow-5 band and to 
five in the slow-4 band. These results suggest that the subband 
division may help to reveal differences in brain activity. Several 
previous studies (Han et al., 2011; Wee et al., 2012; Mascali et al., 
2015; Yang et al., 2018) found that decomposing the BOLD signal 
into smaller bands and analyzing subbands would provide a more 
sensitive representation of the spatiotemporal information of brain 
activity, allowing for better identification of abnormalities in brain 
function in AD patients. Furthermore, our correlation analysis 
revealed that dynamic characterization of CAPs that showed 
significantly different between AD and NC groups almost realized 
significant correlations (positive or negative) with MMSE score. 

FIGURE 7

Results of correlation analysis of typical CAP and MMSE scores in the slow-4 band. The correlation between occurrence for CAP1/2/3/4 and MMSE 
(A–D). The correlation between duration for CAP2/3/4 and MMSE (E–G). The correlation between entry rate for CAP2/3/4 and MMSE (H–J). 
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These studies suggest that CAP analysis has the potential to be a 
clinical indicator of AD.

5. Limitations and future directions

Various limitations need to be  taken into consideration in 
future research. First, the current study investigated the subbands 
CAPs, the subbands definition might constrain the CAP results. 
More research is needed to investigate the subbands properties of 
CAPs by using wavelet-based or other frequency bands in the 
future. Second, further study should focus on using machine 
learning based on subbands CAP to distinguish the NC, AD, which 
result may be useful in the clinical diagnosis of AD. Finally, the 

relationship between subbands CAPs and physiological meaning is 
still unclear. More studies are needed to fully understand the 
physiological meaning of the CAPs. Hence, further studies that 
combine CAPs with genotype or bio-analyses are necessary to 
identify main reason behind the altered CAPs We also plan to apply 
frequency dependent whole-brain CAP method to other diseases, 
such as autism and major depressive disorder.

6. Conclusion

In this study, we  used whole-brain CAP analysis in multiple 
frequency bands. The findings revealed that similar CAP spatial 
patterns are shown in different frequency bands, but the dynamic 

FIGURE 8

CAP cross-band correlation matrix. The correlation matrix between LFO band and slow-5 band (A). The correlation matrix between LFO band and 
slow-4 band (B). The correlation matrix between slow-5 band and slow-4 band (C).
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characterization of similar patterns in subbands was different. In 
addition, CAPs associated with the default mode network (DMN) and 
the ventral/dorsal visual network (dorsal/ventral VN) were altered 
significantly between the AD and NC groups. The findings also 
revealed that delineating subbands was more helpful in distinguishing 
AD from NC in terms of CAP.

Data availability statement

The original contributions presented in the study are included in 
the article/supplementary material, further inquiries can be directed 
to the corresponding authors.

Author contributions

S-PZ, YL, NY, and Z-GH designed the project. BM, S-PZ, CL, JJ, 
and TZ analyzed the data. S-PZ, YL, BM, C-WS, SA, NY, and Z-GH 
interpreted the results and wrote the manuscript. All authors 
participated in the revision of the manuscript, contributed to the 
article, and approved the submitted version. All authors provide 
approval for publication of the content and agree to be accountable for 
all aspects of the work in ensuring that questions related to the 
accuracy or integrity of any part of the work are appropriately 
investigated and resolved.

Alzheimer’s Disease Neuroimaging 
Initiative

Data used in preparation of this article were obtained from the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) data base (https://
adni.loni.usc.edu). As such, the investigators within the ADNI contributed 

to the design and implementation of ADNI and/or provided data but did 
not participate in analysis or writing of this report. A complete listing of 
ADNI investigators can be found at https://adni.loni.usc.edu/wpcontent/
uploads/howtoapply/ADNI AcknowledgementList.pdf.

Funding

This work was supported by the National Key Program of China 
(Grants 2022ZD0208500, 2021ZD0201300), Natural Science 
Foundation of China (No. 11975178), Natural Science Basic Research 
Program of Shaanxi (No. 2023-JC-YB-07) and Shaanxi Fundamental 
Science Research Project for Mathematics and Physics (Grant 
No.22JSQ037), Scientific Research Program Funded by Shaanxi 
Provincial Education Department (No. 22JP053), Fundamental 
Research Funds for the Central Universities (xtr062022004) and 
K. C. Wong Education Foundation.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

References
Allen, E. A., Damaraju, E., Plis, S. M., Erhardt, E. B., Eichele, T., and Calhoun, V. D. 

(2014). Tracking whole-brain connectivity dynamics in the resting state. Cereb. Cortex 
24, 663–676. doi: 10.1093/cercor/bhs352

Arbabshirani, M. R., Havlicek, M., Kiehl, K. A., Pearlson, G. D., and Calhoun, V. D. 
(2013). Functional network connectivity during rest and task conditions: a comparative 
study. Hum. Brain Mapp. 34, 2959–2971. doi: 10.1002/hbm.22118

Barkhof, F., Haller, S., and Rombouts, S. A. R. B. (2014). Resting-state functional MR 
imaging: a new window to the brain. Radiology 272, 29–49. doi: 10.1148/radiol.14132388

Boisgueheneuc, F., Levy, R., Volle, E., Seassau, M., Duffau, H., Kinkingnehun, S., 
et al. (2006). Functions of the left superior frontal gyrus in humans: a lesion study. 
Brain 129, 3315–3328. doi: 10.1093/brain/awl244

Brewer, J., Garrison, K., and Whitfield-Gabrieli, S. (2013). What about the “self ” is 
processed in the posterior cingulate cortex? Front. Hum. Neurosci. 7:647. doi: 10.3389/
fnhum.2013.00647

Buzsáki, G., and Draguhn, A. (2004). Neuronal oscillations in cortical networks. 
Science 304, 1926–1929. doi: 10.1126/science.1099745

Cavanna, A. E., and Trimble, M. R. (2006). The posterior cingulate: a review of its functional 
anatomy and behavioural correlates. Brain 129, 564–583. doi: 10.1093/brain/awl004

Chang, C., and Glover, G. H. (2010). Time–frequency dynamics of resting-state 
brain connectivity measured with fMRI. Neuro Image 50, 81–98. doi: 10.1016/j.
neuroimage.2009.12.011

Chen, J. E., Chang, C., Greicius, M. D., and Glover, G. H. (2015). Introducing co-
activation pattern metrics to quantify spontaneous brain network dynamics. Neuro 
Image 111, 476–488. doi: 10.1016/j.neuroimage.2015.01.057

Dosenbach, N. U. F., Nardos, B., Cohen, A. L., Fair, D. A., Power, J. D., Church, J. A., 
et al. (2010). Prediction of individual brain maturity using fMRI. Science 329, 
1358–1361. doi: 10.1126/science.1194144

Franceschi, M., Caffarra, P., De Vreese, L., Pelati, O., Pradelli, S., Savarè, R., et al. 
(2007). Visuospatial planning and problem solving in Alzheimer’s disease patients: a 
study with the tower of London test. Dement. Geriatr. Cogn. Disord. 24, 424–428. doi: 
10.1159/000109827

Griffanti, L., Rolinski, M., Szewczyk-Krolikowski, K., Menke, R. A., Filippini, N., 
Zamboni, G., et al. (2016). Challenges in the reproducibility of clinical studies with 
resting state fMRI: An example in early Parkinson's disease. Neuro Image 124, 
704–713. doi: 10.1016/j.neuroimage.2015.09.021

Grodd, W., and Beckmann, C. F. (2014). Funktionelle MRT des Gehirns im 
Ruhezustand. Nervenarzt 85, 690–700. doi: 10.1007/s00115-014-4013-y

Han, Y., Wang, J., Zhao, Z., Min, B., Lu, J., Li, K., et al. (2011). Frequency-dependent 
changes in the amplitude of low-frequency fluctuations in amnestic mild cognitive 
impairment: a resting-state fMRI study. Neuro Image 55, 287–295. doi: 10.1016/j.
neuroimage.2010.11.059

Hindriks, R., Adhikari, M. H., Murayama, Y., Ganzetti, M., Mantini, D., 
Logothetis, N. K., et al. (2016). Can sliding-window correlations reveal dynamic 
functional connectivity in resting-state fMRI? Neuro Image 127, 242–256. doi: 10.1016/j.
neuroimage.2015.11.055

Khazaee, A., Ebrahimzadeh, A., and Babajani-Feremi, A. (2016). Application of 
advanced machine learning methods on resting-state fMRI network for identification 
of mild cognitive impairment and Alzheimer’s disease. Brain Imaging Behav. 10, 
799–817. doi: 10.1007/s11682-015-9448-7

https://doi.org/10.3389/fnins.2023.1198839
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://adni.loni.usc.edu
https://adni.loni.usc.edu
https://adni.loni.usc.edu/wpcontent/uploads/howtoapply/ADNI AcknowledgementList.pdf
https://adni.loni.usc.edu/wpcontent/uploads/howtoapply/ADNI AcknowledgementList.pdf
https://doi.org/10.1093/cercor/bhs352
https://doi.org/10.1002/hbm.22118
https://doi.org/10.1148/radiol.14132388
https://doi.org/10.1093/brain/awl244
https://doi.org/10.3389/fnhum.2013.00647
https://doi.org/10.3389/fnhum.2013.00647
https://doi.org/10.1126/science.1099745
https://doi.org/10.1093/brain/awl004
https://doi.org/10.1016/j.neuroimage.2009.12.011
https://doi.org/10.1016/j.neuroimage.2009.12.011
https://doi.org/10.1016/j.neuroimage.2015.01.057
https://doi.org/10.1126/science.1194144
https://doi.org/10.1159/000109827
https://doi.org/10.1016/j.neuroimage.2015.09.021
https://doi.org/10.1007/s00115-014-4013-y
https://doi.org/10.1016/j.neuroimage.2010.11.059
https://doi.org/10.1016/j.neuroimage.2010.11.059
https://doi.org/10.1016/j.neuroimage.2015.11.055
https://doi.org/10.1016/j.neuroimage.2015.11.055
https://doi.org/10.1007/s11682-015-9448-7


Zhang et al. 10.3389/fnins.2023.1198839

Frontiers in Neuroscience 12 frontiersin.org

Khazaee, A., Ebrahimzadeh, A., and Babajani-Feremi, A. (2017). Classification 
of patients with MCI and AD from healthy controls using directed graph measures 
of resting-state fMRI. Behav. Brain Res. 322, 339–350. doi: 10.1016/j.bbr.2016.06.043

Krajcovicova, L., Barton, M., Elfmarkova-Nemcova, N., Mikl, M., Marecek, R., 
and Rektorova, I. (2017). Changes in connectivity of the posterior default network 
node during visual processing in mild cognitive impairment: staged decline 
between normal aging and Alzheimer’s disease. J. Neural Transm. 124, 1607–1619. 
doi: 10.1007/s00702-017-1789-5

Leech, R., and Sharp, D. J. (2014). The role of the posterior cingulate cortex in 
cognition and disease. Brain 137, 12–32. doi: 10.1093/brain/awt162

Leonardi, N., and Van De Ville, D. (2015). On spurious and real fluctuations of 
dynamic functional connectivity during rest. Neuro Image 104, 430–436. doi: 
10.1016/j.neuroimage.2014.09.007

Li, C., Li, Y., Wu, J., Wu, M., Peng, F., and Chao, Q. (2022). Triple network model-
based analysis on abnormal Core brain functional network dynamics in different 
stage of amnestic mild cognitive impairment. J. Alzheimers Dis. 89, 519–533. doi: 
10.3233/JAD-220282

Li, Y., Yao, H., Lin, P., Zheng, L., Li, C., Zhou, B., et al. (2017). Frequency-
dependent altered functional connections of default mode network in Alzheimer’s 
disease. Front. Aging Neurosci. 9:9. doi: 10.3389/fnagi.2017.00259

Liu, X., Chang, C., and Duyn, J. (2013). Decomposition of spontaneous brain 
activity into distinct fMRI co-activation patterns. Front. Syst. Neurosci. 7:62295. 
doi: 10.3389/fnsys.2013.00101

Liu, X., and Duyn, J. H. (2013). Time-varying functional network information 
extracted from brief instances of spontaneous brain activity. Proc. Natl. Acad. Sci. 
110, 4392–4397. doi: 10.1073/pnas.1216856110

Liu, X., Wang, S., Zhang, X., Wang, Z., Tian, X., and He, Y. (2014). Abnormal 
amplitude of low-frequency fluctuations of intrinsic brain activity in Alzheimer's 
disease. J. Alzheimers Dis. 40, 387–397. doi: 10.3233/JAD-131322

Liu, X., Zhang, N., Chang, C., and Duyn, J. H. (2018). Co-activation patterns in 
resting-state fMRI signals. Neuro Image 180, 485–494. doi: 10.1016/j.
neuroimage.2018.01.041

Ma, X., Zhuo, Z., Wei, L., Ma, Z., Li, Z., and Li, H. (2020). Altered temporal 
Organization of Brief Spontaneous Brain Activities in patients with Alzheimer’s disease. 
Neuroscience 425, 1–11. doi: 10.1016/j.neuroscience.2019.11.025

Mascali, D., DiNuzzo, M., Gili, T., Moraschi, M., Fratini, M., Maraviglia, B., et al. 
(2015). Intrinsic patterns of coupling between correlation and amplitude of low-
frequency fMRI fluctuations are disrupted in degenerative dementia mainly due to 
functional disconnection. PLoS One 10:e0120988. doi: 10.1371/journal.pone.0120988

Masters, C. L., Bateman, R., Blennow, K., Rowe, C. C., Sperling, R. A., and 
Cummings, J. L. (2015). Alzheimer's disease. Nat. Rev. Dis. Primers. 1:15056. doi: 
10.1038/nrdp.2015.56

Paxton, J. L., Peavy, G. M., Jenkins, C., Rice, V. A., Heindel, W. C., and 
Salmon, D. P. (2007). Deterioration of visual-perceptual organization ability in 
Alzheimer's disease. Cortex 43, 967–975. doi: 10.1016/S0010-9452(08)70694-4

Penttonen, M., and Buzsáki, G. (2003). Natural logarithmic relationship between 
brain oscillators. Thalamus Relat. Syst. 2, 145–152. doi: 10.1016/S1472-9288(03)00007-4

Raichle, M. E., Mac Leod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., and 
Shulman, G. L. (2001). A default mode of brain function. Proc. Natl. Acad. Sci. 98, 
676–682. doi: 10.1073/pnas.98.2.676

Scheff, S. W., Price, D. A., Ansari, M. A., Roberts, K. N., Schmitt, F. A., 
Ikonomovic, M. D., et al. (2015). Synaptic change in the posterior cingulate gyrus 
in the progression of Alzheimer's disease. J. Alzheimers Dis. 43, 1073–1090. doi: 
10.3233/JAD-141518

Smith, S. M., Miller, K. L., Moeller, S., Xu, J., Auerbach, E. J., Woolrich, M. W., 
et al. (2012). Temporally-independent functional modes of spontaneous brain 
activity. Proc. Natl. Acad. Sci. 109, 3131–3136. doi: 10.1073/pnas.1121329109

Tagliazucchi, E., Balenzuela, P., Fraiman, D., and Chialvo, D. (2012). Criticality in 
large-scale brain fMRI dynamics unveiled by a novel point process analysis. Front. 
Physiol. 3:15. doi: 10.3389/fphys.2012.00015

Tagliazucchi, E., Balenzuela, P., Fraiman, D., Montoya, P., and Chialvo, D. R. (2011). 
Spontaneous BOLD event triggered averages for estimating functional connectivity at 
resting state. Neurosci. Lett. 488, 158–163. doi: 10.1016/j.neulet.2010.11.020

Tagliazucchi, E., Siniatchkin, M., Laufs, H., and Chialvo, D. R. (2016). The voxel-wise 
functional connectome can be efficiently derived from co-activations in a sparse Spatio-
temporal point-process. Front. Neurosci. 10:381. doi: 10.3389/fnins.2016.00381

Wang, L., Kong, Q., Li, K., Su, Y., Zeng, Y., Zhang, Q., et al. (2016). Frequency-
dependent changes in amplitude of low-frequency oscillations in depression: a resting-
state fMRI study. Neurosci. Lett. 614, 105–111. doi: 10.1016/j.neulet.2016.01.012

Wang, Z., Yan, C., Zhao, C., Qi, Z., Zhou, W., Lu, J., et al. (2011). Spatial patterns of 
intrinsic brain activity in mild cognitive impairment and alzheimer's disease: a 
resting-state functional MRI study. Hum. Brain Mapp. 32, 1720–1740. doi: 10.1002/
hbm.21140

Wee, C.-Y., Yap, P.-T., Denny, K., Browndyke, J. N., Potter, G. G., 
Welsh-Bohmer, K. A., et al. (2012). Resting-state multi-Spectrum functional 
connectivity networks for identification of MCI patients. PLoS One 7:e37828. doi: 
10.1371/journal.pone.0037828

Xia, M., Wang, J., and He, Y. (2013). Brain net viewer: a network visualization tool for 
human brain Connectomics. PLoS One 8:e68910. doi: 10.1371/journal.pone.0068910

Yang, L., Yan, Y., Wang, Y., Hu, X., Lu, J., Chan, P., et al. (2018). Gradual disturbances 
of the amplitude of low-frequency fluctuations (ALFF) and fractional ALFF in 
Alzheimer Spectrum. Front. Neurosci. 12:975. doi: 10.3389/fnins.2018.00975

Yang, H., Zhang, H., Meng, C., Wohlschläger, A., Brandl, F., Di, X., et al. (2022). 
Frequency-specific coactivation patterns in resting-state and their alterations in 
schizophrenia: An fMRI study. Hum. Brain Mapp. 43, 3792–3808. doi: 10.1002/
hbm.25884

Zuo, X.-N., Di Martino, A., Kelly, C., Shehzad, Z. E., Gee, D. G., Klein, D. F., et al. 
(2010). The oscillating brain: complex and reliable. Neuro Image 49, 1432–1445. doi: 
10.1016/j.neuroimage.2009.09.037

https://doi.org/10.3389/fnins.2023.1198839
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://doi.org/10.1016/j.bbr.2016.06.043
https://doi.org/10.1007/s00702-017-1789-5
https://doi.org/10.1093/brain/awt162
https://doi.org/10.1016/j.neuroimage.2014.09.007
https://doi.org/10.3233/JAD-220282
https://doi.org/10.3389/fnagi.2017.00259
https://doi.org/10.3389/fnsys.2013.00101
https://doi.org/10.1073/pnas.1216856110
https://doi.org/10.3233/JAD-131322
https://doi.org/10.1016/j.neuroimage.2018.01.041
https://doi.org/10.1016/j.neuroimage.2018.01.041
https://doi.org/10.1016/j.neuroscience.2019.11.025
https://doi.org/10.1371/journal.pone.0120988
https://doi.org/10.1038/nrdp.2015.56
https://doi.org/10.1016/S0010-9452(08)70694-4
https://doi.org/10.1016/S1472-9288(03)00007-4
https://doi.org/10.1073/pnas.98.2.676
https://doi.org/10.3233/JAD-141518
https://doi.org/10.1073/pnas.1121329109
https://doi.org/10.3389/fphys.2012.00015
https://doi.org/10.1016/j.neulet.2010.11.020
https://doi.org/10.3389/fnins.2016.00381
https://doi.org/10.1016/j.neulet.2016.01.012
https://doi.org/10.1002/hbm.21140
https://doi.org/10.1002/hbm.21140
https://doi.org/10.1371/journal.pone.0037828
https://doi.org/10.1371/journal.pone.0068910
https://doi.org/10.3389/fnins.2018.00975
https://doi.org/10.1002/hbm.25884
https://doi.org/10.1002/hbm.25884
https://doi.org/10.1016/j.neuroimage.2009.09.037

	Frequency dependent whole-brain coactivation patterns analysis in Alzheimer’s disease
	1. Introduction
	2. Materials and methods
	2.1. Participants
	2.2. Data preprocessing
	2.3. Whole brain coactivation pattern analysis
	2.4. Time-varying characterization of dynamic brain network states
	2.5. Statistical analysis

	3. Results
	3.1. LFO band
	3.2. Slow-5 band
	3.3. Slow-4 band
	3.4. Cross-band CAP correlations

	4. Discussion
	5. Limitations and future directions
	6. Conclusion
	Data availability statement
	Author contributions
	Alzheimer’s Disease Neuroimaging Initiative

	 References

