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Glaucoma is a leading cause of blindness worldwide, commonly associated with 
elevated intraocular pressure (IOP), leading to degeneration of the optic nerve 
and death of retinal ganglion cells, the output neurons in the eye. In recent 
years, many studies have implicated mitochondrial dysfunction as a crucial 
player in glaucomatous neurodegeneration. Mitochondrial function has been an 
increasingly researched topic in glaucoma, given its vital role in bioenergetics and 
propagation of action potentials. One of the most metabolically active tissues in 
the body characterized by high oxygen consumption is the retina, particularly the 
retinal ganglion cells (RGCs). RGCs, which have long axons that extend from the 
eyes to the brain, rely heavily on the energy generated by oxidative phosphorylation 
for signal transduction, rendering them more vulnerable to oxidative damage. In 
various glaucoma models, mitochondrial dysfunction and stress from protein 
aggregates in the endoplasmic reticulum (ER) have been observed in the RGCs. 
However, it has been shown that the two organelles are connected through a 
network called mitochondria-associated ER membranes (MAMs); hence this 
crosstalk in a pathophysiological condition such as glaucoma should be evaluated. 
Here, we review the current literature suggestive of mitochondrial and ER stress 
related to glaucoma, indicating potential cross-signaling and the potential roles 
of MAMs.
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1. Introduction

As the second leading cause of blindness worldwide, there are an estimated 80 million 
patients, and glaucoma is predicted to affect 112 million people by 2040 (Tham et al., 2014; 
Allison et  al., 2020). Characterized by retinal ganglion cell (RGC) degeneration and optic 
neuropathy, glaucoma causes gradual loss of peripheral vision, which delays diagnosis since over 
50% of people affected are unaware that they have the condition (Topouzis et al., 2008; Gupta 
et  al., 2022). Current therapies focus on reducing elevated intraocular pressure (IOP), a 
significant risk factor for the most common form of the disease: primary open-angle glaucoma 
(POAG) (Martinez and Peplow, 2022). While these treatments can effectively reduce IOP, 
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progressive loss of RGCs still occurs (Martinez and Peplow, 2022). 
Consequently, it is crucial to conduct additional research and gain a 
deeper understanding of the diverse underlying factors that result in 
the death of RGCs in glaucoma. This will aid in the development of 
novel neuroprotective strategies for treating glaucoma.

Retinal ganglion cells integrate and transmit visual signals from the 
eyes to the brain in the central nervous system. With long axons 
unmyelinated in the prelaminar region before they exit the eyes, RGCs 
have a high energy demand to transmit these signals, which is met by 
high oxygen consumption and oxidative phosphorylation. This high 
demand makes them more vulnerable to oxidative stress from reactive 
oxygen species (ROS) generated during ATP production (Kang et al., 
2021). In glaucoma, like other age-related diseases, mitochondrial 
function and the availability of antioxidants are reduced, producing a 
higher amount of ROS (Garcia-Medina et al., 2020). The imbalance 
between levels of antioxidants and ROS induces damage to the 
mitochondria, which abounds in RGCs that rely on oxidative metabolism.

The endoplasmic reticulum (ER) has many functions within a cell, 
including storing calcium ions (Ca2+) and responding to unfolded 
proteins through the unfolded protein response (UPRER) pathway 
(Treiman, 2002; Schwarz and Blower, 2016; Hurley et  al., 2022). In 
pathological conditions, the aggregation of these unfolded or misfolded 
proteins leads to ER stress (Lin et al., 2008). The presence of ER stress has 
been detected in glaucoma in various areas of the eyes, including the 
trabecular meshwork, the retina, and RGCs, specifically (Hurley 
et al., 2022).

The mitochondria and ER work together for various biochemical 
processes in the cells, with Ca2+ playing a significant role as a signaling 
molecule for essential pathways such as autophagy and apoptosis (Hurley 
et al., 2022). These organelles accomplish these tasks through the help of 
contact sites (anchored by mitochondrial and ER proteins where they 
can communicate), known as mitochondria-associated ER membranes 
(MAMs)/mitochondria-endoplasmic reticulum contact sites (MERCs). 
With both mitochondrial and ER dysfunction being observed in 
glaucomatous optic neuropathy, it is of interest to understand the 
possible role(s) that MAMs play in this age-related neurodegenerative 
condition as it has been shown to play in others. In this review, 
we  evaluate the research on cellular stress responses involving the 
mitochondria and ER in glaucomatous RGC degeneration to see the 
crosstalk between the two organelles and any potential involvement 
of MAMs.

2. Cellular stress responses in 
glaucomatous retinal ganglion cell 
degeneration

In a multifactorial condition like glaucoma, the degeneration of 
RGCs can be triggered by various forms of stress, including oxidative 
stress, ER stress, inflammation, and metabolic stress. Although their 
involvement in RGC degeneration is not fully understood, several 
mechanisms have been proposed based on experimental data.

2.1. Mitochondrial dysfunction

Reactive oxygen species are mainly produced by electron leaks in 
the mitochondrial electron transport chain, resulting in a partial 

reduction of molecular oxygen molecules. Another source is ER stress, 
which contributes to about 25% of ROS production through processes 
such as oxidative protein folding involving the ER oxidoreductin 1 
(Ero1) protein (Tu and Weissman, 2004; Zhao et al., 2019; Hurley 
et al., 2022). When endogenous antioxidants (superoxide dismutase, 
catalase, etc.) are depleted in glaucoma, ROS cannot be  cleared, 
leading to oxidative damage to DNA, proteins, and other cellular 
components. This damage can further lead to mitochondrial 
dysfunction, decreased mitophagy, and cell death (Guo et al., 2013; 
Hurley et al., 2022; Pham et al., 2022). However, it is important to note 
that at physiological levels, ROS can also function as a secondary 
messenger to modulate protein functions through oxidative post-
translational modifications. This process has been observed in the 
retina of rat eyes with IOP elevation (Tezel et al., 2005; Wall et al., 
2012; Hurley et al., 2022).

Oxidative stress can be  induced by various factors, including 
inflammation, ischemia, and axonal transport deficits that deprive 
RGCs of essential nutrients. Like the ER, the mitochondria also have 
their UPR (UPRmt) to respond to perturbations to the mitochondrial 
protein import, including excessive ROS and accumulation of 
misfolded proteins (Shpilka and Haynes, 2018). In the case of the 
mitochondria, activating transcription factor associated with stress 
(ATFS-1) will translocate to the nucleus and activate UPRmt (Shpilka 
and Haynes, 2018).

There are three other basic leucine zipper (bZIP) transcription 
factors associated with mitochondrial dysfunction response: C/EBP 
homologous protein (CHOP, also known as DDIT3), activating 
transcription factors 4 and 5 (ATF4 and ATF5) (Shpilka and Haynes, 
2018; Kang et al., 2022). In response to ER stress, protein kinase RNA 
(PKR)-like ER kinase (PERK), a transmembrane ER protein, is 
activated and phosphorylates the eukaryotic translation initiator 
factor 2α (eIF2α) (Shpilka and Haynes, 2018). The phosphorylation of 
eIF2α will limit protein translation to reduce protein load in the ER; 
however, this leads to the selective expression of the three bZIP 
transcription factors (CHOP, ATF4, and ATF5) and further 
downstream signaling for the UPRmt (Shpilka and Haynes, 2018). The 
activation of PERK/eIF2α has also been demonstrated to lower ROS 
production from the mitochondrial electron transport chain. While 
the functions of protein players in UPRmt and their signaling are still 
yet to be fully elucidated, we can look at some of the signaling cascades 
of the UPRER through ER players, such as PERK and ATF4.

The high metabolic need for RGCs means that any mitochondrial 
dysfunction can be  highly detrimental to these neurons due to a 
compromise in ATP production and oxidative damage. In glaucoma, 
changes to mitochondrial dynamics, bioenergetics, metabolism, and 
structure have been observed (Ju et  al., 2022). Dynamin-related 
GTPases, optic atrophy type 1 (OPA1) and dynamin-related protein 1 
(DRP1), regulate mitochondrial dynamics: fusion and fission, with 
DRP1 being the main effector involved in mitochondrial fission. It has 
been shown that the overproduction of ROS and increased Ca2+ 
signaling can cause the oxidation of cysteine residues on DRP1, which 
promotes DRP1 assembly into the ring-like oligomers, initiating more 
mitochondrial fission, leading to further ROS accumulation in the 
mitochondria (NavaneethaKrishnan et al., 2020; Yang S. et al., 2020).

Both oxidative stress and reduced mitochondrial respiration 
have been observed in patients with POAG (Abu-Amero et al., 
2006; Ju et al., 2022). In the DBA/2J mouse model of inherited 
glaucoma, RGCs showed abnormal changes in mitochondrial 
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structure and increased mitochondrial number, demonstrating 
decreased energy production from these damaged mitochondria 
and favorability towards fission (Coughlin et al., 2015; Kim et al., 
2015; Ju et al., 2022). These abnormal changes in the mitochondria 
can lead to a type of autophagy called mitophagy to remove the 
damaged mitochondria. Impaired mitophagy has been observed 
in both rat and mouse models of glaucoma with decreased levels 
of the lysosome-associated membrane protein 1 (LAMP1) and 
increased mitophagosome formation, indicating that the 
mitochondria are not being recycled efficiently by the lysosomes 
(Coughlin et al., 2015; Dai et al., 2018; Ju et al., 2022).

2.2. ER stress

In addition to functioning as the major Ca2+ store and acting in 
the UPR pathway, the ER also participates in lipid and steroid 
synthesis and drug metabolism, among many other functions 
(Schwarz and Blower, 2016; Hurley et al., 2022). Typical functions 
of the ER can also be disrupted by nutrient deprivation, hypoxia, 
and even oxidative stress (Lin et al., 2008; Hurley et al., 2022). ER 
stress and UPR activation have been implicated in RGC 
degeneration in pre-clinical models of glaucoma (Doh et al., 2010; 
Hu, 2016). When these dysfunctions occur, ER stress further 
triggers the UPRER and two other signaling pathways: ER overload 
response (EOR) and ER-associated degradation (ERAD) (Hurley 
et al., 2022).

The ER unfolded protein response pathway decreases the 
amount of unfolded proteins through the expansion of the ER 
membrane and the reduction of protein entries into the ER, along 
with other mechanisms (Hetz, 2012). Three major transmembrane 
ER proteins that act as stress sensors are involved in the UPRER: 
inositol-requiring protein 1α (IRE1α), activating transcription 
factor 6 (ATF6), and PERK (Ron and Walter, 2007; Hetz, 2012). To 
reduce the influx of proteins into the ER, PERK will also inhibit 
general protein translation through the phosphorylation of eIF2α, 
like the mechanism of the UPRmt. At the same time, IRE1α will 
degrade mRNA transcripts that code for certain ER-located proteins 
through regulated IRE1-dependent decay (RIDD) (Han et al., 2009; 
Hetz, 2012; Kang et al., 2022). Activation of IRE1α will also lead to 
further downstream expression of spliced transcription factor X 
box-binding protein 1 (XBP1s), with its gene products participating 
in the ERAD response (Lee et al., 2003; Acosta-Alvear et al., 2007; 
Hetz, 2012).

Under ER stress, ATF6 activation leads to the regulation of 
genes encoding chaperone proteins, ERAD components, and XBP1 
(Lee et  al., 2002; Yamamoto et  al., 2007; Hetz, 2012). ATF6 is 
exported to the Golgi apparatus, where it will be mostly digested by 
proteases to release a fragment that will be  translocated to the 
nucleus to initiate the transcription of proteins involved in 
abnormal protein cleanup. Unlike PERK and IRE1α, ATF6 does not 
stop the influx of proteins into the ER but increases the ER’s protein 
processing and degradation capacity (Kang et al., 2022).

Since glaucoma is a chronic condition, this can also put the 
RGCs under long-term ER stress. If the three signal transduction 
pathways (UPRER, EOR, ERAD) cannot restore equilibrium in the 
ER, they will induce apoptosis, which has been proposed to happen 
in a caspase-dependent manner (Hetz, 2012).

2.3. Inflammation

Another factor implicated in glaucomatous RGC degeneration is 
the presence of neuroinflammation. Pro-inflammatory cytokines, 
such as tumor necrosis factor α (TNF-α), have been detected in 
mechanically strained RGCs, the optic nerve crush model, and 
glaucomatous human eyes (Morzaev et al., 2015; Lim et al., 2016; 
Jassim et  al., 2021). In glaucomatous inflammatory signaling, the 
NOD-, LRR-and pyrin domain-containing protein 3 (NLRP3) 
inflammasome is a significant player (Yerramothu et al., 2018; Jassim 
et al., 2021). Common triggers for this protein complex can include 
extracellular ATP and ROS from cell damage and damaged 
mitochondria (Zhou et al., 2011; Gombault et al., 2012; Yin et al., 
2016; Jassim et al., 2021). IOP elevation has been shown to activate the 
NLRP3 inflammasome leading to the loss of RGCs (Pronin et al., 
2019; Jassim et al., 2021). Given that many of these cellular stress 
responses from both the mitochondria and ER are interlinked due to 
common stressors such as excessive ROS, ischemia, and ocular 
hypertension, there must be some communication exchanged between 
the two organelles.

3. Structure and function of 
mitochondria-associated ER 
membranes (MAMs)

MAMs act as a communication hub by mediating the transport of 
signaling molecules between the mitochondria and ER, regulating 
different signaling pathways to ensure functional crosstalk between 
the two. An interaction between mitochondria and the ER was first 
observed in rat liver cells by Bernhard et al. (1952) and Yang M. et al., 
(2020). In 1990, Vance coined the term “mitochondria-associated 
membranes (MAMs)” (Vance, 1990; Yang M. et  al., 2020). Mass 
spectrometry analysis in 2016 revealed more than 1,000 proteins in 
the MAMs fragments (Sala-Vila et al., 2016; Yang M. et al., 2020). In 
2017, 68 proteins were found to be localized to the MAMs (Hung 
et al., 2017; Yang M. et al., 2020). Proteins at this location are grouped 
according to their functions, such as inositol 1,4,5-triphosphate 
receptor (IP3R) and voltage-dependent anion-selective channel 1 
(VDAC1) for Ca2+ transport (Tubbs et al., 2014; D’Eletto et al., 2018) 
and autophagy-related 2/5/14 (ATG2/5/14) for autophagosomes 
formation (Figure 1; Hamasaki et al., 2013; Yang M. et al., 2020).

There are various MAMs protein tethers in mammalian cells. Some 
of the ones significant to the context of MAMs in glaucoma will 
be discussed here. Yang M. et al. (2020) identified the most important 
protein complex involved in ER-mitochondria coupling as IP3R/Grp75/
VDAC1. Inositol 1,4,5-triphosphate receptors (IP3Rs) are essential 
calcium channels that can significantly modulate cellular metabolism 
and autophagy (Kania et al., 2017; Valladares et al., 2018; Yang M. et al., 
2020). On the outer mitochondrial membrane (OMM), VDAC1 
mediates the uptake of Ca2+ into the mitochondria (Lipper et al., 2019; 
Yang M. et al., 2020). Grp75 is a member of the heat shock protein 70 
family. It binds to IP3R and VDAC1 to stabilize the protein complex and 
improve Ca2+ transport (Xu et al., 2018; Yang M. et al., 2020). Another 
player in the Ca2+ transport process is the sigma-1 receptor which 
modulates IP3R to increase ATP production (Hayashi and Su, 2007; 
Tagashira et al., 2014; Yang M. et al., 2020). Also acting as a marker of 
MAMs, the IP3R-VDAC1 protein complex is the core structure for Ca2+ 
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transport. Two other proteins that function in calcium transport and 
protein signaling are calnexin and PERK through modulations of ER 
calcium channels (Yang M. et al., 2020; Bhardwaj et al., 2022). After 
entering the mitochondria through VDAC on the OMM, calcium ions 
can bind to the regulatory subunit mitochondrial calcium uptake 1 
(MICU1), causing the OPA1 cap over the cristae junction opening on 
the inner mitochondrial membrane (IMM) to unblock transiently. This 
temporary opening allows for a rapid influx of calcium ions into the 
matrix through the mitochondrial calcium uniporter (MCU) complex 
(MCUC) on the cristae membranes, which is composed of pore-forming 
subunit MCU, regulatory subunits MICU1, MICU2, essential MCU 
regulator (EMRE), and associated proteins. The MCUC plays a vital role 
in many cellular processes, including energy production, calcium 
signaling, and cell death (Gottschalk et al., 2022).

For unfolded protein response and vesicle trafficking, vesicle-
associated membrane protein-associated protein B/C (VAPB) on the 
ER membrane plays an important role (Lee and Min, 2018; Yang 
M. et  al., 2020). VAPB can form a complex with protein tyrosine 
phosphatase-interacting protein 51 (PTPIP51) and mediate calcium 
ion transport and autophagy at the MAMs (De Vos et  al., 2012; 
Gomez-Suaga et al., 2017; Yang M. et al., 2020). Other players involved 
in autophagosome formation also include autophagy-related 2A 
(ATG2A), MAMs localization domain (MLD), and the translocase of 
outer mitochondrial membrane 40 and 70 (TOMM40/70) (Yang 
M. et al., 2020). Another group of protein complexes of importance is 
BAP-31 with TOMM40 or FIS1. B cell receptor-associated protein 31 
(BAP31) is an ER transmembrane protein that participates in 
apoptosis through calcium signaling and the ERAD pathway (Niu 
et  al., 2017; Yang M. et  al., 2020). On the mitochondrial side, 
TOMM40 promotes the translocation of proteins into the 
mitochondria (Gonzalez Montoro et al., 2018; Yang M. et al., 2020), 
while mitochondrial fission 1 (FIS1) interacts with BAP31 to activate 
its cleavage into the pro-apoptotic p20BAP31 (Iwasawa et al., 2011; 
Namusamba et al., 2021).

Outside of protein complexes, there are also individual proteins 
that connect the ER and mitochondria. The Mmm1 protein, for 
example, is essential for stabilizing the MAMs and influencing calcium 
ion homeostasis in neurons (Hirabayashi et al., 2017; Yang M. et al., 
2020). Another protein, phosphofurin acidic cluster sorting 2 protein 
(PACS-2), is also involved in MAMs stability, apoptosis, and 
autophagy (Herrera-Cruz and Simmen, 2017; Moulis et al., 2019; Li 
et al., 2020; Yang M. et al., 2020). Loss of PACS-2 can lead to the 
destruction of MAMs and dysregulation of mitophagy (Moulis et al., 
2019; Yang M. et al., 2020). Parkin, a protein involved in mitophagy 
signaling, has been shown to be  involved in maintaining MAMs 
integrity by affecting the ubiquitination of mitofusin 2 (MFN2), a 
protein located in the MAMs that participates in mitochondrial fusion.

4. Role of MAMs in retinal ganglion 
cell degeneration

It has been shown in several studies that there is a crosstalk 
between the UPRmt and UPRER (Lu et al., 2014; Rainbolt et al., 2014). 
One way this has been demonstrated is through the PERK signaling 
pathway that plays a role in ROS-induced apoptosis (Verfaillie et al., 
2012, 2013; Kang et  al., 2022). The knockout of PERK in murine 
embryonic fibroblasts was found to result in a disturbance to the 
ER-mitochondria association and decreased ROS signaling and Ca2+ 
influx from the ER to the mitochondria (Liu et al., 2013; Kang et al., 
2022). In a rat model of glaucoma (induction of ocular hypertension), 
there was a significant increase in the expression of Grp78 and 
CHOP-two proteins in the PERK signaling pathway (Doh et al., 2010; 
Hurley et al., 2022). Inhibition of the PERK-eIF2-CHOP pathway also 
demonstrated RGC soma and axon protection in various mouse 
models of glaucoma (Bhattarai et  al., 2021; Hurley et  al., 2022). 
Through different mouse models of optic neuropathies (traumatic 
optic nerve injury and glaucoma), Yang et  al. (2016) showed that 

FIGURE 1

Tethering proteins and other notable protein players at MAMs. IP3R/IP3R2, inositol 1,4,5-triphosphate receptor; Grp75, glucose-regulated protein 75; 
VDAC1, voltage-dependent anion-selective channel 1; FUNDC1, FUN14 domain containing 1; VAPB, vesicle-associated membrane protein-associated 
protein B/C; PTPIP51, protein tyrosine phosphatase-interacting protein 51; ATG2A, autophagy-related 2A; MLD, MAMs localization domain; 
TOMM40/70, translocase of outer mitochondrial membrane 40 and 70; BAP31, B cell receptor-associated protein 31; FIS1, mitochondrial fission 1; 
MFN1/2, mitofusin 1 and 2; PACS-2, phosphofurin acidic cluster sorting protein 2; PERK, protein kinase RNA (PKR)-like ER kinase; OMM, outer 
mitochondrial membrane; IMM, inner mitochondrial membrane.
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manipulation of the UPRER pathway by inhibiting eIF2-CHOP and 
activating XBP1 also promoted RGC soma and axons survival and even 
preserved visual function (Yang et al., 2016; Hurley et al., 2022).

As discussed earlier, a significant function of MAMs is regulating 
Ca2+ signaling. Ca2+ signaling is crucial for cell survival. When a cell is 
stimulated under normal conditions, the ER releases calcium ions 
through IP3Rs and ryanodine receptors (RyRs) to be taken up by the 
mitochondrial matrix to activate the tricarboxylic acid cycle for ATP 
production (Duchen, 2000). However, elevated calcium levels have been 
shown in RGC apoptosis induced by hydrostatic pressure (Sappington 
et al., 2009; Hurley et al., 2022). In ER stress, calcium is also released 
through IP3Rs and RyRs (Deniaud et al., 2008; Hurley et al., 2022). The 
intake of calcium and accumulation in the mitochondrial matrix leads 
to mitochondrial permeability transition pore opening, ROS 
production, and disruption of ATP production, starting a vicious cycle 
of damage to the mitochondria (Peng and Jou, 2010; Hurley et al., 2022). 
Increased ROS can also stimulate an increase in the intracellular Ca2+ 
concentration and activate the UPR (Gorlach et al., 2015; Hurley et al., 
2022). Like UPRER, the accumulation of misfolded proteins in the ER 
will also trigger EOR (Hurley et al., 2022). When EOR is activated, 
calcium is released from the ER and initiates ROS production. This will 
lead to the activation of nuclear factor kappa-light-chain-enhancer of 
activated B-cells (NF-κB), which can initiate both the canonical and 
alternative inflammatory response pathways (Liu et al., 2017; Bhattarai 
et al., 2021; Hurley et al., 2022).

One of the most important and most studied mitophagy 
pathways is the PTEN-induced putative kinase (PINK1) and 
parkin pathway. In pathological conditions, PINK1 accumulates on 
the OMM and causes the phosphorylation of ubiquitin, leading to 
parkin recruitment. Activated parkin can polyubiquitinate VDAC1 
and other proteins that bind to LC3 to initiate autophagosome 
formation and mitophagy (Tanida et al., 2008; Schaaf et al., 2016; 
Wang et  al., 2020). Through VDAC1’s involvement in Ca2+ 
signaling, parkin will also promote Ca2+ transport into the 
mitochondria and increase ATP production (Duchen, 2000; 
Brookes et al., 2004; Cali et al., 2013; Yang M. et al., 2020).

FUNDC1-mediated mitophagy is another mitophagy pathway 
involving MAMs. This pathway relies on the FUN14 domain 
containing 1 (FUNDC1), a MAM-localized protein, which interacts 
with IP3R2 and facilitates IP3R-dependent Ca2+ release from the ER 
to the mitochondria and cytosol (Wu et al., 2017; Yang M. et al., 
2020). When the expression of FUNDC1 decreases, Ca2+ levels reduce 
in both mitochondria and cytosol, leading to mitochondrial 
dysfunction through Ca2+-sensitive cAMP-response element binding 
protein (CREB) and disrupting MAMs protein tethers (Wu et al., 
2017; Yang M. et al., 2020). Under normal conditions, FUNDC1 can 
interact with OPA1 for the purpose of mitochondrial fusion (Chen 
et  al., 2016; Yang S. et  al., 2020). The loss or alteration of OPA1 
expression has been shown to result in the disturbance of calcium 
homeostasis, depletion of cristae junction, and increased 
mitochondrial fission, such as seen in IOP elevated DBA/2J mice (Ju 
et  al., 2008; Kushnareva et  al., 2013). In response to hypoxic 
conditions due to insufficient oxygen transport, glaucoma-related 
axonal transport deficits occur, and FUNDC1 increases significantly 
in MAMs and recruits DRP1 to promote mitochondrial fission, 
which can initiate mitophagy (Wu et al., 2016; Yang M. et al., 2020). 
The initiation of mitophagy will then cause the recruitment of 
another player: the NLRP3 inflammasome. While normally present 

in the ER, when NLRP3 is activated in response to mitophagy/
autophagy or ROS, it relocates from the ER to MAMs and connects 
to the adaptor protein ASC to initiate the assembly of the NRLP3 
inflammasome (Green et al., 2011; Zhou et al., 2011; Jassim et al., 
2021). While the involvement of MAMs in glaucomatous 
inflammation has not been fully understood, MAMs play a role in 
initiating inflammation as part of the cellular defense mechanism 
(Missiroli et al., 2018).

In conclusion, the evaluation of mitochondrial dysfunction 
and ER stress has been studied extensively in glaucoma research 
in various tissues, including the trabecular meshwork at the front 
of the eye to the retina and the optic nerve head at the back of the 
eye. Some of the multiple pathways involved in these molecular 
pathologies have also been studied, including PERK signaling, 
which modulates functions for both organelles. Other pathways 
include PINK1/parkin, CREB, and apoptotic signaling pathways. 
However, the study of MAMs in the context of glaucoma has yet 
to be done as extensively. Studies have shown the involvement of 
MAMs in these signaling pathways, some of which are essential to 
their functions. Since the collaborative activities between the 
mitochondria and ER have been demonstrated, future studies in 
RGC degeneration in the context of glaucoma should evaluate 
MAMs markers in addition to markers of the mitochondria and ER.
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Glossary

ATFS-1 Activating transcription factor associated with stress

ATF4/5/6 Activating transcription factor 4/5/6

ATG2/2A/5/14 Autophagy-related 2/2A/5/14

bZIP Basic leucine zipper

BAP31 B cell receptor-associated protein 31

CREB Ca2+-sensitive cAMP-response element binding protein

CHOP, also known as DDIT3 C/EBP homologous protein

DRP1 Dynamin-related protein 1

ER Endoplasmic reticulum

ERAD ER-associated degradation

EOR ER overload response

EMRE Essential MCU regulator

eIF2α Eukaryotic translation initiator factor 2α

FUNDC1 FUN14 domain containing 1

IMM Inner mitochondrial membrane

IP3R Inositol 1,4,5-triphosphate receptor

IRE1α Inositol-requiring protein 1α

IOP Intraocular pressure

RIDD IRE1-dependent decay

Grp75/78 Glucose-regulated protein 75/78

LAMP1 Lysosome-associated membrane protein 1

MLD MAMs localization domain

MAMs Mitochondria-associated ER membranes

MCUC Mitochondrial calcium uniporter (MCU) complex

MICU1/2 Mitochondrial calcium uptake 1/2

FIS1 Mitochondrial fission 1

MFNN1/2 Mitofusin 1 and 2

NLRP3 NOD-, LRR-and pyrin domain-containing protein 3

NF-κB Nuclear factor kappa-light-chain-enhancer of activated B-cells

OPA1 Optic atrophy type 1

OMM Outer mitochondrial membrane

PACS-2 Phosphofurin acidic cluster sorting protein 2

POAG Primary open-angle glaucoma

PERK Protein kinase RNA (PKR)-like ER kinase

PTPIP51 Protein tyrosine phosphatase-interacting protein 51

PINK1 PTEN-induced putative kinase

ROS Reactive oxygen species

RGCs Retinal ganglion cells

RyRs Ryanodine receptors

TOMM40/70 Translocase of outer mitochondrial membrane 40/70

TNF-α Tumor necrosis factor α

UPRER/mt Unfolded protein response (ER/mitochondrial)

VAPB Vesicle-associated membrane protein-associated protein B/C

VDAC1 Voltage-dependent anion-selective channel 1

XBP1 X box-binding protein 1
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