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Introduction: Golgi is one of the components of the inner membrane system in 
eukaryotic cells. Its main function is to send the proteins involved in the synthesis 
of endoplasmic reticulum to specific parts of cells or secrete them outside cells. It 
can be seen that Golgi is an important organelle for eukaryotic cells to synthesize 
proteins. Golgi disorders can cause various neurodegenerative and genetic 
diseases, and the accurate classification of Golgi proteins is helpful to develop 
corresponding therapeutic drugs.

Methods: This paper proposed a novel Golgi proteins classification method, which 
is Golgi_DF with the deep forest algorithm. Firstly, the classified proteins method 
can be converted the vector features containing various information. Secondly, 
the synthetic minority oversampling technique (SMOTE) is utilized to deal with the 
classified samples. Next, the Light GBM method is utilized to feature reduction. 
Meanwhile, the features can be utilized in the penultimate dense layer. Therefore, 
the reconstructed features can be classified with the deep forest algorithm.

Results: In Golgi_DF, this method can be utilized to select the important features 
and identify Golgi proteins. Experiments show that the well-performance than 
the other art-of-the state methods. Golgi_DF as a standalone tools, all its source 
codes publicly available at https://github.com/baowz12345/golgiDF.

Discussion: Golgi_DF employed reconstructed feature to classify the Golgi 
proteins. Such method may achieve more available features among the UniRep 
features.
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1. Introduction

Golgi is an essential organelle in eukaryotic cells (Yang et al., 2019). Its main function is to 
store, package, and classify proteins. Golgi proteins are mainly composed of Cis-Golgi proteins 
and trans-Golgi proteins (Su et al., 2022). The main task of Cis-Golgi is to accept and process at 
the same time. The main task of trans-Golgi is to release proteins labeled and processed by 
vesicles. Studies have shown that dysfunction of the Golgi apparatus in cells can cause diseases 
such as diabetes (Wang and Zou, 2023), Parkinson’s disease (Gonatas et al., 1998), Alzheimer’s 
disease (Gonatas et al., 1998), and some cancers. The current treatment methods can only 
partially cure the disease (Elsberry and Rise, 1998), which is challenging to meet the needs.

With the development of machine learning technology, machine learning model has been 
applied to the related research of protein analysis (Villeneuve et al., 2017; Wei et al., 2017a, 
2019; Zeng et al., 2018; Hou et al., 2019; Yuan et al., 2019; Hummer et al., 2020). However, 
there are few studies on the classification of Golgi protein types, and only a few are used to 
study the resident proteins of Golgi. In the past few years, Van Dijk et al. (2008) proposed a 
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method to predict the type of type II membrane protein. It utilized 
a linear kernel support vector machine as a classifier. Ding et al. 
(2011) Utilized PSEAAC and customized Markov discriminator to 
identify Golgi protein types with an accuracy of 74.7%. Then, the 
improved interval dipeptide combination method enhances the 
accuracy and realizes the prediction accuracy of 85.4% (Ding et al., 
2013). Jiao and Du (2016a) utilized the position-specific 
physicochemical properties (PSPCP) of amino acid residues to 
extract features and improved the model’s prediction accuracy to 
86.9%. After that, they combined PSPCP with Chou’s pseudo amino 
acid composition Jiao and Du (2016b). Lv et al. (2019) designed a 
random forest sub-Golgi protein classifier Rfgpt, which utilized 
2-gap dipeptide and split amino acid composition as feature vectors, 
and combined with synthetic minority oversampling technique 
(SMOTE) and analysis of variance (ANOVA) feature selection 
method, and the prediction accuracy is 90.5%.

In order to improve the classification effect of Golgi resident 
proteins, we proposed Gogli_DF model to classify the Golgi proteins 
with the deep forests model. Firstly, we utilized the UniRep method 
to achieve 1900-dimensional vector features. Secondly, we utilized the 
synthetic minority oversampling Technology (SMOTE) to deal with 
the imbalance issue of the classified samples and then used the light 
gradient boosting machine(Light GBM) method to reduce the 
dimension of the feature vector to 200-dimensional. Nextly, 
one-dimensional convolution, multi-layer LSTM, and PHATE 
dimensionality reduction are employed to extract the feature 
information, respectively. At the same time, the same 32-dimensional 
dense layer is used in the penultimate layer of the three models to 
ensure the consistency of the dimensions of various extracted vectors, 
which is convenient for the combination and selection of the features 
extracted by different models. At the same time, normalized 
normalization is used to preserve the distribution and eliminate the 
influence of dimension. Then, these feature vectors are spliced 
horizontally to achieve the purpose of feature fusion. Next, the 

above-mentioned three features can be employed in the deep forest 
classification model. With the 5-fold cross validation, the performance 
can reach 96.3% in Acc, 93.8% in Sn and 96.9% in Sp, respectively 
(Figure 1).

2. Materials and methods

2.1. Dataset

The benchmark data set of this experiment comes from the 
data set constructed by Yang et al. (2019). The data set contains 
304 amino acid sequences of Golgi proteins, including 87 positive 
samples and 217 negative samples. To avoid overfitting, we use 64 
Golgi protein amino acid sequences that are fixed and not 
included in the training set. The selected divided test set contains 
64 Golgi protein amino acid sequences with a ratio of positive and 
negative samples of about 1:4, including 13 positive samples and 
51 negative samples. The feature extraction of initial data is an 
essential step in classification. Choosing an appropriate feature 
extraction method will significantly enrich the information to 
provide an information guarantee for improving 
classification accuracy.

2.2. UniRep feature

UniRep can be  treated as a feature extraction method trained 
based on 24 million uniref50 primary amino acid sequences. The 
feature is trained to minimize the loss of cross-entropy in the 
prediction of the next amino acid. Therefore, we can learn all kinds of 
information about the sequence to ensure the richness of information 
and complete the unification of vector length. The final feature is 
represented by a 1900-dimensional fixed-length vector.

FIGURE 1

Work flow chart of Golgi_DF: Golgi proteins classification with deep forest.
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2.3. Light GBM

Light GBM algorithm is an improvement of the traditional GBM 
algorithm, which reduces the memory consumption and calculation 
cost through the histogram algorithm. At the same time, the leaf-wise 
strategy with depth limit is used to replace the level-wise decision tree 
growth strategy used by the traditional GBM tool. Another 
optimization of light GBM is the acceleration of histogram difference, 
which improves the speed. In this paper, light GBM can extract the 
200-dimensional features from 1900-dimensional ones.

2.4. Smote

According to the positive and negative samples’ unbalanced issue, 
we need to use resampling to solve this problem. The SMOTE method 
proposed by Chawla et  al. (2002). Such a method is a method of 
random undersampling for large samples and random oversampling 
for small samples. This algorithm is a standard method to deal with 
unbalanced data (Blagus and Lusa, 2013; Cateni et al., 2014; Díez-
Pastor et al., 2015; Sáez et al., 2015; Nath and Subbiah, 2016; Ma and 
Fan, 2017; Wang et al., 2019).

The detailed steps is as follows:

 1. Set the multiplier for up sampling to N.
 2. Find K-nearest neighbor of sample xi from the sample of 

interface residues, represented by xi n( ), n k∈ …{ }1, , , and 
randomly select n samples, represented by 1, , Ny y… .

 3. Synthesize new samples xi1,

 x x xi i i1 1 1= + −( )ξ y  (1)

Among them, ξ1 is a random number in (0, 1). Repeat the above 
process n times until we get new samples: xi ne( ), ne∈ …{ }1, ,N .

These newly synthesized samples are added to the original samples 
to form a new and more balanced data set.

2.5. Multi-layer LSTM and one-dimensional 
CNN

The processed data should be  further extracted by various 
methods before deep forest to improve the classification effect. This 
paper uses multi-layer LSTM and one-dimensional convolution to 
extract the features and the structure of them show in Figures 2, 3. 
Among them, the multi-layer LSTM comprises five 64-dimensional 
LSTM layers, one 32-dimensional LSTM layer, and two density layers 
in sequence. Among the last two density layers, the first density layer 
is 32 dimensional, also the data source of the previous feature 
extraction. It can ensure that the final extracted information is a 
32-dimensional fixed-length feature vector. At the same time, the 
second density layer is 1-dimensional, which is convenient for 
comparison with the label, to back-propagate the correction 
parameters to force it to express the corresponding features. The 
one-dimensional convolution consists of 20 layers in sequence. The 
first 16 layers are, respectively, composed of two convolution layers of 
32 11 * 1 convolution cores, one max-pooling layer, one dropout layer, 
two convolution layers of 64 11 * 1 convolution cores, one max-pooling 
layer, one dropout layer, two convolution layers of 128 11 * 1 
convolution cores, one max-pooling layer, one dropout layer, and the 
convolution layers of the last two 64 11 * 1 convolution cores, one 
max-pooling layer, A dropout layer. The last four layers are the average 
pooling layer and dropout layer, plus two density layers, the same as 
multi-layer LSTM. The first-density layer is also 32-dimensional as the 

FIGURE 2

One-dimensional Convolution.
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data source for the final feature extraction, while the second-density 
layer is 1-dimesional.

2.6. PHATE

At the same time, this paper uses PHATE dimension reduction 
as the feature extraction method. Unlike the UniRep used in the 
transformation process from sequence to feature vector, which needs 
to retain enough original information, PHATE focuses on preserving 
the local relationship between data points and learning overall 
spatial features, providing a new feature analysis angle for the 
classification of the deep forest. The dimension of the eigenvector is 
reduced to 32-dimensional, which is consistent with other methods. 
PHATE is a nonlinear and unsupervised method that combines the 
advantages of PCA and tsne, retains the local and global relationship 
between data, and accurately reflects the high-dimensional data 
set discussed.

The detailed operations are as follows:

1.  The value of the eigenvector of each sequence is expressed as 
x n , ,kn , ∈ …{ }1 , k equals to 200, that is, the dimension of the 
eigenvector. Gaussian kernel function is used to quantify the 
similarity between xa and xb, a b, ∈ …{ }1, ,k , according to the 
Euclidean distance between them. The expressed in Gaussian 
kernel function is kz a bx ,x( ),

 
( ) ( )2x ,x exp /a b az bk x x ε−= −

 
(2)

Where ε  is the bandwidth measurement, which is used to 
determine the neighborhood radius captured by the kernel function.

2.  The Markov random walk diffusion process is used to diffuse in 
the data. The initial probability of random walk is Pε ,

 
P

k x y
v xε
ε

ε
=

( )
( )

,

 
(3)

where

 
v x k x z

z x
ε ε( ) = ( )

∈
∑ ,

 
(4)

Thus, the transition probability matrix of a single time step from 
sequence to sequence can be calculated, and the probability matrix 
can be  improved to the best step to learn the global structure of 
the data.

3. Calculate the potential distance ℜ( )x ,xa b ,

 
( )

2
x ,x

a b

t t
x xa b U U= −ℜ

 (5)

where

 
Ux
t

x
t

a a
= − ( )log p

 
(6)

Where px
t
a
 is xa’s corresponding transition probability.

4.  Use metric multidimensional scaling (MDS metrics) by 

minimizing 1 32x , ,stress x
 

…  


 ,

FIGURE 3

Multi-Layer LSTM.
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So far, the data has been captured in the MDS embedding, and a 
fixed length vector with a length of 32 has been obtained.

2.7. Feature fusion

Using multi-layer LSTM, one-dimensional convolution network, 
and PHATE dimensionality reduction method to extract features, 
three groups of data with each sequence corresponding to a 
32-dimensional fixed length vector are obtained. These vectors are 
spliced horizontally, and each sequence obtains a 96-dimensional 
fixed-length vector, which is normalized by the normalized method. 
While scaling to between 0 and 1, the distribution of the original data 
is retained, avoiding the influence of the dimension of the feature 
vectors extracted by different classifiers on the classification results.

2.8. Deep forest

This paper uses the deep forest as the bottom classifier. The deep 
forest was proposed by Zhou and Feng (2019) They find that when the 
differences in learning samples are fully reflected, the effect of 
integrated learning will be improved accordingly. The deep forest is an 
integration of traditional forests in breadth and depth. This classifier 
uses a new decision tree integration method, a forest, and a cascade 
structure to make the forest do representation learning. The advantage 
of the classifier is that it can process data of different scales and has a 
more stable and good learning performance. The traditional deep 
neural network needs large-scale training data, and the forest works 
as usual when there is only small-scale training data. Because the data 
scale of this paper is small, and as a primary classifier, its high stability 
also provides an essential guarantee for the performance of 

classification, so the deep forest is used as the primary classifier of this 
paper, and the detailed steps of this algorithm demonstrated in 
Figure 4 (Zhou and Feng, 2019).

2.9. Evaluation performances

In the classification of Golgi resident proteins, it is an essential 
step to select appropriate evaluation indexes to evaluate the 
performance of the model. Its positive and negative samples represent 
CIS and trans-Golgi proteins, respectively. In this experiment, 
accuracy (ACC), AUC (area under ROC curve), F1–score, sensitivity 
(SN), specificity (SP), and Matthews correlation coefficient (MCC) are 
utilized in this work (Pedregosa et al., 2011; Wei et al., 2017b,c; Zeng 
et al., 2017; Hu et al., 2018; Song et al., 2018; Lin et al., 2019; Zhang 
et al., 2019). The calculation method is as follows:

 
ACC TP TN

TP FN TN FP
=

+
+ + +  

(8)

 
F score TP

TP FN FP
1 2

2
− =

×
× + +  

(9)

 
Sn TP

TP FN
=

+  
(10)

 
S TN

TN FP
p =

+  
(11)

  
MCC TP TN FP FN

TP FP TP FN TN FN TN FP
=

× − ×

+( )× +( )× +( )× +( )    
(12)

The above-mentioned parameters, including TP, TN, FP, and FN, 
mean the sample labels and the sample calculated labels.

FIGURE 4

Deep forest.
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3. Discussions and results

To prove that the combination of multi-layer LSTM and 
one-dimensional convolution network is effective for the deep forest, 
the feature extraction method is extracted by the machine learning 
method, and the model’s efficiency is explained. Therefore, these 
feature extraction methods are connected with deep forests, and the 
prediction accuracy is compared with the effect of connecting other 
models with deep forests. Specifically, RESNET, multi-layer CNN, 
random forest, and elastic net are used to compare with multi-layer 
LSTM network and one-dimensional convolution network. Table 1 
shows the comparison results on the evaluation indexes ACC, MCC, 
F1 score, AUC, Sn, and SP after connecting the deep forest with the 
six machine learning models as the means of feature extraction and 
the matrix spliced with the feature vectors extracted from multi-layer 
LSTM network and one-dimensional convolution network as the 
feature extraction results. In the machine learning model for feature 
extraction, 14-layer CNN consists of one convolution layer of 16 3 * 3 
convolution cores, one batch normalization layer, one max-pooling 
layer, one convolution layer of 32 3 * 3 convolution cores, one batch 
normalization layer, one max-pooling layer, one drop out layer, one 
convolution layers of 64 3 * 3 convolution cores, one batch 
normalization layer, one max-pooling layer and one drop out layer, In 
addition, it is composed of a global average pooling layer, a 
32-dimensional density layer, and a 1-dimensional density layer. Of 
the last two density layers, the first density layer is 32-dimensional, 
also the data source of the last feature extraction, while the second-
density layer is 1-dimensional. The last two density layers and the 
same idea of feature extraction and weight correction are adopted in 
the later RESNET, multi-layer LSTM, and one-dimensional 
convolution models. In RESNET, a data import part is composed of a 
convolution layer, batch normalization layer, activation layer, and 
pooling layer of 3 * 3 convolution kernel, a residual part composed of 
four residual blocks composed of 64, 128, 256, 512 filters, plus the 
global pooling layer and two 32-dimensional and 1-dimensional 
density layers as above. Because the results of some classifiers fluctuate 
greatly, this paper runs each classifier many times, takes the result with 
the highest accuracy in each time as the running result of that time, 
and runs 10 times to take the average value as the final result of 
the model.

It can be seen from the results that on ACC and MCC, it can 
be  found that both multi-layer LSTM and one-dimensional 
convolution networks are ahead of other models. After combination, 

the ACC value is increased by 0.031 compared with multi-layer LSTM 
and 0.013 compared with a one-dimensional convolution network. At 
the same time, the score of the combination of multi-layer LSTM and 
one-dimensional convolution network is the highest on the F1 score, 
which not only exceeds other machine learning methods but also 
improves by 0.075 and 0.034 respectively, compared with multi-layer 
LSTM and one-dimensional convolution network, indicating the 
robustness of the model. On the evaluation index AUC, the combined 
feature extraction model is also excellent, which is 0.028 and 0.028 
higher than the best multi-layer LSTM and one-dimensional 
convolution network, respectively, indicating that the combined 
model has the best generalization performance than other models. 
The above results show that the stitching feature can improve the 
model’s classification performance.

In addition, this paper also compares convolution with different 
structures and LSTM classifiers. As above, we run 10 times and take 
the average value as the final result of the model. For CNN, this paper 
compares the 7-layer CNN composed of a 1-layer 16-dimensional 
convolution, a batch normalization layer, a max-pooling layer, a 
dropout layer, a global average pooling layer, a 32-dimensional density 
layer, and a 1-dimensional density layer, and the convolution layer 
composed of two 16 3 * 3 convolution cores, a batch normalization 
layer, a max-pooling layer, two 32 3 * 3 convolution cores, and a batch 
normalization layer, A multi-layer CNN network composed of one 
max-pooling layer, two convolution layers of 64 3 * 3 convolution 
cores, one batch normalization layer, one max-pooling layer, plus a 
global average pooling layer, a 32-dimensional sense layer, and a 
1-dimensional sense layer is compared with the 14 layer CNN network 
previously used. It is found that no CNN of any structure has achieved 
an available feature extraction effect. Nevertheless, Compared with 
other CNN networks, the above 14-layer CNN model has achieved 
better results. Firstly, it shows that the appropriate number of network 
layers in the CNN network has a specific impact on the results. 
Secondly, the above 14-layer CNN network can be  considered as 
representative and reference significance; For LSTM, this paper 
compares the three-layer LSTM network with a single LSTM layer as 
the feature extraction, and achieves similar results, indicating that 
increasing the number of layers in Golgi protein classification does not 
bring ideal results; Finally, for one-dimensional convolution, the 
10 layers one-dimensional convolution model is compared. This 
model consists of a convolution layer of 32 11 * 1 convolution cores, a 
max-pooling layer, a dropout layer, and a convolution layer of 64 11 * 
1 convolution cores, a max-pooling layer, a dropout layer, an average 
pooling layer, and a dropout layer, plus two sense layers. The first sense 
layer is also 32 dimensions as the final feature extraction data source, 
and The second density layer is 1D. It is found that the multi-layer 
one-dimensional convolution model used in this paper has a 
better effect.

This paper also uses different dimensionality reduction methods 
to extract the information of the original data, which are reduced to 
32 dimensions, the same as the dimension removed by the classifier 
before and then directly put into the deep forest classifier for 
classification. This paper attempts PCA, Lasso, linear regression, 
PHATE, and ridge ones. These dimensional reduction methods are 
standard data analysis methods commonly used for dimensional 
reduction of high-dimensional data and can be used to extract the 
main feature components of data. To maintain the consistency of the 
conditions for obtaining the results, each classifier is run several times. 

TABLE 1 Comparison of several machine learning feature extraction.

Model ACC AUC
f1-

score
Sn Sp MCC

ResNet 0.764 0.643 0.414 0.438 0.847 0.281

CNN 0.797 0.701 0.519 0.538 0.863 0.390

RF 0.905 0.891 0.787 0.869 0.914 0.732

ElasticNet 0.914 0.889 0.800 0.846 0.931 0.747

LSTM 0.925 0.910 0.826 0.885 0.935 0.782

1_Dim_Conv 0.934 0.910 0.841 0.869 0.951 0.802

LSTM+1_Dim_

Conv

0.947 0.938 0.875 0.923 0.953 0.844

https://doi.org/10.3389/fnins.2023.1197824
https://www.frontiersin.org/journals/neuroscience


Bao et al. 10.3389/fnins.2023.1197824

Frontiers in Neuroscience 07 frontiersin.org

The result with the highest accuracy each time is taken as the running 
result of the current time. It is consistent with the information 
extracted by the above classifier, and it is run 10 times to take the 
average value as the final result of the model.

These experiments found that PHATE and ridge regression 
dimensional reduction have excellent extraction ability for sequence 
information. Based on the stitching feature information extracted by 
LSTM and one-dimensional convolution, this paper adopts the same 
horizontal stitching as above and then further stitches the feature data 
extracted by PHATE reduction and ridge regression reduction in the 
same way. To verify the stability of the model, each classifier is run 
several times, and the result with the highest accuracy each time is 
taken as the running result of the current time. Due to the increase 
in data and the relatively stable classification result, the average value 
is taken as the final result of the model after running five times. 
Table 2 compares our last model and other models in the evaluation 
indexes ACC, MCC, F1 score, AUC, Sn, and Sp. For the features 
extracted from multi-layer LSTM, one-dimensional convolution, and 
PHATE, after normalization by normalize method, the extraction 
effect is best using the information fusion method described above, 
and its ACC value reaches 0.963, while MCC is improved by 0.043. 
The AUC value of PHATE can reach 0.959, which has excellent 
generalization performance. Moreover, when comparing the results 
of LSTM + one-dimensional convolution without PHATE, the ACC 
value and AUC value is increased by 0.016, proving the effectiveness 
of PHATE fusion. At the same time, it is also found that the 
performance of ridge regression decreases after stitching with the 
extracted features of the two classifiers, which interferes with the 
classification of the deep forest by the underlying primary classifier 
(Table 3).

Among them, the model A is the feature extraction combination 
of multi-layer LSTM, one-dimensional convolution, and ridge 
regression, the Proposed method is the feature extraction combination 
of multi-layer LSTM, one-dimensional convolution, and PHATE, 
which is also the final model, and Model B is the feature extraction 
combination of multi-layer LSTM, one-dimensional convolution, 
PHATE, and ridge regression.

4. Conclusion

This work, the Gogli_DF model has been proposed to classify 
the Golgi proteins with the deep forests model. Firstly, the UniRep 
method to achieve 1900-dimensional vector features. Secondly, the 
SMOTE is employed to deal with the imbalance issue. And then 

several reconstruction feature methods include Light GBM, 
one-dimensional convolution, multi-layer LSTM, and PHATE. With 
the reconstructed features, the deep forest algorithm can 
be  employed as the classification model in this work. With this 
classification model proposed, several issues can be  taken 
into account.

With the development of big data technology and bioinformatics, 
the number of available protein sequences has increased significantly. 
However, due to the complex composition of proteins, it is not easy 
to classify protein sequences correctly with some traditional 
methods. Therefore, using machine learning to classify proteins has 
excellent advantages, and some dimensionality reduction methods 
of cell sequences can also improve the effect of machine learning 
model. Firstly, through the pre-training network UniRep method 
and light GBM dimensionality reduction SMOTE method, this 
paper unifies the sequences of different lengths into fixed-length 
feature vectors with relatively fewer features, fully retains various 
feature information, and solves the problem of the unbalanced 
classification issue. Through the feature fusion of the multiple 
information extracted by the machine learning model, including 
one-dimensional convolution, multi-layer LSTM network, and 
dimension reduction method PHATE, taking into account the 
influence of dimension and maintaining the original distribution, 
we fully mine various information and finally use the deep forest for 
the final classification. The experimental results show that this 
method has an excellent performance in the classification of 

TABLE 2 Comparison of machine learning feature extraction of different structures.

Model ACC AUC f1-score Sn Sp MCC

7-layer CNN 0.766 0.612 0.366 0.354 0.871 0.238

14-layer CNN 0.797 0.701 0.519 0.538 0.863 0.390

Multi-layer CNN 0.792 0.612 0.356 0.308 0.916 0.268

3-layer LSTM 0.925 0.910 0.826 0.885 0.935 0.782

Multi-layer LSTM 0.916 0.890 0.800 0.846 0.933 0.751

10-layer 1_Dim_Conv 0.894 0.836 0.733 0.738 0.933 0.672

Multi-layer 1_Dim_C 0.934 0.910 0.841 0.869 0.951 0.802

TABLE 3 Comparison of several regression feature extraction and feature 
fusion.

Model ACC AUC
f1-

score
Sn Sp MCC

LASSO 0.883 0.861 0.740 0.823 0.898 0.671

PCA 0.900 0.874 0.771 0.831 0.918 0.711

LR 0.920 0.893 0.812 0.846 0.939 0.762

PHATE 0.953 0.959 0.894 0.969 0.949 0.868

Ridge 0.953 0.953 0.893 0.954 0.953 0.865

LSTM+1_

Dim_Conv

0.947 0.938 0.875 0.923 0.953 0.844

Model A 0.953 0.936 0.885 0.908 0.965 0.858

Proposed 

method

0.963 0.954 0.909 0.938 0.969 0.887

Model B 0.959 0.957 0.904 0.954 0.961 0.881
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Cis-Golgi proteins and trans-Golgi proteins. At the same time, it is 
found that the appropriate feature stitching method is helpful to 
improve the performance, while the effect of feature extraction of 
some models is good. Still, the performance decreases when 
combined with other models. Meanwhile, when stitching features, 
we can consider not only the machine learning model but also the 
integration of appropriate biological dimensionality reduction 
methods. The machine learning model can also help improve 
performance. In the future, in addition to studying better fusion 
methods, this method and idea can become a powerful tool for 
bioinformatics and protein research.
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