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Numerous voxel-based resting-state functional magnetic resonance imaging 
(rs-fMRI) measurements have been used to characterize spontaneous brain 
activity in attention deficit hyperactivity disorder (ADHD). However, the practical 
distinctions and commonalities among these intrinsic brain activity measures 
remain to be fully explored, and whether the functional concordance is related 
to frequency is still unknown. The study included 25 ADHD, combined type 
(ADHD-C); 26 ADHD, inattentive type (ADHD-I); and 28 typically developing (TD) 
children. We  calculated the voxel-wise (temporal) and volume-wise (spatial) 
concordance among dynamic rs-fMRI indices in the slow-5 (0.01–0.027  Hz) 
and slow-4 (0.027–0.073  Hz) frequency bands, respectively. The spatiotemporal 
concordance within the slow-4 and slow-5 bands among the ADHD-C, ADHD-I, 
and TD groups was compared. Although the ADHD-C and ADHD-I groups 
showed similar volume-wise concordance, comparison analysis revealed that 
compared with ADHD-C patients, ADHD-I patients exhibited decreased voxel-
wise concordance in the right median cingulate and paracingulate gyrus (MCC) 
and right supplementary motor area (SMA) in the slow-5 band. In addition, the 
voxel-wise concordance was negatively correlated with the diagnostic scores of 
ADHD subtypes. Our results suggest that functional concordance is frequency 
dependent, and dynamic concordance analysis based on specific frequency 
bands may provide a novel approach for investigating the pathophysiological 
differences among ADHD subtypes.
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1. Introduction

Attention deficit hyperactivity disorder (ADHD) is a common and persistent 
neurodevelopmental childhood disorder and is often characterized by inattention, hyperactivity/
impulsivity or both. The disorder can seriously affect patients’ social interactions in terms of 
difficulty concentrating and poor self-control. ADHD is characterized by strong heterogeneity 

OPEN ACCESS

EDITED BY

Xiuhong Li,  
Sun Yat-sen University, China

REVIEWED BY

Linling Li,  
Shenzhen University, China  
Liang Shi,  
Emory University, United States

*CORRESPONDENCE

Yun Jiao  
 yunjiao@seu.edu.cn

RECEIVED 29 March 2023
ACCEPTED 06 October 2023
PUBLISHED 19 October 2023

CITATION

Chen R, Jiao Y, Zhu J-S and Wang X-H (2023) 
Frequency characteristics of temporal and 
spatial concordance among dynamic indices in 
inattentive and combined subtypes of attention 
deficit hyperactivity disorder.
Front. Neurosci. 17:1196290.
doi: 10.3389/fnins.2023.1196290

COPYRIGHT

© 2023 Chen, Jiao, Zhu and Wang. This is an 
open-access article distributed under the terms 
of the Creative Commons Attribution License 
(CC BY). The use, distribution or reproduction 
in other forums is permitted, provided the 
original author(s) and the copyright owner(s) 
are credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted which 
does not comply with these terms.

TYPE Original Research
PUBLISHED 19 October 2023
DOI 10.3389/fnins.2023.1196290

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2023.1196290&domain=pdf&date_stamp=2023-10-19
https://www.frontiersin.org/articles/10.3389/fnins.2023.1196290/full
https://www.frontiersin.org/articles/10.3389/fnins.2023.1196290/full
https://www.frontiersin.org/articles/10.3389/fnins.2023.1196290/full
https://www.frontiersin.org/articles/10.3389/fnins.2023.1196290/full
https://www.frontiersin.org/articles/10.3389/fnins.2023.1196290/full
https://www.frontiersin.org/articles/10.3389/fnins.2023.1196290/full
mailto:yunjiao@seu.edu.cn
https://doi.org/10.3389/fnins.2023.1196290
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2023.1196290


Chen et al. 10.3389/fnins.2023.1196290

Frontiers in Neuroscience 02 frontiersin.org

and familial aggregation (Faraone and Larsson, 2019; Tistarelli et al., 
2020). The total prevalence of ADHD in children and adolescents in 
China was 6.26% (Wang et  al., 2017). ADHD encompasses three 
subtypes: the predominantly inattentive subtype (ADHD-I), the 
hyperactive/impulsive subtype (ADHD-HI) and the combined 
subtype (ADHD-C), according to the fifth edition of Diagnostic and 
Statistical Manual of Mental Disorders (DSM-V). Different ADHD 
subtypes may have different complex characteristics. ADHD-I is 
associated with dysfunctions in the fronto-parietal and cerebellar 
systems of task execution control, while ADHD-C is associated with 
the default network, highlighting issues related to motivation and 
emotions in the disorder (Fair et al., 2012). Moreover, subgroups also 
differ in the degree of cognitive impairment (Karalunas and Nigg, 
2020), which may be important for elucidating relevant aspects of 
neurobiological heterogeneity. ADHD studies still present challenges 
such as subtype symptom instability that manifests with development 
(Krasner et al., 2018; Luo et al., 2019) and difficulties in identifying 
neurophysiological markers (Nigg et al., 2005, 2020). Therefore, it is 
necessary to further search for effective subtype-specific functional 
neuroimaging biomarkers to address these challenges.

Resting-state functional magnetic resonance imaging (rs-fMRI) is 
an MRI analysis that measures the blood oxygen level dependent 
(BOLD) signals of patients in the absence of external stimulation 
(Biswal et  al., 1995; Fox and Raichle, 2007). It is characterized by 
simple operation and easy completion for patients with mental 
disorders. To characterize the fluctuating patterns of brain activity, 
various voxel-based rs-fMRI metrics have been proposed. Regional 
homogeneity (ReHo) was first proposed to reflect the degree of 
concordance between an individual voxel and its neighbors during 
activity (Zang et al., 2004). The amplitude of low frequency fluctuation 
(ALFF) and fractional ALFF (fALFF) were subsequently proposed to 
measure the energy level when the time series of voxels were converted 
to the frequency scale and the fluctuation amplitude after 
normalization (Zang et al., 2007; Zou et al., 2008). They have been 
widely applied to ADHD (An et al., 2013; He et al., 2022). Subsequently, 
the concepts of degree centrality (DC) (Buckner et al., 2009; Zuo et al., 
2012) and voxel mirror homotopic connectivity (VMHC) (Zuo et al., 
2010) were developed based on functional integration. DC is used to 
measure the relationship between individual voxels and the global 
networks, and VMHC measures the functional connection between 
symmetrical voxels in the two hemispheres. In addition, global signal 
correlation (GSC) evaluates the functional connectivity between each 
voxel and the average time course from global signals (Hahamy et al., 
2014; Power et  al., 2017). These indices have been widely used to 
characterize the abnormal intrinsic brain activity of ADHD patients 
(Jiang et al., 2019; Shang et al., 2021; Chen et al., 2022).

Although there are definitional differences among these intrinsic 
brain activity indices, the practical distinctions and commonalities 
among these fMRI measures still need to be  fully explored in the 
absence of a comprehensive neurophysiological perspective on the 
underlying mechanisms of ADHD. Yan et  al. proposed a novel 
concept, dynamic concordance, to comprehensively explore the 
interdependent relationship among rs-fMRI indices in terms of 
temporal and spatial dynamics (Yan et al., 2017). While the optimal 
methodologies are still under exploration (Hindriks et al., 2016), the 
temporal dynamic perspective of rs-fMRI measures makes it possible 
to couple different measures together within individuals. Dynamic 
functional network analysis revealed that spontaneous neuronal 

activity shows dynamic fluctuations in the resting state (Calhoun et al., 
2014; Preti et  al., 2017). It also revealed that the fluctuations in 
dynamic functional connectivity of intrinsic brain activity are 
consistent with periods of high and low network modularity, which 
can be used to investigate the spatiotemporal patterns of time-varying 
functional connection characteristics (Betzel et al., 2016). Yan et al. 
conducted a temporal dynamic analysis of healthy individuals and 
revealed the presence of high and low integration states in the brain. 
The high concordance state is characterized by increased functional 
connectivity within and between networks, suggesting more general 
variations in network segregation and integration (Yan et al., 2017). In 
addition, dynamic concordance has been applied to mental disorders, 
and the temporal and spatial concordance values were reduced in 
patients with Alzheimer’s disease and major depressive disorder 
compared to healthy controls (Zhu et al., 2019; Tian et al., 2022).

Most studies on neural oscillations in ADHD patients have 
examined the conventional low frequency band (0.01–0.08 Hz). 
However, when Buzsaki et  al. subdivided the full frequency of 
oscillations into subbands, they found that oscillations within different 
bands were related to various neurophysiological activities (Buzsáki 
and Draguhn, 2004). Previous studies on conventional frequency bands 
have neglected important information contained in each separated 
frequency band. The mixed neural oscillation can be divided into six 
frequency bands from slow-6 to slow-1 according to natural logarithmic 
linear theory (Buzsáki and Draguhn, 2004). Research has found that 
blood oxygen level-dependent oscillations in gray matter of the brain 
are mainly concentrated in slow-5 (0.01–0.027 Hz) and slow-4 (0.027–
0.073 Hz), with stronger signals observed in cortical structures in 
slow-5 and subcortical structures in slow-4 (Zuo et  al., 2010). 
Physiological noises such as respiratory and heart rates are recorded at 
approximately 0.25 Hz and 1 Hz, respectively (Cordes et  al., 2001). 
Compared to other bands, slow-5 and slow-4 contain less physiological 
information, which can reduce nuisance noise. As a result, many studies 
have targeted the slow-5 and slow-4 frequency bands (Bastiaansen 
et  al., 2015; Wang et  al., 2020; Yang et  al., 2020). Systematic fMRI 
studies of frequency bands have shown that it is crucial to restrict the 
frequency range for accurate quantification of neuronal activity due to 
the differences in the strength and distribution of low-frequency 
oscillations. However, research on the neural mechanisms of ADHD 
subtypes across frequency subbands is still lacking.

Our study compared the spatiotemporal concordance within the 
slow-4 and slow-5 bands among the ADHD-C, ADHD-I and typically 
developing (TD) groups. The frequency and group interaction effect 
was analyzed to identify the temporal neurophysiological patterns of 
ADHD subtypes in frequency subbands. Based on previous research 
findings, we  hypothesized that there would be  differences in the 
dynamic functional concordance of intrinsic brain activity among 
ADHD subtypes. Our study may enable better understanding of the 
neurophysiological dysfunction patterns in ADHD subtypes.

2. Materials and methods

2.1. Participants and data acquisition

The data used in this research were obtained from the Peking 
University dataset in the ADHD-200 Consortium (ADHD 
Consortium, 2012). The inclusion criteria of this dataset included: (1) 
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no lifetime history of head trauma with loss of consciousness, (2) no 
history of neurological disease and no diagnosis of either 
schizophrenia, affective disorder, pervasive development disorder, or 
substance abuse and (3) full scale Wechsler Intelligen0ce Scale for 
Chinese Children-Revised (WISCC-R) score of greater than 80. The 
participants in the dataset are children aged 9–15 years old and they 
stopped taking psychostimulant medication for at least 48 h before the 
scan. Our study continued to exclude subjects based on the following 
criteria. (1) Female participants were excluded because the proportion 
of female subjects was small, and sex differences could not 
be examined. (2) Left-handed subjects were excluded to reduce the 
influence of handedness. (3) Participants with poor image quality or 
incomplete information were excluded. (4) Participants with excessive 
head movement (translation >3 mm, rotation angle >3° or Jenkinson 
mean frame-wise displacement (FD) greater than 0.2) were excluded. 
(5) Patients with various ADHD subtypes were differentiated and 
grouped according to the DSM-IV criteria. Since the Peking University 
dataset does not include patients with the ADHD-HI subtype, this 
study only included ADHD-C and ADHD-I patients. Then, 
we matched the ADHD subtypes with healthy controls based on age 
to reduce intergroup variance. A total of 25 ADHD-C patients, 26 
ADHD-I patients and 28 healthy controls were finally included. All 
participants were assessed with the Computerized Diagnostic 
Interview Schedule IV (C-DIS-IV) and the Schedule of Affective 
Disorders and Schizophrenia for Children—Present and Lifetime 
Version (K-SADS-PL). The ADHD Rating Scale (ADHD-RS) IV was 
employed to provide dimensional measures of ADHD symptoms. All 
participants or legal guardians provided written informed consent, 
and the study was approved by the Research Ethics Review Board of 
Institute of Mental Health, Peking University.

The functional and anatomical MRI data were obtained with 3 T 
Siemens Trio scanners. The scan parameters were 2,000 ms for the 
repetition time (TR) and 30 ms for the echo time (TE). More detailed 
scanning parameters can be found in http://fcon_1000.projects.nitrc.
org/indi/adhd200/.

2.2. fMRI data preprocessing

The resting-state data were preprocessed with Data Processing 
and Analysis for Brain Imaging (DPABI) (Yan et al., 2016), which was 
based on Statistical Parametric Mapping software (SPM12) (http://
www.fil.ion.ucl.ac.uk/spm) and Resting-State fMRI Data Analysis 
Toolkit V1.8 (REST 1.8) (http://www.restfmri.net) (Song et al., 2011). 
The first 10 volumes were discarded to allow participants to adapt to 
the scanning environment and allow the magnetic field to stabilize. 
The time delay between slices was corrected, and realignment was 
performed to correct for head motion between time points. 
Participants with head motion exceeding 3 mm in translational 
movement, 3° in rotation, or 0.2 in mean Jenkinson FD were excluded. 
T1 structural images were aligned to the average functional images 
through a 6 degrees-of-freedom linear transformation. Then, 
structural images were segmented into gray matter, white matter and 
cerebrospinal fluid, and nuisance covariates were regressed out. The 
segmented images were normalized to the Montreal Neurological 
Institute (MNI) space using the diffeomorphic anatomical registration 
through the exponentiated Lie algebra (DARTEL) tool. Finally, 
functional volumes were resampled into 3 mm isotropic voxels.

2.3. Calculation of dynamic rs-fMRI indices

We used a sliding window to analyze the temporal dynamic 
characteristics of rs-fMRI indices. Hamming windows with a length 
of 32 TR and a step of 4 TR were applied along the time series. 
Previous studies have shown that dynamic functional connectivity 
fluctuations can be captured even with window lengths ranging from 
30 to 60 s, and different window lengths do not produce significantly 
different results (Deng et al., 2016; Preti et al., 2017). Moreover, the 
step size does not significantly affect the variability of fMRI dynamic 
characteristics, but the empirical value is equal to one-tenth of the 
window length (Liao et al., 2019). The window length and step size 
we used were based on previous literature (Lou et al., 2021; Yang et al., 
2022). The following dynamic measurements were calculated in 
each window:

 1. ALFF/fALFF: ALFF is defined as the average power spectrum 
of the time series after Fourier transform in a particular 
low-frequency band (Zang et al., 2007), and fALFF is the ratio 
of the power spectrum in the low-frequency band to the entire 
frequency range (Zou et al., 2008). ALFF reflects the intensity 
of neural activity by the amplitude of the spectrum, while 
fALFF represents the relative contribution of a particular 
oscillation to the entire detectable frequency range. In this 
study, we  used 0.01–0.027 Hz (slow-5) and 0.027–0.073 Hz 
(slow-4) bandpass filters to calculate ALFF/fALFF, respectively.

 2. ReHo: A method for quantifying functional separation using 
Kendall’s coordination coefficient to calculate time series 
between a particular voxel and its nearest neighboring voxels 
(26 voxels) (Zang et  al., 2004). ReHo reflects the degree of 
concordance in regional neural activity.

 3. DC: A method of determining functional integration by 
calculating Pearson’s correlation coefficient between the time 
series of each voxel and all gray matter voxels. DC was defined 
as the sum of positive functional connectivity above the 
threshold of 0.25 (Buckner et al., 2009; Zuo et al., 2012).

 4. GSC: Pearson’s correlation coefficients were used to calculate 
the correlation between each voxel time course and the average 
time course from global signals (Hahamy et al., 2014). Then, 
Fisher’s Z-transformation was performed to obtain GSC maps.

 5. VMHC: The average T1 mirrored images were first used as a 
template to transform the functional images to the standard 
symmetric space. Then, Pearson’s correlation coefficients 
between the time course of each voxel and the corresponding 
symmetric hemispheres were calculated to represent the 
functional connectivity between any pair of symmetric 
hemispheres (Zuo et al., 2010). Finally, the VMHC maps were 
Fisher Z-transformed for subsequent analysis.

The fMRI indices mentioned later in the text referred to dynamic 
measures, namely, dynamic fALFF/ReHo/DC/GSC/VMHC.

2.4. Voxel-wise and volume-wise 
concordance

Kendall’s W coefficient was used to quantify the degree of 
concordance among five dynamic rs-fMRI indices (fALFF, ReHo, DC, 
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GSC, and VMHC), since this non-parametric statistic has no 
assumptions of the distribution and is insensitive to differences in scale 
among these fMRI measures (Yan et  al., 2017). Due to the high 
collinearity between ALFF and fALFF, to avoid artificially exaggerating 
concordance measurements, only fALFF was utilized in the analysis. It 
has been reported that fALFF measurement shows less susceptible to 
nuisance noise and has higher sensitivity and specificity than ALFF 
(Zou et al., 2008; Yan et al., 2013). We calculated two kinds of dynamic 
concordance. (1) Voxel-wise concordance (temporal concordance) was 
defined as Kendall’s W coefficient of the five dynamic fMRI indices 
across time windows. Each voxel was assigned a concordance value, 
which formed a global voxel-wise concordance map in each participant 
(Yan et al., 2017). Then, the map was smoothed with a 4 mm full width 
at half maximum (FWHM) Gaussian kernel. (2) Volume-wise 
concordance (spatial concordance) was calculated within each window 
by computing Kendall’s W coefficient of fMRI indices across all brain 
voxels. Kendall’s W from all time windows was averaged to obtain one 
spatial concordance value for each participant (Yan et al., 2017).

2.5. Statistical analysis

The demographic information was assessed with SPSS 26.0. The 
baseline data of the ADHD-C, ADHD-I and TD groups were checked 
for normality and homogeneity of variance, and the group 
comparisons were corrected by Bonferroni adjustment for multiple 
comparisons. The statistical results are shown in Table 1.

We constructed a full-factorial analysis of variance (ANOVA) 
model with frequency band (slow-5 and slow-4) as the within-subject 
factor and group (ADHD-C, ADHD-I and TD) as the between-
subject factor in SPM12. The interaction effects of frequency and 
group on the concordance maps were compared at the voxel-based 
level. The mask was constructed from the gray matter of 90% of 
included individuals, and age and FD were included as covariables. 
Monte Carlo simulations were performed to correct the resulting 
images, and the cluster threshold was set at a voxel-wise p < 0.001 and 
survival after 5,000 Monte-Carlo simulations. In addition, a post hoc 
analysis was performed for clusters with significant interaction effects. 
The significant clusters were extracted as regions of interest (ROIs), 
and simple effect analysis was performed between two frequency 
bands and among three groups, respectively, in SPSS. The statistical 

results were corrected by Bonferroni adjustment. Then, we calculated 
the mean of a given fMRI measure (fALFF, ReHo, DC, GSC, or 
VMHC) in the ROIs for each time window. In each participant, 
we calculated the correlations between pairs of the time series of five 
fMRI indices. These correlations were then averaged across each 
group of participants to provide an estimation of the dynamic 
correlation. Finally, Pearson’s partial correlation analysis was 
conducted to examine the relationships between the concordance 
indices of the ROIs and clinical scores, with age and FD as covariables.

3. Results

3.1. Voxel-wise concordance alterations

As shown in Figure 1; Table 2, voxel-wise concordance of the 
ADHD-C, ADHD-I, and TD groups showed significant differences in 
the interaction effect in the right median cingulate and paracingulate 
gyrus (MCC) and right supplementary motor area (SMA). The post 
hoc analysis showed that the between-group differences all occurred 
in slow-5 (with Bonferroni correction), while no significant differences 
were found in slow-4 (Figure 2). The ADHD-I group exhibited lower 
voxel-wise concordance than the ADHD-C group in the MCC and 
SMA, and the ADHD-I group also showed decreased voxel-wise 
concordance in the MCC compared with the TD group. The 
comparison of frequency bands within individuals showed (Figure 3) 
that both the ADHD-C and ADHD-I groups significantly differed in 
slow-5 and slow-4. Moreover, compared with other groups, the 
ADHD-I group showed the lowest voxel concordance in the MCC and 
SMA in slow-5 (MCC of ADHD-I in slow-5 vs. slow-4, p = 0.0006; 
SMA of ADHD-I in slow-5 vs. slow-4, p = 0.003).

3.2. Volume-wise concordance alterations

No significant differences in volume-wise concordance were 
found among the ADHD-C, ADHD-I, and TD groups. However, the 
ADHD-C group showed an increased standard deviation (SD) of 
volume-wise concordance in slow-5 compared with slow-4 (p = 0.033) 
(Figure 4), while the mean value of volume concordance showed no 
differences (p = 0.693).

TABLE 1 Demographics and clinical characteristics of the participants.

ADHD-C ADHD-I TD ANOVAa Group comparisonsb

C-I C-TD I-TD

N 25 26 28 – –

Gender (male) 25 26 28 – –

Age (years) 11.6 ± 1.7 12.5 ± 1.7 12.1 ± 1.5 0.148 0.154 0.952 0.935

ADHD index 56.7 ± 7.5 46.0 ± 6.4 28.5 ± 5.9 <0.001 <0.001 <0.001 <0.001

Inattentive index 29.6 ± 3.5 27.8 ± 3.2 15.7 ± 3.5 <0.001 0.239 <0.001 <0.001

Hyper/impulsive index 27.2 ± 5.2 18.3 ± 4.4 12.8 ± 3.5 <0.001 <0.001 <0.001 <0.001

Verbal IQ 115.4 ± 17.5 110.5 ± 14.7 118.0 ± 13.7 0.198 0.771 0.989 0.228

Performance IQ 100.3 ± 12.4 95.2 ± 16.6 110.6 ± 15.5 0.001 0.697 0.044 0.001

Data are presented as the mean ± standard deviation. C, ADHD-combined; I, ADHD-inattentive; TD, typically developing.  
ap values for ANOVA among the three groups.
bp values for group differences after Bonferroni multiple comparison correction.
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3.3. Correlation among fMRI indices

The ROI-level correlations between pairs of five fMRI indices 
(fALFF, ReHo, DC, GSC, and VMHC) are shown in Figure  5. 
We found that the degree of correlation within individuals was higher 
than that between groups over time. It is worth noting that Yan et al. 
found a strong global correlation among all measures in healthy 
individuals (Yan et al., 2017), while we found weak or no correlations 
between some indices in ROIs for the ADHD-C and ADHD-I groups. 
The main manifestation was that fALFF was less strongly correlated 
with GSC and DC.

3.4. Correlation with the clinical scores

The significant partial correlation analysis results were all in 
slow-5 (Figure  6). The voxel-wise concordance of the MCC was 
negatively correlated with ADHD Index and Hyper/Impulsive Index 
of the ADHD-C group (r = −0.467, −0.531; p = 0.033, 0.013; 
uncorrected). The voxel-wise concordance of the MCC was negatively 

correlated with ADHD Index and Inattentive Index of the ADHD-I 
group (r = −0.471, −0.618; p = 0.031, 0.003; uncorrected).

4. Discussion

This study compared the temporal and spatial concordance of 
dynamic rs-fMRI indices among the ADHD-C, ADHD-I and TD 
groups in the slow-5 and slow-4 bands. The results showed that the 
voxel-wise concordance of the MCC and SMA was significantly 
influenced by the interaction of frequency band and group. Moreover, 
the post hoc analysis showed prominent temporal variation among the 
three groups in the slow-5 band, and the voxel-wise concordance was 
also correlated with clinical scores. The volume-wise concordance 
showed no significant group differences, but showed differed between 
the slow-5 and slow-4 frequency bands.

4.1. Variations in temporal concordance

By analyzing the spatiotemporal coupling states of ADHD-C and 
ADHD-I subtypes, we found that the ADHD-I group exhibited lower 
temporal concordance than the ADHD-C group in the MCC and 
SMA. Dynamic concordance states reflect the integrated function of 
brain network segregation and integration, and are related to 
functional connectivity within and between networks (Yan et  al., 
2017). The SMA is often involved in response inhibition and is 
considered a crucial region for inhibiting unnecessary movements 
(Mostofsky et al., 2003), planning and executing behavior (Nachev 
et al., 2008; Simmonds et al., 2008; Rowe et al., 2010) and cognitive 

FIGURE 1

Significant frequency  ×  group interaction effects obtained from ANOVA.

TABLE 2 Significant frequency  ×  group interaction effects obtained from 
ANOVA.

Region L/R Peak MNI coordinates F Cluster 
size 

(mm2)x y z

MCC R 9 3 33 12.65 324

SMA R 6 −6 69 12.16 216

MCC, median cingulate and paracingulate gyrus; SMA, supplementary motor area.
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functions (Bari and Robbins, 2013). Studies have found decreased 
connectivity between the SMA and other functional areas in ADHD 
(Kumar et al., 2022), and disrupted functional activation in the SMA 
was associated with sustained attention deficits (Fassbender et al., 
2015). Moreover, the MCC is an integrated area that operates across 
functional domains, promoting the selection and motor responses 
through its connections with the prefrontal cortex and SMA. It plays 
anatomical and functional integration roles in cognitive control, 
somatic pain and emotional processing (Shackman et al., 2011; Vogt, 
2016; Kragel et al., 2018). Additionally, previous study found that 
disruptions in the motor response circuit often lead to deficits in 
response inhibition in children with ADHD (Suskauer et al., 2008).

Dynamic analysis revealed that all fMRI measures were closely 
coupled with each other in healthy individuals, reflecting common 
fluctuation patterns underlying the functional aspects (Yan et  al., 
2017). However, certain fMRI measurement pairs exhibited low 
correlations within the MCC and SMA of ADHD patients. This 
suggests a regional impairment of coordination, serving as a possible 
explanation for the reduced dynamic concordance. Moreover, research 
has shown that a high concordance state is associated with increased 
functional connectivity within and between networks (Yan et  al., 
2017). The decreased voxel-wise concordance in the MCC and SMA 
may reveal impaired functional connectivity in the motor response 
areas and disruptions of network integration, which may be related to 
impulsivity symptoms in ADHD-I patients. It is noteworthy that, 
compared to the TD group, ADHD-I patients showed a significant 
decrease in the voxel-wise concordance of MCC, whereas ADHD-C 
patients did not show the differences. Similar findings have been 
reported in previous studies. ADHD-I patients showed significant 
activation deficits in the midline cingulate gyrus and SMA during the 
oddball-elicited attentional function and they also exhibited decreased 
responses compared to those with ADHD-C (Orinstein and Stevens, 
2014). In terms of brain morphology compared to healthy controls, 
ADHD-I patients were found to exhibit altered gray matter volume in 
the cingulate gyrus, while ADHD-C children did not show changes in 
the cingulate gyrus (Wu et  al., 2022). In addition, the dynamic 
variations in functional connectivity associate with decoding states of 
wakefulness (Tagliazucchi and Laufs, 2014) and are influenced by 
alpha and theta oscillation amplitudes in the brain (Chang et  al., 
2013). ADHD-I patients exhibited reading and decoding impairments 
related to genetic factors that are not present in ADHD-C (Plourde 
et al., 2015). The disruption of dynamic coupling in the MCC and 

FIGURE 2

Post hoc analysis of voxel-wise concordance among the ADHD-C, 
ADHD-I, and TD groups in slow-5 with Bonferroni correction. 
Significant differences are marked by asterisks. *p  <  0.05, **p  <  0.01, 
***p  <  0.001.

FIGURE 3

Comparison of voxel-wise concordance in the slow-5 and slow-4 
bands. Significant differences are marked by asterisks. *p  <  0.05, 
**p  <  0.01, ***p  <  0.001.

FIGURE 4

Comparison of the SD of volume-wise concordance in the slow-5 
and slow-4 bands. Significant differences are marked by asterisks. 
*p  <  0.05, **p  <  0.01, ***p  <  0.001.
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SMA over time may help explain differences in coordinated 
integration when processing potential information between ADHD-C 
and ADHD-I subtypes (Vogt, 2019). We  observed differences in 
dynamic concordance patterns, which can help explain behavioral 
differences between ADHD-C and ADHD-I.

4.2. Variations in spatial concordance

Spatial concordance did not differ among the three groups, which 
is consistent with previous studies in ADHD patients (Lou et  al., 
2021). However, in normal individuals and in populations with other 
psychiatric disorders, some studies found a decrease in global spatial 
concordance with increasing age (Yan et al., 2017; Zhu et al., 2018; 
Tian et al., 2022). The participants in this study were children with a 
narrow age range, which may account for the lack of significant 
differences in spatial concordance among the three groups. Temporal 

concordance was more sensitive than spatial concordance and may 
be  an important tool for detecting abnormal dynamic activity in 
patients with ADHD subtypes.

4.3. Differences between frequency bands

The temporal dynamic concordance significantly differed in the 
slow-5 frequency band between the ADHD groups, while no 
significant differences were found in the slow-4 band. The ADHD-C 
group showed stronger functional concordance in the slow-5 band 
than in the slow-4 band, while the impaired regions in the ADHD-I 
group exhibited significantly reduced temporal concordance in 
slow-5. Although spatial concordance showed no differences among 
the three groups, there were differences between the slow-5 and 
slow-4 bands. The increased SD of spatial concordance in slow-5 
reflected the increased neuronal activity and fluctuations in the 

FIGURE 5

Pearson’s correlations between pairs of dynamic fMRI indices obtained from ROIs. The suffixes C, I, and T indicate the dynamic fMRI measures from 
the ADHD-C, ADHD-I, and TD groups, respectively.
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ADHD-I group. The results suggest that frequency subbands may have 
different pathological importance and that slow-5 is more sensitive to 
detecting abnormal neural activity among ADHD subtypes than 
slow-4. Although the sources and meanings of signals from different 
frequency bands are still unknown, studies have suggested that 
different subbands are associated with different neural functions and 
physiological processes (Buzsáki and Draguhn, 2004; Knyazev, 2007). 
The difference may be caused by different cell structures or specific 
neuronal processes such as input selection, control binding, plasticity 
and structural consolidation (Zuo et al., 2010). The high intensity of 
functional concordance may reflect the overall contribution of 
neurons (Yan et  al., 2017). Moreover, research found that genetic 
variants of adrenergic receptor genes, which affect sustained attention, 
were associated with fluctuations in the slow-5 band (Bastiaansen 
et  al., 2015). This may explain the differences in frequency signal 
sources in ADHD from a genetic marker perspective. The results 
indicate that both temporal and spatial concordance were frequency 
dependent, suggesting that sensitive frequency bands should 
be  considered when evaluating intrinsic brain activity in 
ADHD. However, the results also highlight the specificity and 
complexity of the brain frequency spectrum, and further research is 

needed to clarify the relationship between frequency bands and 
neural activity.

4.4. Correlation with the clinical scores

The correlation analysis showed that in the slow-5 band, the 
voxel-wise concordance of the MCC was negatively correlated with 
Hyper/Impulsive Index of the ADHD-C group and Inattentive 
Index of the ADHD-I group. The correlation with the severity of 
symptoms implies that the functional concordance of the MCC is 
associated with phenotypic traits. Both the ADHD-C and ADHD-I 
patients showed an increase in symptom severity and pathological 
damage with aggravation of neuronal substrate deterioration. 
Furthermore, since there were no significant differences in global 
volume-wise concordance among the three groups, no correlation 
between volume concordance and symptom scores was found. Our 
results emphasize the ability of functional concordance to capture 
the neuropathological features of ADHD subtypes and may provide 
some insights into the dynamic neural activity patterns of 
ADHD subtypes.

FIGURE 6

Partial correlation analysis between voxel-wise concordance in slow-5 and clinical scores.
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4.5. Limitations

The study has some limitations. First, the study had a small 
sample size, and the results need to be verified in larger datasets. 
Second, the dataset did not include ADHD-HI patients, so we did not 
conduct a comparative analysis of the three subtypes of ADHD. Third, 
the correlation between dynamic concordance and clinical scores did 
not survive correction for multiple comparison, and no multiple-
comparison correction was applied for the correlation analysis. 
Finally, we did not exclude participants with comorbid oppositional 
defiant disorder, dysthymia or learning disabilities. More experiments 
are needed to determine whether these disorders may affect 
the results.

5. Conclusion

The study revealed that ADHD-I and ADHD-C patients showed 
significant voxel-wise concordance differences in the MCC and 
SMA. Functional concordance in ADHD patients was frequency 
dependent and showed greater sensitivity to temporal variations in the 
slow-5 band than in the slow-4 band. The results suggest that the 
frequency effects should be  considered in future research, and 
frequency-specific temporal concordance provides new insights into 
the neurophysiological mechanism of ADHD subtypes.
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