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Introduction: Brain atrophy is a critical biomarker of disease progression and

treatment response in neurodegenerative diseases such as multiple sclerosis

(MS). Confounding factors such as inconsistent imaging acquisitions hamper the

accurate measurement of brain atrophy in the clinic. This study aims to develop

and validate a robust deep learning model to overcome these challenges; and to

evaluate its impact on the measurement of disease progression.

Methods: Voxel-wise pseudo-atrophy labels were generated using SIENA, a

widely adopted tool for the measurement of brain atrophy in MS. Deformation

maps were produced for 195 pairs of longitudinal 3D T1 scans from patients with

MS. A 3DU-Net, namely DeepBVC,was specifically developed overcome common

variances in resolution, signal-to-noise ratio and contrast ratio between baseline

and follow up scans. The performance of DeepBVC was compared against SIENA

using McLaren test-retest dataset and 233 in-house MS subjects with MRI from

multiple time points. Clinical evaluation included disability assessment with the

Expanded Disability Status Scale (EDSS) and traditional imaging metrics such as

lesion burden.

Results: For 3 subjects in test-retest experiments, the median percent brain

volume change (PBVC) for DeepBVC and SIENA was 0.105 vs. 0.198% (subject 1),

0.061 vs. 0.084% (subject 2), 0.104 vs. 0.408% (subject 3). For testing consistency

across multiple time points in individual MS subjects, the mean (± standard

deviation) PBVC di�erence of DeepBVC and SIENA were 0.028% (± 0.145%) and

0.031% (±0.154%), respectively. The linear correlation with baseline T2 lesion

volume were r = −0.288 (p < 0.05) and r = −0.249 (p < 0.05) for DeepBVC and

SIENA, respectively. There was no significant correlation of disability progression

with PBVC as estimated by either method (p = 0.86, p = 0.84).

Discussion: DeepBVC is a deep learning powered brain volume change estimation

method for assessing brain atrophy used T1-weighted images. Compared to

SIENA, DeepBVC demonstrates superior performance in reproducibility and in

the context of common clinical scan variances such as imaging contrast, voxel

resolution, random bias field, and signal-to-noise ratio. Enhanced measurement

robustness, automation, and processing speed of DeepBVC indicate its potential

for utilisation in both research and clinical environments for monitoring disease

progression and, potentially, evaluating treatment e�ectiveness.
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1. Introduction

Brain atrophy is a clinically relevant biomarker of disease

progression in patients with multiple sclerosis (MS) that reflects

irreversible tissue damage due to neuro-axonal destruction,

demyelination and gliosis (Bermel and Bakshi, 2006). Accelerated

brain tissue loss can be detected in MS cohorts compared to a

healthy control population (De Stefano et al., 2016). Clinically,

brain atrophy is a key predictor of future disease worsening and

cognitive impairment in patients with MS (Popescu et al., 2013;

De Stefano et al., 2014; Jacobsen et al., 2014); and has been used

frequently in MS clinical trials as a secondary measure of treatment

efficacy (Filippi et al., 2004; Cadavid et al., 2017).

The incorporation of brain atrophy into monitoring paradigms

for individual patients requires significantly improved accuracy,

precision and robustness. Over the past two decades, numerous

methods (Hajnal et al., 1995; Rudick et al., 1999; Collins et al.,

2001; Bermel et al., 2003; Friston, 2003; Horsfield et al., 2003;

Prados et al., 2015; Smeets et al., 2016) have been developed for

quantifying longitudinal brain volume change (BVC). Boundary

Shift Integral (BSI) (Freeborough and Fox, 1997), gBSI (Prados

et al., 2015), NeuroSTREAM (Dwyer et al., 2017), Jacobian

integration (Nakamura et al., 2014), and SIENA (Smith et al.,

2002) use different measurements to track the movement of

the brain boundary. IPCA (Chen et al., 2004) uses an iterative

principal component analysis method to find the outliers reflecting

between-scan differences. MSmetrix (Smeets et al., 2016) adopts

nonrigid registration and Jacobian integration of deformation fields

to produce atrophy measures. Similarly, Quantitative Anatomical

Regional Change (QUARC) (Holland et al., 2011) utilises non-rigid

registration, but directly calculates hexahedral volumes to yield

the fractional volume change. FreeSurfer-longitudinal (FS) (Reuter

et al., 2012) is a segmentation-based method that performs

tissue segmentation at each time point. Among those methods,

SIENA (Smith et al., 2002) is arguably the most widely used

algorithm in MS clinical trials.

Although continuous efforts have been made to develop

new methods that improve the accuracy and reliability of BVC

quantification, longitudinal MRI measurement is susceptible

to inconsistency of imaging acquisition at baseline and follow-

up (Lee et al., 2019; Medawar et al., 2021), particularly in routine

clinical practise where scanner upgrades and protocol variations

are normal. Common examples of inconsistencies that impact

the reliability of quantitative BVC measurement, regardless

of methodology, include image contrast differences (Preboske

et al., 2006), intensity non-uniformity (Takao et al., 2010),

noise, or different resolutions and voxel spacing (Vrenken

et al., 2013). Additionally, there are few comparative

studies that assess the performance of newer (versus older)

measurement methods, such as SIENA and Boundary Shift

Integral (Freeborough and Fox, 1997), respectively, in the presence

of such acquisition inconsistencies.

However, several approaches have been proposed to ameliorate

the influence of acquisition inconsistencies and thereby improve

the accuracy of BVC measurement algorithms.

The first approach aims to reduce scan inhomogeneity during

pre-processing (Smith et al., 2002; Learned-miller and Ahammad,

2004; Lewis and Fox, 2004; Vovk et al., 2004; Vemuri et al., 2005;

Duffy et al., 2018; Higaki et al., 2019). By removing the bias field

from the longitudinal input scans, these methods aim to reduce

the variance in BVC estimates. Several other data harmonisation

methods (Dewey et al., 2019, 2020; Beer et al., 2020; Garcia-

Dias et al., 2020; Liu et al., 2021) aim to improve the qualitative

and quantitative consistency of differently acquired MRI scans. In

practise, these methods assign one scan as a reference and process

images in the second scan to narrow the differences attributable

to protocol inconsistency. Although many of these methods aim

to improve the quantitative utility of MRI in long-term or multi-

site studies, most are not specifically designed for consistent BVC

measurement. Rather, they focus on harmonisation of images to

a reference image or providing segmentation masks with greater

consistency (as determined by Dice, Coefficient of Joint Variation

or similar) with those derived from a reference image in a test-retest

setting. Therefore, the effectiveness of these methods for producing

consistent BVC measurements is not directly measured.

The second approach focuses on correcting BVC estimates

during post-processing. Lee et al. (2019) estimates the fixed effect

of scanner changes with a linear model and accounts for this factor

during measurement of BVC. Sinnecker et al. (2022) estimates an

additive fixed corrective term for scanner change by comparing

BVC rates during scanner change and no scanner change for

healthy control subjects. These methods are subject to scanner-

specific variation and require group level test results to estimate the

correction factor.

The addition of both pre-processing and post-processing steps

to BVC measurement algorithms increase overall computational

complexity and processing time. Additionally, while these methods

may result in qualitative and quantitative improvements, most are

confined to the research domain and their integration with (and

effectiveness in) clinical workflows is not clear.

To improve the reliability of measurements while also

considering computational cost, we introduce DeepBVC, a deep

learning-based approach that addresses the impact of protocol

inconsistency in longitudinal brain volume measurements.

Extensive experimentation demonstrates its effectiveness in

clinical settings, providing superior performance for potential

large-scale clinical applications. Our DeepBVC combines a

deep neural network with data augmentation to provide fully

automated and robust BVC assessment. A deep neural network

offers generalisation to common brain atrophy patterns; and

comprehensive data augmentation (Shorten and Khoshgoftaar,

2019) provides robustness and mitigates protocol and other

acquisition-related inconsistencies. Specifically, the deep neural

network module is used to estimate shift at the brain boundary

from baseline to follow-up; and the data augmentation module

synthesises images that contain common image distortions and

acquisition differences during the training stage of the deep

neural network. We also propose a novel training regime for

DeepBVC. In general, supervised neural network training requires

a large-scale dataset with accurate labels. However, it is not

practical to acquire accurate sub-voxel level atrophy estimations

from images. Existing BVC measurement algorithms contain

known or unknown bias and random variation factors for different

scans (Thanellas and Pollari, 2010). Therefore, we used the brain
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boundary shift produced by SIENA as the pseudo-label in training,

noting precedents for the use of software-generated annotations

as the label for tasks such as brain parcellation (Henschel et al.,

2020). We then utilised the inherent regularisation properties

of convolutional neural networks to tackle the underlying label

noise (Goodfellow et al., 2014; Zhang H. et al., 2017; Zhang S. et al.,

2017).

In summary, we have developed DeepBVC, a deep learning

based method, for longitudinal BVC assessment with the following

contributions:

• Data augmentation is introduced to cope with inconsistent

imaging acquisitions that are largely unavoidable in clinical

settings.

• Our deep learning model is trained with pseudo-labels from

SIENA and the impact of label noise is ameliorated by a

regularisation method.

• Experiments in two datasets demonstrate that DeepBVC

has better accuracy, robustness, reliability, and consistency

compared with SIENA, even though the intermediate outputs

from SIENA were used for training.

2. Materials and methods

This section is organised as follows: We describe the data

used in this study in Section 2.1 and the data preprocessing in

Section 2.2. In Section 2.3, we illustrate the details of our method,

including the model structure, training details, and the integration

our model into the pipeline of BVC estimation. Next, we introduce

the settings and metrics of evaluation experiments in Section 2.4.

2.1. Data acquisition

We use two data sources for this study: an in-house dataset

(MS Clinical Dataset) comprising clinical data and matched MRI

scans from patients with relapsing remitting multiple sclerosis

(RRMS) subjects; and a public test-retest dataset (Maclaren test-

retest dataset) (Maclaren et al., 2014) comprising scans from three

healthy control subjects. The study was approved by the University

of Sydney and followed the tenets of the Declaration of Helsinki.

2.1.1. MS Clinical Dataset
Written informed consent was obtained from all participants.

In total, 2,457 T1-weighted MRI exams from 648 patients

diagnosed with RRMS were included in this study (Table 1). All

patients were recruited from the MS Clinic based at the Brain and

Mind Centre, University of Sydney; and clinical MRI exams were

acquired with one of three 3T MRI scanners (Table 2) between

2010 and 2020. Longitudinal scans for each patient were acquired

with the same scanner using a consistent protocol. MRI acquisition

parameters are summarised in Table 2.

TABLE 1 Demographic, clinical characteristics of the patients in the

in-house dataset at baseline.

Train Test 1
(Section
2.4.3)

Test 2
(Section
2.4.4)

Test 3
(Section
2.4.5)

Patients, n (%
female)

195 (74) 120 (81) 233 (77) 208 (33)

Age, (years) 41.6 (12.4) 40.3 (10.5) 41.5 (9.6) 39.7 (9.4)

Disease duration,
(years)

9.4 (8.7) 8.7 (7.9) 10.4 (6.9) 8.5 (6.0)

EDSSa 2.1 (1.8) 1.9 (1.6) 1.6 (1.8) 2.0 (1.8)

The age, disease duration and EDSS are reported as mean (SD).
aExpanded Disability Status Scale.

TABLE 2 MRI acquisition details for the MS Clinical Dataset.

Scanner T1 parameters

GE discovery 3.0T TE = 2.6 ms

TR = 7 ms

TI = 0.45 s

0.93× 0.93× 1 mm3

Philips Ingenia 3.0T TE = 2.4 ms

TR = 8 ms

1× 1× 1 mm3

SIEMENS Skyra 3.0T TE = 2.5 ms

TR = 2.2 s

TI = 0.9 s

0.90× 0.90× 0.90 mm3

2.1.2. Test-retest data
We use the Maclaren test-retest dataset (Maclaren et al.,

2014) to test measurement reliability. The dataset comprises

120 T1-weighted scans from three healthy subjects aged 26–31

years, acquired with a GE MR750 3T scanner. Each subject was

scanned twice on 20 different days within a 31-day period. The

acquisition protocol (TE: 3 ms, TI: 0.4 s, TR: 7.3 ms, 1.2 mm

slice thickness) followed the recommendations of the Alzheimer’s

Disease Neuroimaging Initiative (ADNI) (Jack et al., 2008).

2.2. Data pre-processing

2.2.1. Format conversion and data selection
For the MS Clinical Dataset, images were originally stored

in DICOM format. All acquired DICOM data were converted to

NIFTI format by dcm2nii (Li et al., 2016). The quality of all MRI

data was visually assessed by experienced neuroimaging analysts

at the Sydney Neuroimaging Analysis Centre (Sydney, Australia).

Images that failed quality assessment (incomplete brain coverage,

severe imaging artifacts) were excluded from further study. N4 Bias

Field Correction (Lowekamp et al., 2013) was applied to remove the

bias field from all scans meeting quality criteria.
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2.2.2. Brain and skull segmentation
Brain and skull segmentation was performed with BET

(Jenkinson et al., 2005) for all eligible scans and the masks were

manually refined by experienced neuroimaging analysts. Skull

stripping was undertaken to generate images only containing brain

tissues for subsequent analysis.

2.2.3. SIENA analysis
2.2.3.1. Co-registration

For the longitudinal scan pairs of each subject, T1-weighted

scans at baseline and follow-up were aligned using two-step affine

registration (Freeborough and Fox, 1997; Smith et al., 2002). First,

the skull masks were used to optimise the scale and skew; then,

the brain images were used to optimise image translation and

rotation. All registration results were manually checked by trained

neuroimaging analysts, and poorly aligned pairs excluded from

further analysis.

2.2.3.2. Brain edge point segmentation

After brain alignment, FAST (Zhang et al., 2001) was used

to segment longitudinal scans into the principal brain tissue

compartments: white matter (WM), grey matter (GM), and

cerebrospinal fluid (CSF). As whole brain volume change includes

changes for both WM and GM, the probabilistic maps from FAST

were binarised (using a threshold of 0.5) and defined the union of

WM and GM as the foreground segmentation, and the remainder

of the image as background. Consequently, brain edge points were

defined by the edges of the foreground mask.

2.2.3.3. Change analysis

Voxel-wise atrophy/growth was estimated for all brain edge

points from baseline to follow-up time points; and the mean edge

point motion converted into PBVC (a single number) with a self-

calibration step.

2.3. Model

2.3.1. Model structure
We used a 3D-Unet (Çiçek et al., 2016) as the backbone

network for feature extraction, followed by a single convolutional

layer as the prediction head. The main blocks of the networks

use residual convolutional layers (He et al., 2016) with group

normalisation (Wu and He, 2018). The model inputs comprise a

pair of baseline and follow-up T1 images. The label is a voxel-

wise estimation of brain boundary shift produced from SIENA.

Because SIENA estimates the brain boundary shift for each voxel

location in the input, the label and themodel output are 3-D tensors

with the same dimensions as the inputs. During both training and

inference, the model output is masked with the brain boundary

segmentation and only the outputs at the boundary locations are

retained (outputs are set to 0 for non-boundary locations).

2.3.2. Training details
An overview of our method is shown in Figure 1. For each

iteration, eight scan pairs were randomly selected from all training

scan pairs. Each pair was randomly cropped into a pair of patches

of size 64× 64× 64 due to GPU memory constraints. The patches

were then fed into the model and the loss calculated accordingly to

update the model weights.

We usedmean squared error (MSE) as the loss function LMSE to

evaluate the model’s deformation prediction when compared with

the pseudo-labels from SIENA (edge point motion). Furthermore,

to render the model insensitive to differences in imaging quality

during training, we adopted a consistency regularisation loss.

Specifically, the loss minimised the difference between the

predictions derived from the original images and the augmented

images, such that brain volume differences were maintained in the

context of an isolated change in imaging acquisition conditions.

Formally, for a data point x, the regularisation loss term was

defined as:

Lreg = ‖pmodel(y|x; θ)− pmodel(y|Augment(x); θ)‖2, (1)

where Augment(x) is a stochastic transformation, whose effect

is not identical for each training sample, but rather follows a

distribution. As the regularisation term requires the underlying

brain volume change to remain constant, spatial transformations

that deformed the original brains were not permitted. Therefore, we

included both random spacing anisotropy re-sampling and random

contrast alterations as possible augmentation steps. For clarity, only

one type of augmentation was randomly selected for each sample.

Finally, the overall loss L was defined as:

L = LMSE + λLreg , (2)

where we set λ = 0.01.

The final loss function was optimised using the Adam

optimiser (Kingma and Ba, 2014) with an initial learning rate of

0.001 that was reduced by a factor of 0.5 when the loss did not

drop for three consecutive epochs. The model was trained for 2,500

iterations per epoch and for 50 epochs in total. Model optimisation

was performed with two NVIDIA V100 GPU cards on an NVIDIA

DGX-1 station.

2.3.3. Training data
To train the model, we collected 195 pairs of scans (one

pair per subject) from the MS Clinical Dataset (Section 2.1.1,

Figure 2), from which 70% (137 pairs) were randomly selected

for training and the remaining 30% (58 pairs) for validation.

Two additional, independent imaging datasets were used for

testing as described in Table 1. Testing datasets did not overlap

with training or validation datasets; and all 195 subjects

involved in model development were excluded from evaluation

experiments.

2.4. Experimental setup

Five experiments were undertaken to evaluate the

performance of DeepBVC with respect to test-retest consistency,
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FIGURE 1

An overview of our method. Given the original inputs (a pair of baseline and follow-up scans, and the mask of baseline brain edge points), new inputs

are generated by augmentation (including re-sampling and random contrast) without spatial transformation. As a result, the newly generated inputs

share the same labels as the original inputs. Both the generated and original inputs are fed into the same network. Then, the output of the original

inputs is compared to the label to obtain the loss LMSE . Similarly, the output of the original inputs is compared to that of the generated inputs to yield

the regularisation term Lreg. Finally, the total loss is defined as in Equation 2.

multi-step longitudinal consistency, protocol-agnostic test-

retest consistency, relevance to T2 lesion and correlation

with disability.

2.4.1. Consistency with test-retest data
The Maclaren test-retest data used for this experiment is

described in Section 2.1.2. We grouped the data into baseline

follow-up pairs as follows: the two scans from the same day and

subject were used as a longitudinal pair with no atrophy. We used

60 pairs in total (20 pairs per subject).

For this experiment, we assumed that there would be no

atrophy because the pairs were scanned back-to-back (i.e. the brain

volume difference should be 0%). We ran SIENA and DeepBVC

methods to measure the brain volume difference for each pair. We

then grouped the results by subject and report each method’s mean

and standard deviation. We also report the mean absolute error

for the results of each subject, where the error was acquired by

comparing the BVC measurements against the 0% BVC.

2.4.2. Influence of the protocol inconsistency
To test the influence of various acquisition protocol

inconsistencies, we used the Maclaren test-retest data

(Section 2.1.2), coupled with imaging processing techniques to

synthesise new image pairs with protocol pseudo-inconsistencies,

as described below and shown in Figure 3. We then compared the

experimental results with those derived from the original test-retest

data. Experiments followed the design described in Section 2.4.1,

with the addition of a pre-processing step to include synthesised

images as follows.

2.4.2.1. Random contrast adjustments

Image intensities were adjusted by the parameter γ . Each voxel

intensity x was updated as

x = (
x− xmin

xrange
)γ · xrange + xmin, (3)

where xmin is the minimal voxel value in the original brain image,

and xrange is the difference between the maximal and minimal voxel

value in the scan, excluding the background.

2.4.2.2. Random bias field

The bias field was generated from a linear combination of

smoothly varying basis functions, as described inVan Leemput et al.

(1999). In practise, we observed that intensity inhomogeneity was

more likely to occur along one of three axes (sagittal, coronal, and

axial). Therefore, we synthesised the random bias field along one of

the (randomly selected) axes.

2.4.2.3. Random spatial anisotropy

Spacing anisotropy was introduced by down sampling an image

along an axis and then re-sampling back to its original spacing.

In our experiment, we simultaneously performed this random

transformation along all three axes (sagittal, coronal, and axial).
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FIGURE 2

Baseline data for the MS Clinical Dataset. Non-overlapping constraints were applied between the subjects included in training and testing, but

overlapping was permitted for data involved in the three testing experiments.

2.4.2.4. Gaussian noise

The noise for each voxel was sampled from a normal

distribution with random parameters, and added to the original

image.

To systematically explore the impact of protocol inconsistency,

we analysed the performance of both DeepBVC and SIENA for

different levels of the four types of inconsistency, controlled by

different parameters during synthesis. For protocol inconsistency

in Gaussian noise, spatial resolution anisotropy and bias field,

the value of the parameters is positively correlated to the degree

of inconsistency. For the inconsistency in image contrast, the

measurement follows a different relationship (Equation 3), namely

image contrast is controlled by γ . The larger the difference between

γ and 1, the higher the inconsistency between synthesised and

original images.

2.4.3. Multi-step consistency with three time
points

Inspired by the experiments of Smith et al. (2002),

we included data from three time points in our analysis,

enabling both single-step and a multi-step measurement

strategies. For the single step approach, we estimated brain

atrophy between the first (t0) and last (t2) time points, while

for the multi-step approach, we combined the estimated

intermediate atrophy between the t0 and the second

timepoint (t1), and t1 and t2. A smaller difference between

the single-step and multi-step approaches indicates a more

consistent measurement.

For these experiments, we use data selected from the MS

Clinical Dataset (Section 2.1.1), restricting inclusion to those

subjects with three available brain scans with an interval of at least
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FIGURE 3

Examples of synthesised scans for the test-retest dataset. All scans are shown in sagittal, axial, and coronal planes. The upper-left images are slices

from the original scan; and the following two columns are synthesised from the original scan. Each row (from top to bottom) represents a di�erent

acquisition artifact: contrast, bias field, spacing anisotropy, and Gaussian noise. The images on the left are less distorted than those shown on the

right.

1 year between successive time points. In total, 233 subjects (three

scans each subject) were used for this experiment.

2.4.4. Brain T2 lesion volume and brain volume
change

To further investigate the predictions of our method and

their clinical impact, we analysed the correlation between brain

volume change and baseline lesion volume as the rate of brain

volume loss has been found to correlate with baseline T2 lesion

volume (Tedeschi et al., 2005). We assumed that improved

accuracy of BVC measurement would enhance this correlation.

For this experiment, scans were selected from the MS Clinical

Dataset (Section 2.1.1), based on availability of T1-w and FLAIR

sequences at baseline and T1-w images at follow up (3–4 years

subsequent to the baseline time point). The baseline lesion volume

was derived from an in-house deep learning lesion segmentation

algorithm (Liu et al., 2022) followed by manual review (and, if

required, correction) of lesion masks by trained neuroimaging

analysts at the Sydney Neuroimaging Analysis Centre. We report

linear correlation and partial correlation (controlled for age and

disease duration) for DeepBVC and SIENA. SPSS (Field, 2013) was

used for this analysis.

2.4.5. Disability and brain volume change
Sustained progression of the expanded disability status scale

(EDSS) score has reported to correlate with higher rates of

brain atrophy (Rudick et al., 2000; Bermel and Bakshi, 2006).

To investigate the clinical relevance of the BVC, we therefore

compared the annualised BVC with EDSS progression over 1–3

years in subjects with both T1-w scans and clinical data available at
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FIGURE 4

Box plots for SIENA and DeepBVC on test-retest data. Results are grouped and shown for each subject. The median brain volume di�erence is

reported above each corresponding box plot.

two time points with an interval of at least 12months. Subjects were

firstly grouped into EDSS progressors and non-progressors, where

EDSS progression was determined by three strata as previously

described by Kalincik et al. (2015) and confirmed over 3 months.

BVC was then determined by both DeepBVC and SIENA and

reported for each group. We also analysed BVC for matched

subjects from each group, using 1-to-multiple propensity score

matching based on age and disease duration.

3. Results

For each validation experiment involving the MS Clinical

data, we included all subjects that met the relevant inclusion

criteria (Sections 2.3, 2.4 and Figure 2). The demographic and

clinical characteristics of the subjects eligible for training and

each validation are listed in Table 1. Among 2,457 scans from

648 subjects, 134 scans from 94 subjects were first excluded

from all experiments due to poor imaging quality. For multi-step

consistency experiments (Section 2.4.3), 233 eligible subjects (77%

female) with three available scan timepoints were used. At the time

of baseline imaging, mean age and disease duration was 41.5 and

10.4 years, respectively; and mean EDSS was 1.6, in this group.

For the lesion experiment, 120 pairs of scans were available. In

this group, 81% of the patients were female, with a mean age and

disease duration of 40.3 and 8.7 years, respectively; and a mean

EDSS of 1.9. The remaining subjects (195 subjects/scan pairs, 74%

female) were used for training. In this group, mean age and disease

duration was 41.6 and 9.4 years, respectively; and mean EDSS

was 2.1.

TABLE 3 Brain volume di�erence in percentage for three subjects in the

test-retest dataset.

Subject SIENA (%) DeepBVC (%)

Sub1 0.212 (± 0.139) 0.126 (± 0.116)

Sub2 0.118 (± 0.103) 0.066 (± 0.042)

Sub3 0.351 (± 0.228) 0.111 (± 0.077)

The numbers are reported as average (± standard deviation) across all the sessions for each

subject.

3.1. Consistency with test-retest data

We illustrate the performance of SIENA and DeepBVC in

Figure 4 and Table 3. The subject-wise means and standard

deviations of PBVC measured by DeepBVC were smaller than

by SIENA (Table 3). For all three subjects, the BVC measured by

DeepBVC was less dispersed and was closer to 0 (Figure 4). The

median PBVC for DeepBVC smaller than the equivalent plot for

SIENA for all subjects (0.105 vs. 0.198, 0.061 vs. 0.084, 0.104 vs.

0.408, respectively). One outlier with a large BVC was found for

DeepBVC (subject 1) and another for SIENA (subject 2).

3.2. Influence of the protocol inconsistency

The expected PBVC for both methods was 0 for pairs of

identical scans.

For contrast inconsistencies (Figure 5), the box plot for

DeepBVC showed a much lower distribution of errors than

SIENA; and, unlike SIENA, no significant increase as gamma
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FIGURE 5

Brain volume di�erence estimation for stratified protocol inconsistency. For random contrast, the imaging quality is unchanged when the parameter

is 1. The larger the di�erence between the parameter and 1, the lower the image quality and more inconsistent the protocol. The x-values are

parameters determining the image processing step and the output image quality. For random Gaussian noise, bias field and anisotropy, parameters

are negatively correlated to the quality of the output image (the higher the value, the lower the image quality, the more inconsistent the protocol).

The box plots at the left-most of each figure represent the imaging quality is unchanged.
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changed (up to ±0.5). Furthermore, the median brain volume

difference of DeepBVC was lower than SIENA by one order of

magnitude. Finally, the variance in the error was similar for both

methods when λ was 0.75, 1.25, and 1.5. However, when λ =

0.5, the errors for DeepBVC showed a wider distribution than

SIENA.

For bias field inconsistencies, the medians and interquartile

ranges for DeepBVCwere higher than SIENA, though brain volume

difference was low for both techniques (range 0.00–0.29 and 0.00–

0.17, respectively).

For spatial resolution anisotropy, the differences measured

by SIENA became greater as the inconsistency level increased.

As shown in Figure 5, the median difference gradually increased

from 0.89% (γ = 2) to 2.8% (γ = 5). For DeepBVC, the

median difference remained low at the different levels of

inconsistency tested. For the highest level of inconsistency,

the median difference measured by SIENA reached 2.8%,

while DeepBVC remained as low as 0.29%. The error

distribution of DeepBVC was less scattered and closer to 0

than the equivalent of SIENA for all levels of inconsistency

tested.

For Gaussian noise, the error distribution of DeepBVC was less

dispersed and closer to 0 than the equivalent of SIENA when the

Gaussian noise level was 0.2, 0.3 and 0.4. The error distribution of

DeepBVCwas wider than SIENA and the median was 0.3% for both

methods when Gaussian noise level was 0.1.

3.3. Multi-step consistency with three time
points

Among the 233 subjects involved in this evaluation experiment,

the mean (±SD) time interval for t0 → t1 was 1.6 (±0.9) years

(range 1.0–6.9 years); for t1 → t2, 1.6 (±0.8) years (range 1.0–6.7

years); and for t0 → t2, 3.2 (±1.2) years (range 2.0–9.4 years).

We report the difference in single-step and two-step BVC

measurements for the two methods in Table 4 and Figure 6.

The mean (±standard deviation) for SIENA and DeepBVC

was 0.031% (±0.154%) and 0.028% (±0.145%), respectively. The

mean absolute error (±standard deviation) was 0.123% (±0.097%)

and 0.120% (±0.087%), respectively. The difference between direct

(t0 → t2) and two-step measurements (t0 → t1 and t1 → t2) was

relatively smaller for our method (p = 0.78).

When comparing the direct and indirect measurement for

each method using Bland-Altman plots, the points are scattered

randomly above and below 0 for both SIENA and DeepBVC

(Figure 6). The 1.96 SD and −1.96 SD for SIENA is 0.27

and −0.38, respectively (approximating the values reported by

Smith et al., 2002), whereas the 1.96 SD and −1.96 SD for

DeepBVC is 0.26 and −0.31, respectively. DeepBVC was less

likely than SIENA to generate an output that suggested brain

volume growth (biologically less likely) over time; and there was

no obvious bias between two methods. For points with large

atrophy (brain loss > 2%), most points are between SD 1.96

= 0.53 and −SD 1.96 = −0.45 with only one point outside this

range.

TABLE 4 The di�erence between direct measurements (t0 → t2) and

two-step measurement (t0 → t1 and t1 → t2).

Method Mean (± SD) % Mean absolute (± SD) %

SIENA 0.031 (± 0.154) 0.123 (± 0.097)

DeepBVC 0.028 (± 0.145) 0.120 (± 0.087)

The numbers are reported in percentage and as mean atrophy (± standard deviation) across

all triplets described in Section 2.4.3. The mean absolute error (± standard deviation) of BVC

is also reported.

3.4. Brain T2 lesion volume and brain
volume change

We report the correlation between the annualised brain atrophy

rate and the total lesion volume at baseline. As shown in Figure 7,

our method had a slightly stronger linear correlation with baseline

lesion volume (rs = −0.288, p < 0.05) than PBVC-SIENA

(rs = −0.249, p < 0.05). A similar trend was observed on partial

correlation controlled for age and disease duration (Table 5), with

rs = −0.373(p < 0.05) for the deep learning model, and rs =

−0.339(p < 0.05) for SIENA.

3.5. Disability and brain volume change

The annualised BVC distribution is shown in Figure 8 for

subjects with and without sustained EDSS progression. For both

DeepBVC and SIENA, the average annualised BVC is slightly larger

for the group with sustained EDSS progression (for DeepBVC p =

0.86, for SIENA p = 0.84). The annualised BVC for matched

subjects with and without sustained EDSS progression is shown in

Figure 9. For both DeepBVC and SIENA, the average annualised

BVC for the subjects with progression was larger (for DeepBVC p =

0.31, for SIENA p = 0.35). For both experiments, there was

no significant correlation of disability progression with BVC as

estimated by either method.

4. Discussion

Deep learning with pseudo labels has been previously used in

the field of neuroimaging. For example, FastSurfer’s deep learning

algorithms were trained on outputs generated by the conventional

neuroimaging pipelines that underpin Freesurfer (Henschel et al.,

2020). The reliability, sensitivity, and time efficiency of FastSurfer is

proven to be superior to FreeSurfer (Fischl, 2012). While FastSurfer

andDeepBVC share the concept of using pseudo-labels for training,

there are two significant differences. First, the output of FastSurfer

is a segmentation mask and is generated by classification, while the

output of our method is produced by regression. Second, FastSurfer

focuses on designing a novel deep learning network to improve

efficiency, whereas our method uses a simple but effective network

and regularisation technique to reduce the impact of noise in the

pseudo-label.

The data augmentation and consistency regularisation of our

method are only used during training; therefore the efficiency of

the model is not affected by those techniques. Data augmentation
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FIGURE 6

Bland-Altman plots. Di�erence of direct and indirect measurements for SIENA (top left) and DeepBVC (top right) respectively. The bottom plot

compares the measurement di�erence between SIENA and DeepBVC (Section 2.4.3).

improves the model’s generalisability to unseen data (Zhou

et al., 2022). In our case, augmentation simulates inconsistent

protocols during the acquisition of scan pairs. Therefore, the

DeepBVCmodel is adapted to those types of protocol inconsistency

and potentially generalises well to similar data. Though we only

included random contrast and spacing anisotropy in training, the

model demonstrated improved reliability on test-retest data with

noise-related inconsistencies. Consistency regularisation renders

the predictions invariant to noise applied to the input, and is

widely used in semi-supervised learning and learning from noisy

labels (Sajjadi et al., 2016; Clark et al., 2018; Miyato et al., 2018).

Specifically, the incorporation of regularisation into our model

maintains an identical brain volume change between scan pairs

acquired with either a consistent protocol or a (synthetically

generated) inconsistent protocol. These two techniques enable the

model to learn clean predictions from noisy pseudo-labels; and

improve the estimation reliability, especially for longitudinal scan

pairs with an inconsistent acquisition protocol.

In general, smaller BVC on the test-retest data indicates better

reliability. As in Table 3, for each of the three subjects, our method

estimated a smaller test-retest brain volume difference (range

0.066–0.126%) and smaller standard deviations than SIENA (range

0.118–0.351%) across sessions (p = 0.03, p = 0.08, p < 0.001 for

subject 1, 2, and 3, respectively). The reliability of DeepBVC also

appears to be less sensitive to subject-related factors, based on

the results of subjects 1 and 3 from the test-retest dataset. For

example, the mean BVC estimated by SIENA for subject 3 was

greater than three times that of subject 1, whereas estimation by

our method was less than two times. Based on these observations,

the reliability of DeepBVC is superior to SIENA for the test-retest

data with a consistent protocol. We simulated a limited array of

protocol inconsistencies commonly observed in clinical practise in

the test-retest dataset. Specifically, we investigated the impact of

contrast variance, which may be introduced by changes in head coil

or sequence parameters such as TE (Constable et al., 1992); bias

field, which may relate to spatial variance in coil sensitivity and the

interaction between the scanner and the subject (Kim et al., 2011);

and image resolution, which is determined by scanner/sequence

settings. DeepBVC demonstrated superior or at least equivalent

performance when compared to SIENA in all scenarios other than

inconsistency in the context of bias field. Among the four types

of inconsistency tested, contrast and spacing anisotropy variance

had the greatest impact on SIENA measurements, followed by

Gaussian noise and bias field. DeepBVC showed significantly better

performance in the context of contrast and spacing anisotropy

pseudo-inconsistencies, despite the lack of spacing anisotropy

variation and far less extreme contrast variation in training

data augmentation, indicating generalisabilty of the method to

unseen scenarios. Surprisingly, Gaussian noise and random bias

field did not significantly impact the measurement for SIENA.

DeepBVC demonstrates better reliability against most levels of

Gaussian noise. However, potentially reflecting the fact that SIENA
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FIGURE 7

The correlation between annualised brain atrophy rate (over 3–4 years) and baseline lesion volume.

relies on edge-enhanced image profiles, which are robust to local

intensity differences between images. For DeepBVC, input images

are pre-processed with voxel intensity normalisation and bias

field alters the distribution of the input voxel intensities after the

normalisation step. Although SIENA estimates are more robust

to random bias field fluctuations, the largest median BVC for
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TABLE 5 Correlation (controlled for age and disease duration) between

annualised brain atrophy rate (over 3–4 years) and baseline lesion volume.

Method Correlation rs p-value

SIENA −0.339 0.005

Ours −0.373 0.002

DeepBVC was only 0.29%, a fraction of the magnitude of error

introduced into SIENA estimates by other types of inconsistency.

In general, DeepBVC is therefore more reliable and less sensitive to

protocol inconsistency.

Using patient data from three time points, a smaller difference

between one-step and multi-step measurements indicates better

consistency. The application of both SIENA and DeepBVC in

this experimental paradigm yielded a small difference (≈0.03%)

between one-step (t0 → t2) and two-step (t0 → t1 and t1 →

t2) measurements, indicating high consistency for both methods,

marginally in favour of DeepBVC. The difference between one-step

and multi-step measurements can also reveal systematic errors; a

smaller difference therefore indicates that less effort is required for

calibration for studies that involve multiple (≥3) data timepoints.

For both SIENA and DeepBVC, the differences between the two

measurements randomly scattered above and below 0 in the Bland

Altman comparison (Figure 6), suggesting that there were no

significant accumulative or systematic measurement errors. For

both SIENA and DeepBVC, a high agreement between the direct

and indirect measurements was observed (+1.96 SD = 0.27 and

−1.96 SD = −0.38 for SIENA; +1.96 SD = 0.26 and −1.96 SD

= −0.31 for DeepBVC), especially for the subjects with large

mean atrophy.

Correlation experiments (Figure 7) illustrated that

DeepBVC estimates of BVC had a marginally stronger linear

correlation with baseline brain lesion volume (DeepBVC:

r = 0.288; SIENA: r = 0.249), an advantage that was retained when

confounding variables (age and disease duration) were controlled

(DeepBVC: r = 0.373; SIENA: r = 0.339). These findings suggest

fewer subjects may be required to power group-level studies that

use our tool to estimate BVC as an endpoint.

EDSS experiments demonstrate that a higher annualised BVC

was observed amongst EDSS progressors compared with non-

progressors group, but the difference was not significant for

either DeepBVC (p = 0.86) or SIENA (p = 0.84). Similarly,

analysis of propensity score matched subjects showed higher, but

not significant, annualised BVC amongst EDSS progressors for

both methods (DeepBVC: p = 0.31; SIENA: p = 0.35) The

magnitude of group level differences in annualised BVC between

EDSS progressors and non-progressors wereless than in previous

reports (Rudick et al., 2000; Bermel and Bakshi, 2006). Patient

populations in these earlier studies differed from the modern

MS cohort, in which the majority of patients are treated with

high efficacy disease modifying agents (that are known to reduce

BVC), studied in the present work. Additionally, these studies

employed different measures to determine brain volume (change),

such as brain parenchymal fraction and normalised whole brain

grey-matter volume.

4.1. Study limitations and future directions

While our experiments suggest that DeepBVC more

consistently and reliably estimates BVC than the classical

tool, SIENA, in several scenarios, there are a number of limitations.

First, model training requires pseudo-labels from SIENA.

While the use of pseudo- labels generates improved performance,

the overall framework and concept follow the principles of the

classical method, namely the requirements for co-registration of

baseline and follow-up scans, segmentation of the brain to find

edge points, and a calibration step for the final volume change

estimate. As a consequence, our experimental results may be

confounded by errors propagated from each pre-processing step.

For example, the registration step potentially changes the scale

and skew of the brain image, which can in turn affect the final

BVC estimation. Additionally, lesion inpainting changes the image

context and affects brain edge point segmentation, impacting the

edge locations at which voxel-wise atrophy/growth is subsequently

estimated. Future pipeline optimisation, in which each step is

integrated as a component of the learning process, may mitigate

this cascading effect and enhance the performance of deep learning

based solutions for BVC.

Second, we simulated four protocol inconsistencies and

independently tested their impact on BVC estimates using

DeepBVC. In real-world clinical imaging acquisitions, protocol

inconsistencies are more complex, overlapping and generated

by different and, at times, multiple sources. Decomposing these

inconsistencies into isolated categories is challenging. Similarly, the

availability of inconsistently acquired scans, acquired back-to-back

on the same subject, would be required to complete the test-retest

study in the absence of simulated data.

Third, it is challenging to validate the actual measurement

accuracy of tools such as SIENA or DeepBVC, because the ground

truth BVC is unknown, other than for test-retest subjects in whom

brain volume should essentially remain static when scans are

acquired back to back, thereby avoiding changes in hydration

or diurnal factors that could impact brain volume. Although

DeepBVC did not inappropriately detect BVC in the test-retest

cohort, this does not necessarily demonstrate capacity to accurately

determine atrophy estimates in cases with true brain tissue volume

differences. In this regard, BVC estimates from SIENA are noisy:

they can be used to produce pseudo-labels for the training phase,

but they cannot be used as ground truth during the validation

phase, particularly without rigorous manual quality control checks.

We therefore resorted to validating DeepBVC using proxy

techniques (Section 2.4) in the absence of ‘clean’ labels for testing

model performance. While these methods were comprehensive

and approximated real world imaging scenarios, multiple time-

consuming steps in the experimental pipeline hindered rapid

model development.

Lastly, the limitations of this study also include the lack of

a “true” multi-centre dataset. While the study integrated data

from three different scanners, as depicted in Table 2, all images

were obtained from a single MS clinic. This approach, to a

certain extent, normalised the scan quality while prescribing

the MRI exams. Future investigations may find value in

validating DeepBVC using a variety of scanners from different

clinical centers.
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FIGURE 8

The violin plots of annualised BVC for two groups: sustained EDSS progression and no sustained EDSS progression.

FIGURE 9

The violin plots of annualised BVC for matched subjects from two groups: sustained EDSS progression and no sustained EDSS progression. The

matching is one-to-multiple propensity score matching on age and disease duration.

5. Conclusions

We demonstrate that a deep learning model trained for whole

BVC estimation with pseudo-labels derived from SIENA can

achieve better performance in terms of consistency, invariance

to protocol change, and correlation between BVC and baseline

lesion volume in a cohort of subjects with MS. Brain atrophy

is a common endpoint in MS clinical trials that will become

more relevant as neuroprotective and pro-reparative therapies

are developed. Similarly, there is a need for robust monitoring

of brain atrophy in neurodegenerative disease, the imperative

for which has been heightened by the recent advent of disease

modifying therapies in this patient population. DeepBVC is

a fast and robust method for estimating brain atrophy that

may have particular application in both clinical trials and

precision medicine.
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