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Purpose: This study combines automatic segmentation and manual fine-tuning

with an early fusion method to provide e�cient clinical auxiliary diagnostic

e�ciency for fungal keratitis.

Methods: First, 423 high-quality anterior segment images of keratitis were

collected in the Department of Ophthalmology of the Jiangxi Provincial People’s

Hospital (China). The images were divided into fungal keratitis and non-fungal

keratitis by a senior ophthalmologist, and all images were divided randomly into

training and testing sets at a ratio of 8:2. Then, two deep learning models were

constructed for diagnosing fungal keratitis. Model 1 included a deep learning

model composed of the DenseNet 121, mobienet_v2, and squeezentet1_0

models, the least absolute shrinkage and selection operator (LASSO) model,

and the multi-layer perception (MLP) classifier. Model 2 included an automatic

segmentation program and the deep learning model already described. Finally,

the performance of Model 1 and Model 2 was compared.

Results: In the testing set, the accuracy, sensitivity, specificity, F1-score, and the

area under the receiver operating characteristic (ROC) curve (AUC) of Model 1

reached 77.65, 86.05, 76.19, 81.42%, and 0.839, respectively. ForModel 2, accuracy

improved by 6.87%, sensitivity by 4.43%, specificity by 9.52%, F1-score by 7.38%,

and AUC by 0.086, respectively.

Conclusion: The models in our study could provide e�cient clinical auxiliary

diagnostic e�ciency for fungal keratitis.

KEYWORDS

anterior segment images, artificial intelligence, automatic segmentation, fungal keratitis,

diagnosis

Introduction

Fungal keratitis, also known as keratomycosis, is a common blinding eye disease

(Thomas et al., 2005). The main manifestations are corneal infiltration, rough corneal edge,

and “satellite” lesions (Mahmoudi et al., 2017). Patients often suffer from eye injury, require

eye surgery, must wear contact lenses, and suffer from other diseases caused by organic

substances (especially plants; Ali Shah et al., 2017). According to statistics, every year∼1–14

million people are infected with fungal keratitis worldwide, of which 75% of patients might
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be blind in one eye and 60% of patients might be blind even after

treatment (Brown et al., 2021), which results in a huge burden to

families and society. Therefore, early diagnosis and treatment of

fungal keratitis is necessary. However, at present, fungal keratitis

diagnosis depends mainly on traditional microbial culture (Sadik

et al., 2022), which takes considerable time and cannot provide

a basis for early treatment. At present, the diagnosis of fungal

corneal ulcer is mainly based on confocal microscopy of corneal

culture. Fungal corneal ulcer can cause corneal perforation and

fungal endophthalmitis. Thus, accurate and rapid early diagnosis

of fungal keratitis is important.

Recently, artificial intelligence (AI), especiallymachine learning

(ML), has been applied in the field of ophthalmology (Lee et al.,

2020) and has a significant role in corneal disease diagnosis

(Siddiqui et al., 2020). A corneal ulcer can be diagnosed by anterior

segment photography. At the same time, artificial intelligence

technology has shown better diagnostic efficiency in medical

image processing. Moreover, ML based on the deep neural

network (DNN) is called deep learning and is considered the

most advanced ML (LeCun et al., 2015; Litjens et al., 2020).

Huang et al. used the deep learning model built by different

convolutional neural networks (CNNs) to evaluate 580 patients to

help distinguish bacterial keratitis (BK) and fungal keratitis quickly

in clinical practice and found that DenseNet 161 in CNN has

the best performance. This deep learning model can improve the

recognition rate significantly between the two kinds of keratitis

and provide better accuracy for clinical diagnosis (Hung et al.,

2021). Additionally, Li et al. compared the classification ability of

AlexNet, DenseNet 121, and InceptionV3 algorithms for 48,530

slit lamp images of different keratitis and found that DenseNet

121 had the best classification performance (Li et al., 2021). AI

is used widely in the field of keratitis diagnosis, and algorithms,

such as DenseNet 161 and DenseNet 121, have high performance

in deep learning models. However, most of the existing AI-assisted

diagnosis of fungal keratitis methods compare the performance

of different single algorithm models. The application of the deep

learning model built by integrating these different algorithms in

the diagnosis of keratitis is relatively rare. In contrast to the

abovementioned research, Ghosh et al. used three deep learning

models constructed by VGG19, DenseNet 121, and RestNet50 to

separate fungal keratitis and BK and then compared the results

of each model and ensemble learning. Finally, ensemble learning

had the largest area under the precision-recall curve (AUPRC)

compared with any single architecture model, and they believed

that ensemble learning can improve the performance of assisted

diagnosis of diseases significantly (Ghosh et al., 2022). Therefore,

the ensemble learning model composed of multiple algorithms is

more accurate. Ensemble learning is a kind of fusion technology

that is a fusion at the model level and belongs to late fusion. Early

fusion is also named feature-level fusion, which emphasizes the

data combination before the classification. The final feature vector

consists of the features extracted from heterogeneous signals, and

early fusion should put the final feature vector into the classifier

alone (Zhang et al., 2017).

Currently, prior AI studies have mainly focused on the

diagnosis of viral keratitis and bacterial keratitis. Most previous

studies used traditional machine learning or deep learning based

on original slit lamp images. No studies have investigated the early

fusion method for fungal keratitis. Moreover, previous studies were

based mostly on whole anterior segment images. However, the

area outside the keratitis lesion might affect the performance of

models. Therefore, it is necessary to segment the lesion area from

the images. Manual segmentation is tedious, time-consuming, and

user-dependent (Wang et al., 2016), and automatic segmentation

can be faster but might not have the same accuracy as manual

segmentation (Wang et al., 2016; Huang et al., 2019). Thus, we

hypothesized that the early fusion method for fungal keratitis with

automatic and manual segmentation may show better diagnostic

and sorting efficiency.

Therefore, this study combines automatic segmentation

and manual fine-tuning with an early fusion method to

provide efficient clinical auxiliary diagnostic efficiency for fungal

keratitis. In detail, we developed two AI platforms with a deep

transfer-learning algorithm and multi-feature fusion for fungal

keratitis and non-fungal keratitis; one is based on an automatic

segmentation method, whereas the other is based on a manual

segmentation method.

Materials and methods

Study design

To realize the automated diagnosis of fungal keratitis, two

deep learning models were constructed. Model 1 only included

a deep learning model which was composed of the DenseNet

121 (The idea of Dense Connection is used, that is, every layer

is connected with all the previous layers, so that the model

has better information transmission and reuse ability in feature

extraction. DenseNet 121 refers to the fact that the model has

121 layers), mobienet_v2 (this is a lightweight Convolution neural

network model, mainly is the depth of Separable Convolution

(Depthwise Separable Convolution) and Linear Bottleneck (Linear

Bottleneck) technology, such as small parameters, run fast) and

squeezentet1_0 models (Squeezentet1_0 is another lightweight

convolutional neural network model, which is composed of a

Squeeze layer and an Expand layer. It also runs fast with fewer

parameters) which are common convolutional neural network

models are used for image classification and object detection. The

least absolute shrinkage and selection operator (LASSO) model

and multi-layer perception (MLP) classifier. Model 2 included the

automatic segmentation program and the deep learning model as

described above. The deep learning pipeline of our study is shown

in Figure 1.

Establishment of a dataset and image
preprocessing of anterior segment images

We collected 423 high-quality anterior segment images of

keratitis in the Department of Ophthalmology of the Declaration

of Helsinki and were approved by the Medical Ethics Committee of

the affiliated Hospital of Jiangxi University of Traditional Chinese

Medicine from February 2020 to September 2023. The inclusion

criteria of fungal keratitis are as follows: the corneal scrape was

examined with 10% potassium hydroxide wet tablet bacteria or
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FIGURE 1

Deep learning pipeline. The two deep learning models were developed separately, and the performances of di�erent models were compared based

on a new testing set.

cornea, necrotic tissue, and pus in the potato culture medium to see

bacteria falling growth and to make clinical manifestations such as

ulcer surface with moss-like bad dead tissue, satellite foci, feathery

edges, and furrow pits that can be seen around ulcer depression,

and focal stromal infiltration dense, that may be accompanied by

stromal abscess. The cornea is often pasted with a white mushy

posterior corneal deposit (KP), anterior room pus color white

matter thick, longer use of antibiotics, or cortical stimulation of

patients with ineffective vegetarian treatment or ulcer aggravation.

To protect patient privacy, identifiable information was

removed. Then, the images were divided into the fungal keratitis

group and non-fungal keratitis group by a senior ophthalmologist,

and all the images were randomly divided into training and testing

sets at the ratio 8:2. The dataset contained a training set and a

testing set, where the training set contained 168 fungal keratitis

images and 170 non-fungal keratitis images, and the testing set

contained 42 fungal keratitis images and 43 non-fungal keratitis

images. This study was approved by the Ethics Committee of

Jiangxi Province Peoples Hospital and adhered to the Declaration

of Helsinki and the ARVO statement on human subjects.

Establishment of the automatic
segmentation model

First, based on the anterior segment images, a senior

ophthalmologist used the LabelMe software (https://github.com/

wkentaro/labelme) to annotate the keratitis lesions area as the

region of interest (ROI), respectively. The ROI of each image was

annotated as “label 0” or “label 1.” “Label 0” was defined as the

fungal keratitis lesions area. “Label 1” was defined as the non-

fungal keratitis lesions area. The FCNResnet50 which was a fully

convolutional network based on ResNet50 was used to extract

the ROI masks. First, the original images in the training set were

used to train the FCNResnet50 model, and the obtained optimal

parameters were then applied to the whole anterior segment

images to get the automatic segmentation mask. Then, the manual

segmentation mask annotated by the senior ophthalmologist was

used as the gold standard. After the segmentation errors were

adjusted, the final mask was obtained. Based on the final masks, the

keratitis lesions area was segmented.

Establishment of the deep learning
diagnostic model

The fungal keratitis detection was defined as a binary

classification problem, with a label of 0 or 1 indicating that

the image was fungal keratitis or non-fungal keratitis. This

classification task was performed by the deep learning diagnostic

models composed of DenseNet 121, mobienet_v2, squeezentet1_0,

the least absolute shrinkage and selection operator (LASSO) model,

and the multi-layer perception (MLP) classifier. In the training set,

first, we used three models to extract features of the penultimate

layers of the network and principal components analysis (PCA)

in feature dimensionality reduction. Then, the features after

dimensionality reduction were fusioned by channel concat which

meant that the layer stacked features from each branch together.

The LASSO logistic regression algorithm was used to select the

optimal features. Finally, the optimal feature set was input into

the MLP classifier to establish the final diagnostic model. In the

Frontiers inNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fnins.2023.1195188
https://github.com/wkentaro/labelme
https://github.com/wkentaro/labelme
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Li et al. 10.3389/fnins.2023.1195188

testing set, the 5-fold cross-validation was performed for parameter

optimization. The selected features and the best parameters were

applied for model evaluation.

Comparison and validation of diagnostic
models

In Model 1, the original images in the training set were used to

train the deep learning diagnostic model, and the original images in

the testing set were used to validate this model. InModel 2, first, the

original images in the training set were used to train the automatic

segmentation model, then after manual fine-tuning, the keratitis

lesions area segmented from the original images which were in the

training set was used to train the deep learning diagnostic model.

Finally, the original images in the testing set were used to validate

Model 2.

To compare the performance of the two models, the receiver

operating characteristic (ROC) curve was performed in this study

to analyze the diagnostic ability of each model. The decision curve

analysis (DCA) was used to evaluate the net benefit of the models

for clinical decisions. The highest curve at any given threshold

probability is the optimal decision-making strategy tomaximize the

net benefit (Gao et al., 2022). The gradient-weighted class activation

mapping (Grad-CAM) was used for the visual verification of the

diagnostic results of this method. The heatmap images created

by the Grad-CAM indicated where the deep learning model

was focused.

Statistical analysis

For the automatic segmentation model, we used the pixel-level

classification accuracy, the average intersection-over-union (IOU),

and dice coefficient to evaluate the performance. The pixel-level

classification accuracy was the percentage of correctly classified

pixels out of the total pixels in each image, and IoU evaluated

precision by calculating the overlap between the prediction and

target variables (Mahmoudi et al., 2017; Larsen et al., 2021). The

dice coefficient is a set similarity measure function, the higher

the dice coefficient, the better the segmentation effect (Li et al.,

2020). For the deep learning diagnostic model, we measured the

accuracy, sensitivity, specificity, and F1-score from the training set

and testing set. We also plotted the DCA curves and the ROC

curves from the two models. The area under the curve (AUC) with

a 95% confidence interval (95% CI) of each model which was in

the training set and testing set was calculated. All the methods were

implemented in Python language using Python 3.9.7 version.

Results

Performance of automatic segmentation
model

The pixel-level classification accuracy was 96.2%. The average

IoU score was 81.3%. Themean dice score was 89%. The diagram of

the segmentation image effect of the keratitis lesions area is shown

in Figure 2.

Comparing the di�erent deep learning
diagnostic models in diagnosing fungal
keratitis

In the testing set, the accuracy, sensitivity, specificity, and

F1-score of Model 1 reached 77.65, 86.05, 76.19, and 81.42%,

respectively. For Model 2, which is based on the segmentation

images, the accuracy improved by 6.87%, sensitivity by 4.43%,

specificity by 9.52%, and F1-score by 7.38%, respectively, as shown

in Table 1.

FIGURE 2

Diagram of the segmentation image e�ect of the keratitis lesions area: the original images (A), the automatic segmentation results (B), and the

manual segmentation result (C). The red area indicated the segmented lesion area of keratitis.

TABLE 1 Performance comparison of Model 1 and Model 2.

Model name Train/test Accuracy AUC 95% CI Sensitivity Specificity F1-score

Model 1 Train 82.84% 0.905 (0.874–0.937) 82.94% 83.33% 82.94%

Test 77.65% 0.839 (0.751–0.927) 86.05% 76.19% 81.42%

Model 2 Train 81.71% 0.894 (0.861–0.928) 85.38% 79.76% 83.21%

Test 84.52% 0.925 (0.869–0.981) 90.48% 85.71% 88.80%
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FIGURE 3

Selected features and their coe�cient values in Model 1 (A) and Model 2 (B). DL, M, and S indicate that the feature was from the DenseNet 121,

mobienet_v2, and squeezentet1_0 models, respectively.

FIGURE 4

Representative LASSO coe�cient distribution map, Model 1 (A) and Model 2 (B). Selection of features based on the LASSO regression model, Model 1

(C), and Model 2 (D).
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FIGURE 5

Decision curves and receiver operating characteristic (ROC) curves for the di�erent models. (A) The net benefit of Model 1 in making a correct

diagnosis of fungal keratitis; (B) the net benefit of Model 2 in making a correct diagnosis of fungal keratitis. The x-axis is the threshold probability, and

the y-axis measures the net benefit. “Treat none” indicates that all samples were negative without intervention and the net benefit was 0. “Treat all”

indicates that all samples were positive with intervention. (C) ROC curve for the di�erent Model 1; (D) ROC curve for Model 2. AUC indicates the area

under the curve of ROC.

In each model, a total of 50,176 features, 62,720 features,

and 43,265 features were extracted from the DenseNet 121,

mobienet_v2, and squeezentet1_0 models separately. After

dimension reduction and channel concat, a total of 93 features

were retained. After screening with the Lasso model, 13 features

and 29 features were left for further classification in Model 1 and

Model 2, respectively. The selected features and their coefficient

values are shown in Figure 3. The LASSO screening process is

shown in Figure 4.

Comparing the results of ROC curves, in the testing set,

Model 1 achieved an AUC of 0.839 (95% CI 0.751–0.927). Model

2 achieved the highest AUC of 0.925 (95% CI 0.869–0.981).

Compared with the result of the DCA curve analysis, Model 2

would substantially benefit in diagnosing fungal keratitis when the

threshold probability was between 0 and 90% in the test set, which

received a higher net benefit than Model 1, as shown in Figure 5.

Visualization of the deep learning process

We used Grad-CAM to locate the important region for the

classification. The results of the heat map displayed the areas which

Model 1 likely focused on and were located in the keratitis lesions

area but covered the surrounding normal corneal tissues. The areas

that Model 2 likely focused on were located in the center of the

keratitis lesions area, as shown in Figure 6.

Discussion

Delayed diagnosis remains the main reason for the poor

prognosis of deteriorating lesions (Wei et al., 2023). Therefore, this

study developed an automatic diagnosis model to provide efficient

clinical auxiliary diagnostic efficiency for fungal keratitis. As far
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FIGURE 6

Image region heat maps based on Grad-CAM: the original images of Model 1 (A, C) and Model 2 (E, G). The heat maps correspond to the original

image of Model 1 (B, D) and Model 2 (F, H). The blue areas were that the models likely focused on.

as we know, this is the first AI-assisted diagnostic model that

combines automatic segmentation and manual fine-tuning with an

early fusion method for fungal keratitis (FK) diagnosis.

Comparing the performance of Model 1 with Model 2 in our

study, the accuracy, sensitivity, specificity, F1-score, and AUC of

Model 2 were all significantly higher than that of Model 1 in the

test set. In previous research, Hung et al. (2021) used U square

Net (U2 Net) to crop the image of the cornea and various CNN

for identifying BK and FK. The DenseNet 161 model had an

accuracy of 65.8%, which was the highest among all the models.

The performance of their models is far below ours, indicating the

limitation of single features in classification (Geng et al., 2017).

Zhang et al. (2022) used a CNN to classify infectious keratitis.

The highest accuracy and AUC of individual models was 77.11%.

After the fusion of ResNext101_32x16d and DenseNet 169 models,

although the accuracy was improved by 0.6%, this result is still

lower than that of our Model 2. This is probably owing to the

precise segmentation of the keratitis lesion area in ourmodel, which

ruled out the interference of the background. The performance

of Model 1 is lower than Model 2 in our study, which also

confirmed this notion. From this, the performance of models could

be further improved by combining the segmentation model with

the fusion method.

The decision curve analysis was implemented to evaluate the

clinical usefulness of the model for diagnosing FK. The decision

curve of a model is compared with extreme cases that include

all patients or none. A model can be recommended for clinical

use if its net benefit is greater than treating all and no patients

(Du et al., 2021). Comparing the result of Model 1 with Model

2, the two models were both better than extreme cases (none

and all) in the test set. Model 2 has greater potential for clinical

application. Comparing the results of ROC curves, in the testing

set, Model 1 achieved an AUC of 0.839 (95% CI 0.751–0.927).

Model 2 achieved the highest AUC of 0.925 (95% CI 0.869–0.981).

Compared with the result of the DCA curve analysis, Model 2

would substantially benefit in diagnosing fungal keratitis when

the threshold probability was between 0 and 90% in the test set.

Through themulti-feature transfer learningmethod combinedwith

an automatic or manual segmentation algorithm, the resulting

automatic segmentation platform can diagnose FK more quickly,

whereas the resulting manual segmentation platform can diagnose

FK more accurately.

Another strength of this study is the Grad-CAM introduction.

Deep learning models are usually regarded as black boxes because

the information regarding which features are important cannot be

interpreted easily from the model (Wang et al., 2019). In our study,

the heatmap images of Grad-CAM highlighted the important areas

in corneal ulcer images used for AI diagnosis, which interprets the

deep learning process effectively.

Our study also has certain limitations. First, the sample size

included in this study was small. Second, the diagnosis of fungal

keratitis is not entirely accurate, and some subjects lack laboratory

tests. Third, the study only diagnosed FK and did not distinguish

between different types of keratitis. Finally, accuracy needs to be

improved. Therefore, in future studies, we will attempt to introduce

transform learning to identify different keratitis types.

Conclusion

In this study, we combined automatic segmentation and

manual fine-tuning with the early fusion method for FK diagnosis

which provides efficient clinical auxiliary diagnostic efficiency

for fungal keratitis. Through the multi-feature transfer learning

method combined with an automatic or manual segmentation

algorithm, the resulting automatic segmentation platform can

diagnose FK more quickly, whereas the resulting manual

segmentation platform can diagnose FK more accurately.
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