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Dim artificial light at night alters 
immediate early gene expression 
throughout the avian brain
Cassandra K. Hui *, Nadya Chen , Arunima Chakraborty , 
Valentina Alaasam , Simon Pieraut  and Jenny Q. Ouyang 

Department of Biology, University of Nevada, Reno, Reno, NV, United States

Artificial light at night (ALAN) is a pervasive pollutant that alters physiology and 
behavior. However, the underlying mechanisms triggering these alterations are 
unknown, as previous work shows that dim levels of ALAN may have a masking 
effect, bypassing the central clock. Light stimulates neuronal activity in numerous 
brain regions which could in turn activate downstream effectors regulating 
physiological response. In the present study, taking advantage of immediate early 
gene (IEG) expression as a proxy for neuronal activity, we determined the brain 
regions activated in response to ALAN. We exposed zebra finches to dim ALAN 
(1.5 lux) and analyzed 24 regions throughout the brain. We found that the overall 
expression of two different IEGs, cFos and ZENK, in birds exposed to ALAN were 
significantly different from birds inactive at night. Additionally, we  found that 
ALAN-exposed birds had significantly different IEG expression from birds inactive 
at night and active during the day in several brain areas associated with vision, 
movement, learning and memory, pain processing, and hormone regulation. 
These results give insight into the mechanistic pathways responding to ALAN that 
underlie downstream, well-documented behavioral and physiological changes.

KEYWORDS

cFos, ZENK, zebra finch, Taeniopygia guttata, light pollution

Introduction

A continued rise in global urbanization also increases artificial light at night (ALAN), with 
light pollution now recognized as a disruptive pollutant (Dominoni and Nelson, 2018). ALAN, 
even at dim levels, disrupts physiological and behavioral processes (Ouyang et  al., 2018). 
However, these changes appear uncoupled from canonical circadian genes, which synchronize 
behavior and physiology to the natural photoperiod (Spoelstra et al., 2018; Alaasam et al., 2021), 
but see (Dominoni et al., 2020). Therefore, how dim ALAN affects neuronal activity to disrupt 
downstream physiological and behavioral processes remains unknown. This knowledge gap 
hinders our ability to predict and ameliorate responses to light pollution.

As ALAN disrupts hormone regulation, immune function, and nighttime activity, its effect 
could be linked to many corresponding brain regions (Alaasam et al., 2018; Mishra et al., 2019), 
especially if central circadian pacemakers are not disrupted. For example, ALAN disrupts 
melatonin and diurnal corticosterone production (Mishra et al., 2019), which are produced by 
the adrenal and pineal glands and directly regulate the hypothalamus, septum, and hippocampus 
(Chabot et al., 1998; El-Sherif et al., 2003; Kus et al., 2013; Zhang et al., 2017). ALAN also 
disrupts immune gene expression, neuronal survival, and plasticity in the hippocampus and 
caudal nidopallium (Mishra et al., 2019; Taufique et al., 2019; Moaraf et al., 2020; Namgyal et al., 
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2020). Lastly, ALAN recruits new neurons to the medial striatum, 
theorized to replace dying neurons (Moaraf et al., 2021).

Neuronal activity induces immediate early gene (IEG) expression 
for new protein synthesis (Greenberg et  al., 1986; Flavell and 
Greenberg, 2008). Therefore, IEGs indicate neuronal activation by 
associating firing with gene expression and have successfully been 
used to map neuronal pathways (Guzowski et al., 2005; Feenders et al., 
2008). IEGs, such as cFos and ZENK, have been shown to respond to 
different stimuli. cFos expression is stimulated by cAMP and calcium, 
and ZENK expression by injury, stress, etc. (Morgan and Curran, 
1988; Sagar et al., 1988; O’Donovan et al., 1999). Using both IEGs can 
generate a holistic, detailed map of brain activity for a more 
representative analysis (Feenders et al., 2008; Nordmann et al., 2020).

We analyzed ALAN’s impact on IEG expression throughout the 
whole brain of Zebra finches (Taeniopygia guttata), an excellent 
diurnal model organism, as they translate external light similarly to 
most vertebrates (Durstewitz et al., 1999; Nakane and Yoshimura, 
2014). Since ALAN initiates nighttime activity, we predicted activation 
in the visual and motor pathways, but that these areas would be similar 
to birds awake during the day. We also predicted, based on previous 
research, activation in areas involved in learning and memory, 
particularly the hippocampus, caudal nidopallium, and striatum 
(Taufique et  al., 2019; Moaraf et  al., 2021). We  found that ALAN 
significantly altered IEG expression of cFos and ZENK in the 
hyperpallium, mesopallium, nidopallium, para-hippocampalis, 
striatum, entopallium, arcopallium, hippocampus, and septum 
compared to day and/or night birds.

Methods

Experimental design

Thirteen male zebra finches (~100 days old) were kept in outdoor 
aviaries at the University of Nevada, Reno with no previous exposure 
to ALAN. When they were ~ 140 days old, we  moved them to 
individually housed indoor 47 cm × 31 cm × 36 cm cages and entrained 
them to 12 h light and 12 h dark (12 L,12D) for 4 weeks. For daylight, 
we  used 1.4-Watt 5,000 K light emitting diode (LED) rated at 95 
Lumens lights at 0:00 (zeitgeber time (ZT) 0) and lights off at 12:00 
(ZT 12). Birds were given food and water ad libitum. Each cage 
contained a mechanized perch that relayed hop activity to MATLAB 
every minute. Cages had individual light-occlusion shades and 
constant white noise in the background to limit visual and 
acoustic cues.

We video recorded 30 min of behavior 90 min before perfusion 
and activity via automated perches (Alaasam et al., 2018). An observer 
blind to the treatments determined time spent eating/drinking, 
grooming, hopping, or no movement for the video recordings. 
We conducted a power analysis based on previously collected behavior 
data from control and ALAN exposed birds and determined that at 
least 3 birds were needed per treatment group (Power = 0.8, α = 0.05, 
effect size = 2, number of groups = 3).

Birds were randomly assigned to one of 3 conditions: control 
night (12 h light: 12 h dark; 12 L:12D sacrificed at dark night: ZT 14, 
n = 4), control day (12 L:12D sacrificed at day: ZT 10, n = 4), and 
experimental ALAN (12 h light: 12 h dim light; 12 L:12Ldim sacrificed 
at night with artificial light: ZT 14, n = 5). We chose the control day 

timepoint as close as possible to the night timepoints to be certain in 
capturing awake birds but also avoiding larger differences in circadian 
activity. As determined by One-Way ANOVA, groups did not differ 
in initial mass (p = 0.62). After the 4-week entertainment period, 
we sacrificed the control night group during the dark period (ZT 14) 
and the control day group during the light period (ZT 10). 
We sacrificed individuals in the ALAN group 2 h after the bird’s 1st 
exposure to ALAN (ZT 14), to obtain peak protein expression and 
avoid overlap from the light period. ALAN was standardized to 
around 1.5 lux ±0.01 from a 20 cm × 1.5 cm 5000 K broad spectrum 
LED strip. This was done with an Extech Easyview Digital Light 
Meter (model EA13) and lux was calculated using a mean 
measurement at perch height and two opposing base corners. For a 
full-spectrum description of the lights, please see (Alaasam 
et al., 2021).

Immunohistochemistry

We anesthetized birds with 0.1 ml of anesthesia made from 30 mg 
Ketamine HCl, 105 mg Xylazine, and 8.25 ml saline. After no response 
to a hard toe pinch, weight was taken, and we perfused birds with 1X 
PBS for 5 min and 4% paraformaldehyde in 1X PBS (PFA) for 13 min. 
Brains were removed, left in 4% PFA for 24 h, switched to a 15% 
sucrose solution for 4–12 h, followed by a 30% sucrose solution 
overnight, and then flash frozen with powdered dry ice and stored in 
−80°C until slicing.

We cut the left hemisphere of the brain sagittally at 45 μm 
thickness in six series. Series 1 was stained for imaging (total slices 
analyzed: ALAN = 90, control day = 67, control night = 67) and 2–6 
were stored in cryoprotectant (3.3% sucrose, 0.01% Polyvinyl-
pyrrolidone (PVP-40), 30% ethylene glycol in 0.1 M Phosphate Buffer) 
in −80°C.

We incubated brain slices in a blocking solution (4% BSA, 0.4% 
triton, 0.05% Na-Azide in 1x PBS) for 3 h and then with primary 
antibody diluted in blocking solution (c-Fos anti-rabbit polyclonal 
from ABCAM (ab190289) diluted 1:1000, ZENK anti-mouse 
monoclonal received from Dr. Keays’ lab (Nordmann et al., 2020) 
diluted 1:300) in 4°C for ~46 h. We washed slices 3 times in 1X PBS 
for 25 min each at room temp and incubated overnight at 4° C with 
secondary antibodies (anti-rabbit 488 (from ABCAM ab150081) 
diluted 1:1000 and anti-mouse 594 (from ABCAM ab150116) diluted 
1:1000), protected from light. We then incubated slices with DAPI for 
15–25 min at room temperature and washed them in 1X PBS 3 times. 
Slices were mounted with antifade mounting medium 
(VECTASHIELD®) on slides. We imaged tile scans of full slices within 
1 week of mounting on a Leica TCS SP8 confocal microscope.

Statistical analyses

We analyzed images on ImageJ. We determined brain regions 
using anatomical locations with DAPI staining and a reference atlas 
from zebrafinchatlas.org. Cells were determined positive for cFos or 
ZENK if they were three times the mean brightness and overlapped 
with DAPI. We divided the number of positive IEG cells by the total 
DAPI cell count to determine expression percentage in representative 
areas measured over several slices.
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We performed statistical analyses in R, version 4.1.2 (R 
Development Core Team, 2011). We ran generalized linear mixed-
effect models to assess if IEG expression levels were affected by the 
treatment group as a fixed effect (lme4 package). Slice number and 
bird ID were included as random effects. We used a Kruskal-Wallis 
test to analyze the interaction of behaviors and treatment groups. 
We ran a correlation matrix for all brain regions in each treatment for 
both cFos and ZENK (Supplementary Figure S1).

Ethics statement

All procedures were conducted in accordance with the National 
Institute of Health Ethical Use of Animals and approved by the 
University of Nevada, Reno Institutional Animal Care and 
Use Committee.

Results

Activity

There was a significant difference in the interaction between 
behavior and treatment group (Kruskal-Wallis test: Grooming: 
chi-squared = 6.22, p = 0.05, Feeding: chi-squared = 11.51, p < 0.01, 
Hopping: chi-squared = 6.45, p = 0.04, Inactive: chi-squared = 7.20, 
p = 0.03). Hop activity measured via perch recordings also showed that 
birds had significantly lower nocturnal activity (control night) than 
daytime activity (control day) and nocturnal activity under ALAN 
(Kruskal-Wallis test: chi-squared = 6.47, p = 0.04, Figure 1).

IEG expression

The ALAN group was significantly different from the control 
night (cFos p = 0.027, ZENK: p = 0.037) but not the control day 
(cFos: p = 0.17, ZENK: p = 0.66) when all 24 brain regions were 

analyzed together (Figure  2A). We  broke down the analysis by 
looking into two major pathways—motor and visual—as well as 
additional areas. There was no significant difference between cFos 
and ZENK expression between the ALAN group and either control 
in all combined areas analyzed in the motor pathway (cFos-Day: 
p = 0.40, cFos-Night: p = 0.14, ZENK-Day: p = 0.72, ZENK-Night: 
p = 0.14). Similarly, we saw no significant difference for all areas 
analyzed in the visual pathway (cFos-Day: p = 0.08, cFos-Night: 
p = 0.07, ZENK-Day: p = 0.61, ZENK-Night: p = 0.11). However, 
individual areas in both pathways were significantly different 
(Table 1; Supplementary Figures S2, S3).

To determine if the expression was based on activity, we reanalyzed 
expression with birds separated into only two groups of active (n = 7) 
or inactive (n = 6; total minutes of activity <1 min) 90 min before 
perfusion. Active birds included the control day group and non-active 
included the control night, with the ALAN group split between the 
two, based on activity. There was no significant difference in cFos or 
ZENK expression overall between active and non-active birds (cFos: 
z = 1.18, p = 0.24, ZENK: z = 1.70, p = 0.09). Additionally, there was no 
significant difference between active and non-active birds in the whole 
motor (cFos: z = 1.28, p = 0.20, ZENK: z = 1.81, p = 0.07) or visual (cFos: 
z = 0.65, p = 0.51, ZENK: z = 1.37, p = 0.17) pathways.

In the visual pathway, the ALAN group showed significantly 
higher cFos expression in the striatum adjacent to the core of the 
entopallium, posterior hyperpallium (Figure  2B), and ventral 
mesopallium adjacent to the core of the entopallium than the control 
night group, and significantly higher ZENK expression in the 
nidopallium adjacent to the core of the entopallium but lower in the 
core of the entopallium. The ALAN group also showed significantly 
higher cFos expression than the control day group in the striatum 
adjacent to the core of the entopallium and posterior hyperpallium 
areas (Table 1).

In the motor pathway, the ALAN group showed significantly 
higher cFos expression than the control night group in the anterior 
mesopallium dorsal (Figure 2B) and anterior mesopallium ventral 
regions and significantly higher ZENK expression in the anterior 
mesopallium dorsal and nidopallium caudolateral regions (Figure 3). 

FIGURE 1

Types of behavior 75 to 105 min before perfusion for birds exposed to ALAN and control birds collected during the day and night. A 30-min window of 
time 90 min before perfusion (75 to 105 min) was analyzed and broken down into four different behaviors: feeding (eating or drinking), grooming, 
hopping, and inactive. Shown are means ± 1 SE.
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FIGURE 2

Immediate early gene expression of cFos and ZENK throughout the brain for birds exposed to ALAN, and control birds collected during subjective day 
and night. (A) Total cFos and ZENK expression, shown in percentages. Expression is significantly higher in the ALAN treatment group compared to the 
night controls but not the day controls. (B) cFos expression (percentage) comparing birds exposed to ALAN to control day and control night groups in 
three brain regions: posterior hyperpallium, anterior mesopallium dorsal, and entopallium. (C) ZENK expression (percentage) comparing birds exposed 
to ALAN to control day and control night groups in three brain regions: hippocampus, medial dorsal mesopallium, and entopallium. Displayed are 
representative brain regions from a priori hypotheses, please see Supplementary Figures S2, S3 for all brain regions. Shown are means ±1 SE. 
Significance stars: *p < 0.05, **p < 0.01, ***p < 0.001.
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TABLE 1 Analysis of IEG expression, arranged alphabetically by region, for individual brain regions comparing control night and control day groups 
against birds exposed to ALAN.

Brain area Pathway cFos significance cFos Z value ZENK significance ZENK Z value

Anterior Hyperpallium Motor ALAN = Night (p = 0.076) −1.65 ALAN = Night (p = 0.189) −1.31

ALAN = Day (p = 0.099) −1.78 ALAN = Day (p = 0.752) −0.32

Anterior Mesopallium Dorsal Motor ALAN ≠ Night(p = 0.039) −2.07 ALAN ≠ Night(p = 0.017) −2.40

ALAN ≠ Day(p = 0.008) −2.64 ALAN = Day (p = 0.145) −1.46

Anterior Mesopallium Ventral Motor ALAN ≠ Night(p = 0.018) −2.36 ALAN = Night (p = 0.154) −1.43

ALAN = Day (p = 0.898) 0.13 ALAN = Day (p = 0.858) −0.18

Anterior Nidopallium Motor ALAN = Night (p = 0.219) −1.23 ALAN = Night (p = 0.414) −0.82

ALAN = Day (p = 0.801) −0.25 ALAN = Day (p = 0.982) 0.02

Area Para-hippocampalis ALAN ≠ Night(p = 0.026) −2.23 ALAN = Night (p = 0.090) −1.70

ALAN = Day (p = 0.712) −0.37 ALAN ≠ Day(p = 0.005) −2.79

Anterior Striatum Motor ALAN = Night (p = 0.749) −0.32 ALAN = Night (p = 0.608) 0.514

ALAN = Day (p = 0.750) 0.32 ALAN ≠ Day(p = 0.017) 2.39

Caudal Striatum ALAN = Night (p = 0.053) −1.94 ALAN ≠ Night(p = 0.031) −2.15

ALAN = Day (p = 0.129) −1.52 ALAN = Day (p = 0.325) −0.99

Dorsal Lateral Nidopallium Motor ALAN = Night (p = 0.401) 0.84 ALAN = Night (p = 0.943) 0.07

ALAN = Day (p = 0.362) 0.91 ALAN = Day (p = 0.436) 0.78

Entopallium ALAN ≠ Night(p < 0.001) −137.6 ALAN ≠ Night(p < 0.0001) −4.79

ALAN ≠ Day(p < 0.001) −195.1 ALAN ≠ Day(p = 0.014) −2.46

The core of the Entopallium Visual ALAN = Night (p = 0.010) 1.65 ALAN ≠ Night(p = 0.038) 2.08

ALAN = Day (p = 0.058) 1.90 ALAN = Day (p = 0.438) 0.78

Hippocampus ALAN = Night (p = 0.251) 1.15 ALAN ≠ Night(p = 0.040) 2.06

ALAN = Day (p = 0.953) −0.06 ALAN = Day (p = 0.791) 0.27

Lateral Int Arcopallium Motor ALAN = Night (p = 0.983) −0.02 ALAN = Night (p = 0.394) 0.85

ALAN ≠ Day(p = 0.030) −2.17 ALAN = Day (p = 0.448) −0.76

Lateral Ventral Mesopallium ALAN ≠ Night(p = 0.001) −3.24 ALAN ≠ Night(p = 0.002) −3.05

ALAN = Day (p = 0.109) −1.60 ALAN = Day (p = 0.554) −0.59

Medial Dorsal Mesopallium ALAN ≠ Night(p = 0.014) −2.47 ALAN ≠ Night(p = 0.001) −3.33

ALAN = Day (p = 0.206) −1.27 ALAN ≠ Day(p < 0.0001) −3.98

Ventral Mesopallium adjacent to the 

Basorostral Nucleus

Motor ALAN = Night (p = 0.746) −0.32 ALAN = Night (p = 0.231) −1.20

ALAN = Day (p = 0.667) 0.43 ALAN ≠ Day(p < 0.0001) 2.87

Ventral Mesopallium adjacent to the 

Core of the Entopallium

Visual ALAN ≠ Night(p = 0.014) −2.47 ALAN = Night (p = 0.175) −1.36

ALAN = Day (p = 0.879) −0.15 ALAN = Day (p = 0.590) 0.54

Nidopallium adjacent to the 

Basorostral Nucleus

Motor ALAN = Night (p = 0.994) −0.01 ALAN = Night (p = 0.671) −0.42

ALAN = Day (p = 0.180) 1.34 ALAN ≠ Day(p = 0.001) 3.214

Nidopallium Caudolateral Motor ALAN = Night (p = 0.462) −0.74 ALAN ≠ Night(p = 0.011) −2.55

ALAN = Day (p = 0.082) −1.74 ALAN ≠ Day(p = 0.005) −2.81

Nidopallium adjacent to the Core of 

the Entopallium

Visual ALAN = Night (p = 0.716) −0.36 ALAN ≠ Night(p = 0.019) −2.34

ALAN = Day (p = 0.682) −0.41 ALAN = Day (p = 0.411) 0.82

Posterior Dorsal Mesopallium Visual ALAN = Night (p = 0.149) −1.44 ALAN = Night (p = 0.173) −1.36

ALAN = Day (p = 0.153) −1.43 ALAN = Day (p = 0.205) −1.27

Posterior Hyperpallium Visual ALAN ≠ Night(p = 0.009) −2.60 ALAN = Night (p = 0.079) −1.76

ALAN ≠ Day(p = 0.017) −2.39 ALAN = Day (p = 0.072) −1.80

Posterior Lateral Ventral Mesopallium Motor ALAN = Night (p = 0.339) −0.96 ALAN = Night (p = 0.363) −0.91

ALAN = Day (p = 0.297) −1.04 ALAN = Day (p = 0.203) −1.27

Septum ALAN = Night (p = 0.821) −0.23 ALAN ≠ Night(p = 0.039) 2.06

ALAN = Day (p = 0.976) −0.03 ALAN = Day (p = 0.051) 1.95

Striatum adjacent to the Core of the 

Entopallium

Visual ALAN ≠ Night(p < 0.0001) −215.8 ALAN = Night (p = 0.608) −0.51

ALAN ≠ Day(p < 0.0001) −207.5 ALAN = Day (p = 0.326) 0.98

Bold values are significant.
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FIGURE 3

Brain slices with cFos and ZENK staining in the anterior mesopallium dorsal. (A) A sagittal slice of a representative zebra finch brain 1 mm from the 
center, showing the anterior mesopallium dorsal. Blue is DAPI, green is cFos, and red is ZENK expression. (B) Images from the anterior mesopallium 
dorsal of cFos, ZENK, and the overlay of both with DAPI for a bird exposed to ALAN, a bird collected during the day (control day), and a bird collected 
at night (control night).

The ALAN group also had significantly higher levels of cFos 
expression compared to the control day group in the anterior 
mesopallium dorsal and lateral int arcopallium and higher ZENK 
expression in the nidopallium caudolateral. However, the ALAN 
group had significantly lower ZENK expression in the anterior 

striatum, nidopallium adjacent to the basorostral nucleus, and ventral 
mesopallium adjacent to the basorostral nucleus (Table 1). There was 
no significant difference between active and non-active birds in the 
anterior mesopallium dorsal, nidopallium caudolateral, or 
nidopallium adjacent to the basorostral nucleus.
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The ALAN group also showed higher cFos expression in the area 
parahippocampalis, medial dorsal mesopallium, entopallium 
(Figure 2B), and lateral ventral mesopallium and higher expression of 
ZENK in the caudal striatum, medial dorsal mesopallium (Figure 2C), 
entopallium (Figure 2C), and lateral ventral mesopallium as compared 
to the control night group, but lower levels of ZENK expression in the 
hippocampus (Figure 2C) and septum. The ALAN group also showed 
higher levels of cFos expression in the entopallium and higher ZENK 
expression in the area para-hippocampalis, medial dorsal mesopallium, 
and entopallium as compared to the control day group (Table 1).

Discussion

Although ALAN is a pervasive pollutant, the neuronal response 
remains unclear. We  imaged IEG expression of 24 brain regions 
during the day, night, and ALAN exposure in birds and found various 
regions were significantly differentially activated among the treatment 
groups. Overall, ALAN-treated birds were more like control-day birds 
in total IEG expression. However, six brain regions differed among all 
three treatment groups: anterior mesopallium dorsal, entopallium, 
medial dorsal mesopallium, posterior hyperpallium, nidopallium 
caudolateral, and striatum adjacent to the core of the entopallium.

Vision

In the visual pathway, control night birds (LD sacrificed during 
the night) were significantly different from control day (LD sacrificed 
during the day) and ALAN birds (LLdim sacrificed during the night). 
These large differences are to be expected as LD control night birds 
were inactive. However, we still found two areas had significantly 
stronger cFos expression for ALAN birds than both control groups: 
posterior hyperpallium and striatum adjacent to the core of the 
entopallium. ALAN was a novel visual stimulus for the birds, likely 
employing a visual neuronal response.

The entopallium, the most prominent area to emerge, was 
significantly different from both controls and both IEGs. The 
entopallium is involved in visual pattern recognition (Watanabe et al., 
2008, 2011). Surprisingly, we found that birds exposed to ALAN had 
different IEG expression in visual pathways compared to day controls. 
We see that even very dim levels of ALAN (around 1.5 lux) elicit a 
clear response in recognizing this visual input.

Movement

Out of the seven regions of the motor pathway analyzed, ALAN 
birds were significantly different from the day controls in either cFos 
or ZENK in six of them. However, when accounting for activity, the 
ALAN group remained significantly different with increased 
expression in the anterior mesopallium dorsal and nidopallium 
caudolateral and decreased in the nidopallium adjacent to the 
basorostral nucleus. Although the nidopallium caudolateral has 
additional functions, the anterior mesopallium dorsal and nidopallium 
adjacent to the basorostral nucleus are differentially activated under 
ALAN and not associated with hopping. These areas may be picking 
up movement we did not track, such as head turns and flapping wings, 
or associated with other functions we are unaware of.

Memory and learning

We found birds exposed to ALAN were significantly different from 
both controls in areas associated with learning and memory. The ALAN 
group had significantly higher IEG expression than the day and night 
controls in the area para-hippocampalis and medial dorsal mesopallium, 
which are involved in spatial and object recognition and associative 
learning, respectively, (He et al., 2010; Damphousse et al., 2022). The 
ALAN birds also had significantly lower IEG expression than the night 
controls in the hippocampus, which is involved in spatial memory and 
learning (Bingman et al., 1990; Mayer et al., 2013). Dim ALAN dampens 
behavioral measures of learning and memory which have also been 
correlated with structural alterations in the hippocampus (Taufique 
et al., 2018, 2019; Liu et al., 2022). Lower nocturnal IEG expression in 
the hippocampus may partially explain why dim ALAN suppresses gene 
expression in the hippocampus (Taufique et al., 2018, 2019). It is believed 
that sleeping activates the hippocampus for memory consolidation 
(Klinzing et al., 2019). Indeed, we see higher IEG expression in our 
control night birds than day. A nocturnal suppression of hippocampal 
activity may impair memory consolidation and learning under ALAN.

ALAN treatment birds had significantly higher IEG expression in 
the nidopallium caudolateral than either of the controls. This aligns 
with previous research that has found dim ALAN alters the 
neuroarchitecture of the nidopallium caudolateral, the avian equivalent 
of the prefrontal cortex (Gunturkun, 2005; Gunturkun and Bugnyar, 
2016; Taufique et al., 2019). The nidopallium caudolateral has been 
implemented in mimicking prefrontal area structures by having the 
same receptor architecture as the Brodmann Area 10 in humans, which 
is involved in many processes including reward and conflict, working 
memory, and pain (Herold et al., 2011; Peng et al., 2018). IEG activation 
in areas associated with memory support previous findings that ALAN 
impairs learning and memory (Liu et al., 2022). Additionally, the avian 
nidopallium caudolateral along with the entopallium have been shown 
to display attentional mechanisms (Johnston et al., 2017), implying an 
alert state in our ALAN exposed birds.

Pain processing

Another association to emerge was pain processing. Dim ALAN has 
been shown to alter pain reception in mice (Bumgarner et al., 2020). 
ALAN treatment birds had significantly higher activity in the caudal 
striatum from night controls and significantly higher activity in the 
nidopallium caudolateral from both controls. Although not much is 
known about the avian caudal striatum, this area is related to anxiety 
and pain in mice (Jin et  al., 2020). Additionally, the nidopallium 
caudolateral has been associated with the Brodmann Area 10 in humans, 
also involved in pain reception (Herold et al., 2011; Peng et al., 2018).

Hormone regulation

Birds under ALAN had significantly decreased IEG expression 
compared to the control night birds in the septum and hippocampus, 
which directly regulate hormones leading to downstream physiological 
changes (Carreras et  al., 1984). The hippocampal-septal pathway 
regulates hormones involved in stress and immune function including; 
corticotropin-releasing hormone (Vale et al., 1981; Nagarajan et al., 
2017), thyrotropin-releasing hormone (Fabris et  al., 1995; Ballard 
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et  al., 1996), and corticosterone (Garces et  al., 1968; Nyakas 
et al., 1979).

Our results show that ALAN typically increases IEG 
expression in differentially activated areas compared to both 
controls. However, reduction of ZENK expression in the septum 
and hippocampus implies reduced neuronal activation in 
co-regulated functions—such as hormonal control. This is 
supported by previous research that ALAN alters hormone 
production (Ouyang et al., 2018; Moaraf et al., 2020).

In summary, through fine analyses of IEG expression, 
we  found that initial ALAN exposure activates brain areas 
involved in vision, movement, learning and memory, pain 
processing, and hormone regulation, which may be differentially 
regulated under prolonged sleep loss or long-term exposure to 
ALAN. Additionally, first time exposure to ALAN at a different 
time in the night may produce differential responses from those 
we  observed. Although ALAN may not be  eliciting changes 
through circadian regulation, we still see substantial responses 
across brain areas that warrant further study. ALAN creates a 
unique brain state that is significantly different from day or 
nighttime brain activity. Dim light creates a novel environment, 
different from birds active in the day or sleeping at night, which 
produced widespread differential brain activity.
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