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Spike-frequency adaptation
inhibits the pairwise spike
correlation

Jixuan Wang1, Bin Deng1, Tianshi Gao1, Jiang Wang1 and

Hong Tan2*

1School of Electrical and Information Engineering, Tianjin University, Tianjin, China, 2Department of

Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China

Introduction: The spike train output correlation with pairwise neurons determines

the neural population coding, which depends on the average firing rate of

individual neurons. Spike frequency adaptation (SFA), which serves as an essential

cellular encoding strategy, modulates the firing rates of individual neurons.

However, the mechanism by which the SFA modulates the output correlation of

the spike trains remains unclear.

Methods: We introduce a pairwise neuron model that receives correlated

inputs to generate spike trains, and the output correlation is qualified using

Pearson correlation coe�cient. The SFA is modeled using adaptation currents

to examine its e�ect on the output correlation. Moreover, we use dynamic

thresholds to explore the e�ect of SFA on output correlation. Furthermore, a

simple phenomenological neuron model with a threshold-linear transfer function

is utilized to confirm the e�ect of SFA on decreasing the output correlation.

Results: The results show that the adaptation currents decreased the output

correlation by reducing the firing rate of a single neuron. At the onset of a

correlated input, a transient process shows a decrease in interspike intervals

(ISIs), resulting in a temporary increase in the correlation. When the adaptation

current is su�ciently activated, the correlation reached a steady state, and the ISIs

are maintained at higher values. The enhanced adaptation current achieved by

increasing the adaptation conductance further reduces the pairwise correlation.

While the time and slide windows influence the correlation, they make no

di�erence in the e�ect of SFA on decreasing the output correlation. Moreover,

SFA simulated by dynamic thresholds also decreases the output correlation.

Furthermore, the simple phenomenological neuronmodel with a threshold-linear

transfer function confirms the e�ect of SFA on decreasing the output correlation.

The strength of the signal input and the slope of the linear component of the

transfer function, the latter of which can be decreased by SFA, could together

modulate the strength of the output correlation. Stronger SFA will decrease the

slope and hence decrease the output correlation.

Conclusions: The results reveal that the SFA reduces the output correlation with

pairwise neurons in the network by reducing the firing rate of individual neurons.

This study provides a link between cellular non-linear mechanisms and network

coding strategies.

KEYWORDS

spike frequency adaptation, firing rate, correlation, adaptation conductance, single

neuron, pairwise neurons
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1. Introduction

Understanding how the intrinsic properties at the cellular level

guide information encoding at the population level is the primary

focus of many neural coding studies (Averbeck et al., 2006; Ly

et al., 2012). The information carried by neuronal populations

is modulated by the correlation between neuronal spike trains

(Cohen and Kohn, 2011). Spike trains are widespread in the

nervous system and are observed in the thalamus (Alonso et al.,

1996), cortex (Zohary et al., 1994), and retina (Shlens et al.,

2008). The dominant sources of output correlation are correlation

and shared input (de la Rocha et al., 2007; Trong and Rieke,

2008). The given correlated input determines the number of

spikes shared between pairwise neurons (Barreiro et al., 2012).

For a given network of pairwise neurons, the spike trains of

the pairwise neurons are more strongly correlated with higher

input correlations or input intensity (Hong et al., 2012). One

consequence of output correlation modulation is that it inherits

the same variation in the firing rate of individual neurons in

a network (de la Rocha et al., 2007). Modulating the average

firing rate of individual neurons is key for the network to

decode the correlated input and execute information encoding

(Litwin-Kumar et al., 2011; Barreiro et al., 2012). However, the

mechanism underlying the output correlation modulation by

directly altering the firing rate of individual neurons remains

unclear. Overcoming this question will help us understand how

to control correlation encoding by modulating the firing rate of

single neurons.

Spike frequency adaptation (SFA) is a typical neuronal

characteristic that encodes information by modulating firing

activities (Salaj et al., 2021). The SFA shows active spiking

activity following an initial high frequency at the onset of the

constant stimulus, but it gradually becomes harder to emit

spikes (Benda et al., 2005). This adaptation slows the firing rate

(Ha and Cheong, 2017). The dynamic variation in the firing

rate causes the spike trains of individual neurons to appear

densely distributed initially and then gradually become sparse

(Benda and Hennig, 2008). This rich distribution in the spike

sequences generated by the SFA changes the shared parts of the

sequences continuously (Ramlow and Lindner, 2021). However,

it remains unclear how SFA modulates the correlation between

pairwise neurons by controlling the shared part. SFA endows

single neurons with the ability to vary their firing rates, and

this ability varies the spike sequences of pairwise neurons,

which further affects output correlation encoding. Therefore,

considering the firing rate as the focus factor contributes to

the relationship between the SFA and output correlation. This

may reveal the mechanism of population encoding at the

cellular level.

This study aimed to investigate how SFA, at the cellular

level, influences output correlation encoding at the network

level. We introduced adaptation currents and dynamic thresholds

to explore how the SFA modulates the spike train output

correlation. Our results revealed that the SFA decreased the

output correlation by reducing the firing rate of single neurons.

Our results also provide new insights into possible ways

of implementing correlation population encoding by altering

cellular mechanisms.

2. Materials and methods

2.1. Models with di�erent adaptation
mechanisms

We are primarily inspired by the in vitro experiment that

the output correlation is determined by the firing rate (de la

Rocha et al., 2007). SFA is a prominent characteristic in decreasing

the firing rate, which could be modeled by various physiological

adaptation mechanisms, such as IM (voltage-gated K+ current;

Ermentrout, 1998), IAHP (Ca2
+
gated K+ current; Ermentrout,

1998), and IKNa (Na+ activated K+ current; Wang et al., 2003).

IM and IAHP are inhibitory potassium currents that are activated

during APs (Benda and Herz, 2003; Benda et al., 2010). These two

kinds of currents shape the information transmission properties

on a slow time scale (Ha and Cheong, 2017). IKNa is mobilized

over a longer time scale (Wang et al., 2003). In addition, Benda

et al. (2010) reproduced the adaptation by dynamic threshold or

adaptation current from the perspective of the physical model. In

the following part, three biophysical adaptation mechanisms and

two adaptation mechanisms generated by the mathematical model

are introduced.

2.1.1. Prescott model
The Prescott model is extended by an adaptation current,

which is a modified Morris–Lecar model (Morris and Lecar, 1981;

Prescott and Sejnowski, 2008). The membrane potential V includes

inward sodium current, outward potassium current, and passive

leak current. The dynamics of membrane potential V , the kinetics

of the K+ gating variable w, and adaptation variable z are described

as follows:

Cm
dV

dt
= Iext − gNam∞(V)(V − ENa)

−gKw(V − ENa)− gL(V − EL)− Iadapt (1)

dw

dt
= ϕw

w∞(V)− w

τw(V)
(2)

dz

dt
=

z∞(V)− z

τz
(3)

where Cm = 2µF/cm2 is the membrane conductance. Iext is the

external DC input. Iadapt represents IM or IAHP. φw = 0.15.

As manifested in Figures 1A, B, the membrane potential first

demonstrates a rapid fluctuation and then presents a continuous

steady oscillation. The adaptation current reads:

Iadapt = gadaptz(V − EK) (4)

The maximum conductances are gNa=20 mS/cm2,

gK=20 mS/cm2, and gL=2mS/cm2. The reversal potentials are

ENa = 50 mV, EK = −100 mV, EL = −70 mV. All parameter

settings are based on Prescott and Sejnowski (2008). gadapt is
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FIGURE 1

Neural spiking activities and adaptation currents/thresholds for di�erent models. (A) The patterns of the membrane potential V and M current in the

Prescott model. (B) The patterns of V and AHP current in the Prescott model. (C) The patterns of V and the M type current in the Ermentrout model.

(D) The patterns of V and the AHP type current in the Ermentrout model. (E) The patterns of dynamic threshold Vth and V in the LIFDT model. (F) The

patterns of adaptation current R(I− A) and V in the LIFAC model. (G) The patterns of V and KNa type current in the Wang model.

the adaptation conductance, which is set to different values

for different experiments. The time function and steady-state

activation are given by:

m∞(V) = 0.5

[

1+ tanh

(

V − βm

γm

)]

(5)

w∞(V) = 0.5[1+ tanh(
V − βw

γw
)] (6)

τw(V) = 1/cosh(
V − βm

2γm
) (7)

z∞(V) = 1/[1+ exp(
βz − V

γz
) ] (8)

where βm = −1.2 mV, γm = 18 mV, βw = 0 mV, γw =
10 mV. For the M type current, the parameter settings are gadapt =
gM=0.5 mS/cm2, βz = -35 mV, γz = 4 mV, τz = 100 ms, which

makes IM activate before action potentials. For the AHP type

current, gadapt = gAHP=5 mS/cm2, βz = 0 mV, γz = 4 mV, τz =
100 ms, which enables IAHP activate during action potentials.

2.1.2. Ermentrout model
The Ermentrout model is a single-compartment model, which

is a conductance-based version modified by Traub–Miles model

(Shlens et al., 2008). The membrane potential consists of fast Na+

current INa, delayed rectifier K+current IK , voltage-gated Ca2+

current ICa, leak current IL, M type current IM , and AHP type

current IAHP. The membrane potential follows

Cm
dV

dt
= Iext − gNam

3h(V − ENa)− gKn
4(V − ENa)− gL(V − EL)

− gCa
{

1+ exp[−(V + 25)/5 ]
}−1

(V − ECa)− IM − IAHP

(9)

where the membrane capacitance Cm = 1µF/cm2 . Each

adaptation ionic current reads

IM = gMz(V − EK) (10)

IAHP = gAHP[Ca
2+](30+ [Ca2+])

−1
(V − EK) (11)

where the maximum conductances are gNa=100 mS/cm2,

gK=80 mS/cm2, gL=0.1 mS/cm2, gCa=1 mS/cm2, gL=2mS/cm2.

The reversal potentials are ENa = 50 mV, EK = −100 mV,

EL = −70 mV, and ECa = 120 mV. The kinetics of z for M type

current follows

τz
dz

dt
= 1/

{

1+ exp
[

−(V + 20)/5
]}

− z (12)

where τz = 100 ms, and the dynamics of intracellular Ca2+

concentration
[

Ca2+
]

is given by

Frontiers inNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fnins.2023.1193930
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Wang et al. 10.3389/fnins.2023.1193930

FIGURE 2

Relationship between correlated input currents and spike train output correlation. The fluctuating inputs follow the Ornstein–Uhlenbeck process

with τ=5ms, and some fractions of inputs are shared with each neuron, which is defined by c. The input correlation decides the information transition

ability from input to output. τT and τs are relevant to the output correlation ρ, which is defined as spike train covariance normalized by variance.

d
[

Ca2+
]

dt
= −0.002ICa − 0.0125

[

Ca2+
]

(13)

For themodel with AHP type current, gM = 0 mS/cm2 and, in a

similar way, for the model with M type current, gAHP = 0 mS/cm2.

The membrane potentials and adaptation currents generated in the

Ermentrout model are shown in Figures 1C, D.

2.1.3. Wang model
Different from the Ermentrout model, the Wang model

focuses on the sodium-activated potassium current IKNa. We use

a single-compartment form proposed by Wang et al. (2003),

where the calcium-activated potassium current and the dendritic

compartment are not adopted. The kinetics of the membrane

potential obeys

Cm
dV

dt
= I − gNa

{

1+ 4 exp[−(V + 58)/12]
}

{

exp[−0.1(V + 33)]
}−3

h(V − ENa)

−gKn
4(V − EK)− gL(V − EL)

−gCa
{

1+ exp[−(V + 20)/9]
}−2

(V − ECa)

−Iadapt (14)

IKNa results in the firing rate slowing down following an initial high

frequency as shown in Figure 1G. The sodium-activated potassium

adaptation current is given by:

Iadapt = 0.37gKNa/[1+ (38.7/[Na+])
3.5
](V − EK) (15)

The gating variables h and n are given by

dh

dt
= 0.28 exp[−(V + 50)/10](1− h)− 4/

{

exp[−0.1(V + 20)]

+ 1} h (16)

dn

dt
= −0.04(V + 34)/

{

exp[−0.1(V + 34)]− 1
}

(1− n)

− 0.5 exp[−(V + 44)/25]n (17)

The kinetics of concentration [Ca2+] and [Na+] describe as

d[Ca2+]

dt
= −0.002ICa − [Ca2+]/240 (18)

d[Na+]

dt
= −0.0003INa − 0.0018

{

[Na+]
3
/([Na+]

3 + 3375)

− 0.13172} (19)

2.1.4. Benda model
The leaky integrate-and-fire neuron with adaptation current

(LIFAC) and the leaky integrate-and-fire neuron with a dynamic

threshold (LIFDT) are modified from leak integrate-and-fire (LIF).

The membrane potential with input current I(t) is given by

τV
dV

dt
= −V + R(I(t)− A) (20)

τA
dA

dt
= −A (21)

where τV = 10 ms is the time constant and R is the input resistance.

A is the adaptation current. τA = 100 ms is the adaptation time

constant. When the membrane potential crosses the threshold, V is

reset to the value of the resting state. A increases with1A =1agAc,

which represents the adaptation current in the form of the LIF

neuron model.

In addition, the dynamic threshold could generate SFA. The

model of LIFDT shows

τV
dV

dt
= −V + RI(t) (22)
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FIGURE 3

Variation of membrane potentials and adaptation currents with or without SFA. (A, B) The membrane potential of pairwise neurons under correlated

input without adaptation. (C, D) The firing patterns and M current of pairwise neurons where gM = 0.25 mS/cm2. (E, F) The firing patterns and AHP

current of pairwise neurons where gAHP = 2.5 mS/cm2 .

τA
dH

dt
= −H+Vth (23)

Different from the mechanism of adaptation current in LIFAC,

the adaptation item is produced by a dynamic voltage threshold H.

When V crosses the thresholdH rather than Vth, V is reset to 0 and

H(t+ 1) =H(t)+1H. 1H represents the increment of the change

in dynamic threshold. The membrane potentials and adaptation

currents of LIFDT and LIFAC are depicted in Figures 1E, F.

2.2. Correlation calculation

The output correlation is generated by correlated input. We

choose a pair of neurons receiving fluctuated correlated input

current (Barreiro et al., 2012). As shown in Figure 2, the current

has a common input component making the pairwise neuron share

afferent input. In addition, the neuron pair has an independent

input. The fluctuating input current to neuron i (i = 1, 2) follows:

Iki = µi + σi(
√
1− cξ ki (t)+

√
cξ kc (t)) (24)

where k = 1, 2, · · · ,N (N = 1, 000) is the experiment trial and i is

the neuron index. µi and σi
2 are the average and variance of the

input current. c (0 ≤ c ≤ 1) is the input correlation coefficient.

ξ ic(t) and ξ ki (t) represent the common and independent Gaussian

white noise process of neuron i in trial k, respectively (Lindner

et al., 2005). ξ ic(t) is the same in different trials, while ξ ki (t) is

randomly generated at each trial. We set appropriate parameters

to simulate the variability of Vk
i (Lampl et al., 1999) and the spike

trains generated by Vk
i (Kohn and Smith, 2005) in vivo condition

(Alonso et al., 1996). We adopt Pearson’s correlation coefficient ρ

(Mark Borodovsky, 2008), which is calculated by:

ρ =
Cov(n1, n2)

√

Var(n1)Var(n2)
(25)

where Cov and Var represent the covariance and variance. n1 and

n2 are the spike counts computed over the time window τT . The

common input generates correlation between pairwise neurons.

The correlation coefficient ρ depends on two factors: time window

τT and slide window τs. ρ is a dimensionless quantity, which ranges

from 0 (independent) to 1 (entirely correlated), respectively. The

input correlation c bounds the output correlation ρ. The correlation

susceptibility S is the slope of ρ to c, which is described by:

S = ρ/c (26)
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FIGURE 4

Relationship between output correlation and firing rate in the Prescott model gM = 0.25mS/cm2 , gAHP = 2.5mS/cm2 , σ 2 = 5(mS/cm2)2. (A) The

positive relationship between input correlation and output correlation. The output correlation presents a decrease in the case of adaptation

µ = 45mA/cm2. (B) The output correlation varies with input intensity under di�erent adaptation conditions c = 0.5. (C) The relationship between

firing rate and input correlation µ = 45mA/cm2. (D) Firing rate vs. correlated input current (f − µ) variations. c = 0.5. τT = 400 ms and τs = 50 ms.

where S depends only on the input and output correlation. In

addition, the coefficient of variation (CV) is adopted to measure

the variation in firing rate and the interspike intervals.

The sequence of time intervals between adjacent action

potentials of neuronal firing is called the ISI sequence. The ISI

sequence and a histogram of the ISIs in the sequence can inform

about both the mode and variability of the firing frequency

in neuronal activity and are, therefore, useful measures. All

simulations are implemented in MATLAB R2017a using the

forward Euler method.

3. Results

3.1. Modulating the e�ect of SFA on output
correlation by changing the firing rate

Different adaptation mechanisms are applied to pairwise

neurons to examine how SFA shapes the neuronal output response

between pairwise neurons. The neuronal output response without

the SFA is first explored, as depicted in Figures 3A, B. The firing

patterns are sensitive to the correlated input, and the membrane

potentials exhibited oscillations. The non-uniform distribution of

the patterns resulted from noisy inputs. We then examined the

neural activity with adaptation (M current or AHP current). As

shown in Figures 3C, D, the M current makes the output responses

sparser than those without adaptation. This slowing down of the

firing activity also exists in the situation with the AHP current,

as shown in Figures 3E, F. The addition of adaptation decreases

the firing rate of individual neurons. The inhibitory effect of

SFA on slowing the firing patterns might further decrease the

output correlation.

The inhibition generated by adaptation slows the spiking

activity of single neurons. Next, we investigated how the inhibitory

effect changes the output correlation ρ, using the input correlation

c, and correlated input intensity µ. The variance of the correlated

input is fixed at a constant value. The existence of adaptation made

ρ less sensitive to the input correlation, where the slope of the

variation slowed down, see Figure 4A. The value of ρ decreased

with the addition of adaptation at the same c value. As the value

of c ranged from 0 to 0.5 with an increase of 0.05, the output

correlation and firing rate are calculated, as shown in Figures 4A,

C, respectively. The output correlation for each adaptation is

monotonic as c increases. The firing rate increases slowly with the

enhancement of c, and the higher conductance intensity induces

lower firing rate level. Because of the large ordinate space in

Figure 4C, the change in firing rate with c is not obvious, but when

viewed at higher resolution (not shown here), firing rate did show

a significant increase with c. According to the above experiments,

ρ values and the firing rate exhibited similar variation trends as

the value of c increased. Therefore, we speculate that adaptation

decreases ρ by decreasing the firing rate. We then studied the

input intensity’s influence on the output correlation ρ. As shown

in Figures 4B, D, ρ and the firing rates are both sensitive to µ.
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FIGURE 5

Correlation analysis vs. AHP adaptation conductance and three types of input intensity. (A) The correlation decreases with the increase in AHP

adaptation conductance. The correlation shows a downward trend. For the same gAHP , the correlation enlarges as the input current increases. (B)

The tendency of the firing rate with the enhanced AHP conductance. The decreasing tendency is gentle under di�erent correlated inputs. (C) The

susceptibility vs gAHP . The susceptibility decreases with increasing gAHP . As the input intensity enhances, the susceptibility enlarges. (D) The spike

trains under µ = 43mA/cm2. The length of the sequence is 1,000ms. (E) The two-sample t-test is utilized to test the di�erence between di�erent

input intensities. The gray area presents the output correlation. The numbers represent the upper and lower bounds of output correlation. The results

of 50 trials are shown in the boxplot. The results show that di�erent intensities under the same gAHP generate significantly di�erent output

correlations. *Presents p < 0.01. **Presents p < 0.001. c = 0.6. τT=400 ms and τs=50 ms.

The value of ρ increased while µ also increased, and the firing

rate showed the same tendency under the same stimulus. The

introduction of the M and AHP currents decreased the ρ value,

and a decrease in the firing rate accompanied this. Combined with

the above speculation of ρ and firing rates, we conclude that the

M and AHP currents decrease the output correlation by decreasing

the firing rate. The firing rate serves as a bridge connecting the SFA

and output correlation, which causes the inhibition of the firing

rate at the cellular level and decreases the output correlation at the

network level.
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FIGURE 6

Correlation analysis vs. M adaptation conductance and three types of input intensity. (A) The output correlation vs. M adaptation conductance. ρ

decreases smoothly as/increases. (B) The firing rate variation with M conductance. Large angles appear at gM = 0.75mS/cm2 with µ = 47mA/cm2

and gM = 0.5mS/cm2with µ = 52mA/cm2. The firing rate modulation is the same as that in (A). (C) The susceptibility vs. gM. The susceptibility

decreases with increasing gM. As the input intensity enhances, the susceptibility enlarges. (D) The spike trains under µ = 43mA/cm2. The length of

the sequence is 1,000ms. (E) The two-sample t-test is utilized to test the di�erence between di�erent input intensities. The gray area presents the

output correlation. The numbers represent the upper and lower bounds of output correlation. The results show that di�erent intensities under the

same gM are significant intensities. *Presents p < 0.01. **Presents p < 0.001. c = 0.6. τT=400 ms and τs=50 ms.

3.2. Shaping output correlation via varying
adaptation currents

To examine how the adaptation current shapes the neuronal

output response, we varied the adaptation conductance of the M

and AHP currents. The intensity of the adaptation current depends

on conductance, which is directly related to the firing rate of the

neurons. A stronger adaptation current generates a lower firing

rate. As shown in Figure 5A, the correlation decreases significantly

with the increase in AHP adaptation conductance compared with

the correlation without the SFA. The output correlation slows as

the AHP conductance increases. In addition, the enhancement of

input enlarges the output correlation generally. Three examples of

firing sequences are superimposed with different colors, as listed in

Figure 5D. It is obvious that the spike trains of the pairwise neurons

become sparse. At gAHP = 2.5 mS/cm2, the firing is swift at the
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FIGURE 7

Distribution of ISIs with M current or AHP current µ=43mA/cm2. (A) ISI distributions in the case of AHP current. The mountainous area gradually

moves to the right part as gAHP increases. (B) ISI distributions in the case of M current. (C) The distribution of ISIs with the largest number under

di�erent AHP adaptation conductance. (D) The CV of the ISIs shows a smooth decrease. (E) The distribution of ISIs with the largest number under

di�erent M adaptation conductance. (F) An inflection point appears at gM=0.5mS/cm2 because the firing patterns show an obvious decrease

τT=400 ms and τs=50 ms.

beginning. Then the spike train follows with slow sparse spikes.

As gAHP increases to 5 mS/cm2 and 10 mS/cm2, the rapid firing

becomes less noticeable at the initial stage. Furthermore, the spike

train correlation becomes weakened. The sparse spiking reflects the

slowing firing rate, as shown in Figure 5B. The firing rate tended to

decrease as gAHP increases. The correlation variation corresponds

to the firing rate variation, and they present the same decreased

variation tendency as gAHP enhances. Under AHP current, the

firing rate variation presents a gentle decreased tendency, which is

corresponded to the correlation. This slowing effect changes the v

of the output correlation to the input correlation. The susceptibility

is displayed in Figure 5C. The results show that the susceptibility

decreases as gAHP increases. The variation trend of susceptibility

is consistent with the output correlation. The enhancement of

spike frequency adaptation decreases the interaction of pairwise

neurons, which further attenuates the susceptibility. Furthermore,

the significant difference between different input intensities is

investigated to demonstrate the role of input intensity on output

correlation, as shown in Figure 5E. The results show that there

is a significant difference between different inputs. The external

inputs play a pivotal role on output correlation. The enhancement

of external input intensity enlarges the correlation apparently.

Furthermore, the role of M current on output correlation

is investigated. As shown in Figure 6A, the output correlation

attenuates as M conductance increases. During µ = 52 mA/cm2,

the neuronal firing rate is sensitive to the mean value of the input.

However, in terms of µ = 47 mA/cm2 and µ = 43 mA/cm2, the

correlation is significantly reduced, beginning with the red curved
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FIGURE 8

Correlation coe�cient ρ vs. time window τT and slide window τs. (A) The correlation variation with stimulation duration t fixed at 1, 000 ms.

τs=100 ms. Compared with the correlation without SFA, the output correlation presents an increase with M adaptation or AHP adaptation. (B) The

correlation variation with stimulation time fixed at 10, 000 ms. The correlation suggests a decrease with SFA τT=400 ms. (C) The correlation varies

with stimulation time where τT=400 ms and τs=50 ms. (D) The correlation varies with stimulation time where τT=300 ms and τs=100 ms. (E) The

correlation varies with stimulation time where τT=400 ms and τs=100 ms.

arrows. The corresponding spike trains are shown in Figure 6D.

The firing patterns demonstrate an evident sparse distribution as

gM increases. From gM = 0.5 mS/cm2 to gM = 0.75 mS/cm2, the

firing patterns present are sparser, which indicate that the firing

rate is significantly reduced. As gM enhances displayed in Figure 6B,

the firing rate presents an obvious subdued tendency. The firing

rate is relatively low and sensitive to input fluctuations, as shown

in Figure 6C. In contrast to the AHP current, although the M

current reduced the output correlation, the correlation variation is

not smooth. This is because the interplay between the M current

and the input intensity slows the firing rate to a minimal value.

While for M current, the firing rate generates obvious variations

at gM = 0.75 mS/cm2 with µ = 47 mA/cm2 and gM =
0.5 mS/cm2 with µ = 52 mA/cm2. These significant variations

are corresponding to the correlation variation in Figure 6B.

The firing rate variation results in the correlation variation.

In addition, the firing rate further decreases the susceptibility

of input to output correlation, as displayed in Figure 6C. As

shown in Figure 6E, the two-sample t-test indicates that the

correlation at the same adaptation conductance under different

inputs is significantly difference. The variation of susceptibility

is consistent with the trend of output correlation. In conclusion

of the role of SFA in output correlation, the correlated input

and adaptation conductance determined the firing rate, and

the output correlation is further modulated by the firing rate

generated by the combined effect. The decreased firing rate depends

on the attenuated SFA conductance and further inhibits the

output correlation.

In the absence of the SFA, the maximum correlation value

generated by the correlated input is approximated by the input

correlation, which is consistent with previous findings (de la Rocha

et al., 2007; Litwin-Kumar et al., 2011). Prescott et al. (2006)

found a terminated firing phenomenon (i.e., the cessation of

spiking activity) that causes firing patterns to be generated only

at the onset of a stimulus (Prescott and Sejnowski, 2008). In our

simulations, this terminated firing phenomenon ’appears’ but the
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FIGURE 9

Correlation variation with stimulation time fixed to 1, 000 ms and 10, 000 ms. (A) The correlation variation with τs fixed at 100 ms. τT varies from

100 ms to 1, 000 ms. The correlation with SFA demonstrates an increase compared to that without adaptation. (B) The correlation variation with τs

varying from 100 ms to 300 ms where τT is set to 400 ms. The correlation presents a decrease under the corresponding parameter settings.

noise component of correlated input still generates some sparse

firing patterns as depicted in Figure 6D. It is worth mentioning

that the form of the terminated firing phenomenon is controlled

by two factors: stimulus intensity and adaptation conductance.

Low stimulus intensity and adaptation conductance generate the

terminated firing phenomenon more easily. This phenomenon

causes the sensitivity of the firing rate to change from the input

intensity to the noise component of the input, resulting in a

significant decrease in the firing patterns, which become very

sparse. In conclusion, different SFA mechanisms have various

effects on output correlation. However, they control the correlated

input or adaptation conductance to change the firing rate and have

a decreased impact on output correlation.

Next, we investigated how adaptation affected this correlation.

To quantify the different effects of the M current and AHP current,

the ISIs and their histograms are calculated. The ISI histograms,

under different adaptation conductance, are shown in Figure 7.

The ISIs without SFA are distributed at lower values ∼10ms,

with a substantial peak. In this case, pairwise neurons displayed a

rapid firing process. As the adaptation conductance increases, the

adaptation currents gradually increase, decreasing the firing rate.

The diagrams with the AHP current in Figure 7A show a regular

change: ISIs are distributed over a broader range on the horizontal

scale. The values of the ISIs along the x-axis are increasing

with increasing adaptation conductance, while the amount of ISIs

reduces. The variations in the ISIs in Figure 7B with the M current

are similar to those with the AHP current. It is worth noting that

there is a significant difference: ISIs with AHP current show a stable

change from top to bottom as shown in the subgraph of Figure 7B,

whereas ISIs with M current show an evident variation from

gM = 0.5 mS/cm2 to gM = 0.75 mS/cm2 because this adaptation

is sufficient to make the firing patterns sparse. The number of ISIs

decreases dramatically, and larger values are gradually generated

by the noisy component of the input, which becomes a dominant

factor in changing the correlation. The large values of ISIs become

essential in decreasing the firing rate and further reducing the

output correlation when the adaptation conductance increases. As

shown in Figures 7C, E, themean value of the ISIs increased with an

increase in the adaptation conductance. The increase in Figure 7C

is relatively uniform, whereas the variation trend in Figure 7E slows

at gM = 0.5 mS/cm2 . This is because the AHP current decreases the

firing rate slightly, whereas the M current generates a significant

decrease in the firing rate at gM = 0.5 mS/cm2 . Meanwhile, the

coefficient of variation of the ISIs at gM = 0.5 mS/cm2 increases

at the inflection point. For gM > 0.5 mS/cm2 , the firing patterns

are generated by correlated noise, which causes the firing patterns

to be generated randomly, and the firing becomes more irregular.

Under adaptation conductance where gM > 0.5 mS/cm2 , the

CV of the ISIs no longer increases but shows a decreasing trend.

This trend is consistent with the variation shown in Figure 6A. In

conclusion, AHP andM adaptation decrease the output correlation

with an increase in the strength of the adaptation currents. The

attenuation in output correlation is accompanied by the increment

in ISIs distribution.

3.3. E�ect of adaptation conductance and
stimulation time on output correlation

The dynamic firing process of neurons determines the variation

in the special output correlation, while the output correlation

depends on the firing rate for a given fixed shared input. There

are two stages of firing rate variations in the situation with SFA.

From a single neuron point of view, in the first stage, the neurons

show rapid firing as shown in the front part of Figure 1G. While
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FIGURE 10

(A) Variation of output correlation with di�erent gKNa in two di�erent stimulation times. The stimulation time of the red and green lines is 14, 000ms

and 140, 000ms, respectively. The red line presents an increase due to the increased firing rate, while the green line demonstrates a decrease because

of the decreased firing rate. (B) The susceptibility variation with the increased gKNa. (C) The firing rate variation under di�erent gKNa. (D) The mean

value of ISI with di�erent conductance levels. (E) The coe�cient of variation of the ISIs. (F) The variation of ISIs with di�erent adaptation conductance

levels. With the enlargement of the adaptation conductance, ISIs shift to the right region of the horizontal axis. c = 0.6. τT=400 ms and τs=50 ms.

in the second stage, the neurons exhibit slow and steady firing. We

discovered an interesting phenomenon under the same parameter

settings, except for the stimulation time. The experimental results

are the opposite. The stimulation times in Figures 8A, B are set

to 1,000 and 10,000ms, respectively. As shown in Figure 8A, the

correlation increases because the rapid firing rate in the first stage

dominates the correlation. As the stimulation time increases to

10,000ms, the effect of rapid firing weakens, and the slow firing

process in the second stage primarily impacts the correlation. The

question then arises as to how long it would take for the stimulation

time to generate a stable reduction in the correlation. To explore

this question, we randomly selected three combinations of time
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FIGURE 11

Variation of correlation and firing rate as conductance changes. (A) The correlation vs. conductance of AHP. (B) The firing rate vs. conductance of

AHP. (C) The correlation vs. conductance of M. (D) The firing rate vs. conductance of M. c = 0.6. τT=400 ms and τs=50 ms.

(τT) and slide windows (τs). As described in Figures 8C–E, the

correlation presents a trend of increasing followed by decreasing.

The variation in correlation arises from the changing rules of the

firing rate with the SFA. The output correlation shows a temporary

increase for a very short stimulation time, as shown in the upper-

right corner of each subgraph in Figures 8C–E. This is due to

the rapid firing rate, resulting in shared spike trains of pairwise

neurons havingmore similar parts in the initial stage. However, this

immediate increase in the correlation disappeared and is reversed

to a decreased result when the stimulation time increased. In the

second stage, the SFA decreased the correlation by slowing down

the firing rate of individual neurons. The slow firing patterns in

the second stage may have an important impact on the population

coding of sustained input signals to the neurons.

The output correlation is measured by Pearson’s coefficient,

resulting in the output correlation being related to τT and τs

(Barreiro et al., 2012). Because only a fraction of spike trains is

included in τT , the instantaneous partial firing rate may generate

significant variability in the output correlation (de la Rocha et al.,

2007; Barreiro et al., 2012). Different combinations of τs and τT

are selected to verify whether they affected the decreased results

of SFA on the correlation in this study. The chosen time window

in this section is 10 times larger than the slide window (Barreiro

et al., 2012). As shown in Figure 9A, τs is fixed at 100ms to observe

the effect of τT on output correlation. The output correlation

exhibits a weak increase across the range of values of τT . Similar

to the variation tendency in Figure 5A, the correlation variations

caused by τs are not noticeable when the stimulation time is fixed

at 10,000ms in Figure 9B. All results show that τs and τT have

an impact on the numerical value of the correlation. However,

their different combinations make no difference to the effect of

SFA on reducing the correlation. Stimulation time is the most

critical factor affecting the correlation difference between the two

graphs in Figure 8. High similarity in the initial part of the spike

trains with the SFA significantly affects the correlation for a short

stimulation time. The correlated input and the input correlation

become the main factor decreasing the correlation over a long

stimulation time.

3.4. Verifying the e�ect of di�erent
adaptation mechanisms on decreasing
correlation

M and AHP currents have been proven to reduce the output

correlation by decreasing the firing rate in this study. The Prescott

model is a single-compartment conductance-based physical model

that neglects other adaptations of the biological model, such as

the Na+ inactivation K+ current. In this section, we explore the
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FIGURE 12

ISI variation of the Ermentrout model with AHP and M currents. (A) ISI variations under di�erent adaptation conductances, under AHP current. The

blue points represent the ISIs. (B) ISI variations with di�erent adaptation conductances under M current. (C) The mean value of ISIs with di�erent

conductances under AHP current. (D) Coe�cient of variation of the ISIs under AHP current. (E) The mean value of ISI with di�erent conductances

under M current. (F) Coe�cient of variation of the ISIs under M current. c = 0.6. τT=400 ms and τs=50 ms.

effect of the slow inhibitory current (IKNa) on this correlation.

In addition to the adaptation current, the dynamic threshold can

generate adaptation and decrease the firing rate.

First, we introduce a typical IKNa from the Wang model to

explore its effect on output correlation (Wang et al., 2003). The red

line in Figure 10A indicates an increase in the output correlation,

completely different from the decreasing phenomenon in Section

3.1. The sequences generate rapid firing for a long time, even

more than 3,000ms, which makes the front of the spike trains

highly similar. The similarity is hardly affected by the random

spiking activity in the correlated input. Therefore, the correlation

remains very high, close to 1. The firing rate decreased, resulting

in the correlation demonstrating a steady decline as the adaptation

conductance increased, as shown in Figure 10B. This reduced effect

of the adaptation current on the correlation is consistent with

the above results for M and AHP currents. We further studied

the variation in ISIs. The ISIs exhibited a regular hill without an

SFA. As the adaptation conductance increased, the ISIs hill moved

toward larger values, as depicted in Figure 10E. This hillside is a

significant factor that decreased the correlation.We then calculated

the mean value of the ISIs that exhibited a gentle ascent, as

shown in Figure 10C. Because the fluctuations in the correlated
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FIGURE 13

(A) Correlation variation with di�erent input current intensities in the LIFDT model. ①, ②, and ③ are the firing patterns for the first 1,000ms of

stimulation. (B) The correlation variation with di�erent input threshold intensities in the LIFAC model. (C) The firing rate vs. 1H. (D) The firing rate vs.

1A. c = 0.6. τT=400 ms and τs=50 ms.

input dominated the correlation variation, the CV of the ISIs

demonstrated a decreasing tendency, as shown in Figure 10D.

In conclusion, IKNa decreased the correlation by decreasing the

firing rate.

The M and AHP currents have been proven to decrease the

correlation in the Prescott model. However, the same mechanisms

may behave differently in different models. We chose the

Ermentrout model to verify whether the same SFA mechanisms

in the various models had diverse effects on the correlation.

Two aspects confirm that the results are independent of the

models: the density of the input current and the adaptation

conductance. As shown in Figure 11A, the correlation decreases as

the adaptation conductance increases. At the same conductance,

increasing the input intensity enhanced the output correlation. SFA

mechanisms are the primary factors that change the correlation

by decreasing the firing rate, as displayed in Figure 11B. Different

SFA mechanisms in various models generated similar reduced

effects on the correlation. The most remarkable difference between

the Ermentrout and the Prescott models is that the correlation

(Figure 11C) and firing rate (Figure 11D) in the Ermentrout model

reduces smoothly as compared to the correlation change seen

with the Prescott model. The downward trend of the output

correlation curves is smoother without inflections. The correlation

demonstrates continuous variation as gAHP increases. The variation

in firing patterns with AHP current is a continuous change with

adaptation conductance changes. Thus, the variation in correlation

presents a smooth decrease regardless of whether in the Prescott

or Ermentrout model. The decreased correlation is caused by a

reduction in firing rate, accompanied by ISIs variations. The ISIs

are plotted in Figure 12, which shows that the distribution expands

to larger values. In contrast to the variation in the Prescott model,

the Ermentrout model is more regular because the firing activity

does not stop during the response.

The mechanisms related to SFA introduced above are based

on the current mechanism in a physiological phenomenon.

Different ionic currents generate various adaptation phenomena.

The models all verified that the effect of SFA is to reduce

output correlation. This brings to question whether this SFA

effect exists in a mathematical, physical model where dynamic

thresholds generate SFA. First, we use LIFAC to generate adaptation

current and verify whether adaptation current has the effect

of decreasing correlation. Then, we test this decreased effect

with another model using a dynamic threshold. As shown in

Figure 13B ③, the pairwise neurons present a relatively uniform

and regular firing pattern without adaptation. The addition

of adaptation current makes the firing patterns slow down

(Figure 13B ① and ②). As shown in Figure 13C, the firing rate

becomes slower as the threshold increases. We speculate that the

adaptation current decreases the correlation by reducing the firing

rate. When the dynamic thresholds are applied to the model,

the membrane potential fluctuations become sparse, where the

membrane potential shows dense distribution at the beginning and

then slows down. With the increase in dynamic thresholds, the

correlation presents a downward trend; see Figure 13A.Meanwhile,
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FIGURE 14

ISI variation in LIFDT and LIFAC models. With the increasing adaptation current in the left panel or dynamic threshold in the right panel, the

distribution of ISIs shows a shift to a higher value on the abscissa and a decline in the amount. (A) ISI variations in the LIFDT model. (B) ISI variations in

the LIFAC model. (C) The mean value of ISIs with di�erent conductances under AHP current. (D) CV of ISIs under AHP current. (E) The mean value of

ISIs with di�erent conductances under M current. (F) CV of ISIs under M current. c = 0.6. τT=400 ms and τs=50 ms.

the firing rate (Figure 13D) shows a similar decrease tendency

to the correlation in Figure 13C. This variation reflects that the

dynamic threshold changes the correlation by decreasing the firing

rate. At the same stimulus intensity, a larger adaptation strength

generates a smaller correlation resulting from the decreased

firing rate and sparse firing patterns. Furthermore, increased

input current intensity enlarges the output correlation under

each dynamic threshold but is uninfluential to the decreasing

correlation tendency. The pairwise neurons with adaptation

current or dynamic threshold decrease the correlation when SFA

is introduced. The firing rate presents a decrease in the same

trend as shown in Figures 14C, D. In addition, the ISI distributions

in Figures 14A, B prove that the increase of ISIs accompanies

the decrease in correlation. The mean values of ISIs show a

smooth ascent in Figures 14C, E, indicating an obvious decrease

in the firing rates. On the contrary, the CV of ISIs shows a

reduction in Figures 14D, F due to the correlated noise components

gradually playing a more critical role in generating firing patterns.
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FIGURE 15

Adaptation mechanism analysis vs. correlation. (A) A phenomenological pairwise neuron model with input function f. λ1 and λ2 represent the input

random variables that represent the summation of the shared and individual inputs to the two neurons. µ and σ are the parameters of the Gaussian

distributions governing the statistics of the neural signals. This simplified model is analogy to the pairwise neurons in Figure 2. (B) The

threshold-linear model. The function f has a higher slope without adaptation. (C) The output correlation variation with or without adaptation. (D) The

input joint density P(λ1, λ2) under µ = 1.5. (E) The output density P(y1, y2) without adaptation. (F) The output joint density P(y1, y2) with adaptation

under µ = 1.5. (G) The input joint density P(λ1, λ2) under µ = 0.75. (H) The input joint density P(λ1, λ2) with adaptation. (I) The output joint density

P(y1, y2) with adaptation.

These results are in accordance with the previous results in

Section 3.2.

3.5. A mechanistic analysis

In Sections 3.1–3.4, the biological models and the

phenomenological models are utilized to investigate the role

of SFA in output correlation. The results show that SFA decreases

the firing rate and further attenuates the output correlation

of pairwise neurons. To make a mechanism analysis, a simple

phenomenological model using a non-linear input function f ,

similar to that used in de la Rocha et al. (2007), is introduced. As

shown in Figure 15A, λ1 and λ2 are in analogy to the pairwise

neurons model. The input correlation is c, which is set to 0.5.

The function f is set to threshold-linear. As shown in Figure 15B,

the threshold-linear characteristic makes the model a rectifier.

SFA decreases the slope of the linear portion of the rectifier. The

output correlation is lower with adaptation compared with the

output correlation without correlation (Figure 15C). The input

distribution P(λ1, λ2) and the output distribution P(y1, y2) are

depicted in Figures 15D, E. Furthermore, the output distribution

with adaptation is plotted in Figure 15F. The introduction of

adaptation decreases the correlation and response intensity. In

addition, another Gaussian input, µ = 0.75 is investigated. The

input distribution P(λ1, λ2) and the output distribution P(y1, y2)

with or without adaptation are drawn in Figures 15G–I. The

distribution is shifted to the lower parameter area. The eccentricity

is smaller than that at µ = 1.5, which indicates that the external

inputs play a pivotal role in the output correlation. The results

show that when the Gaussian input overlaps with the non-linear

area of function f , the output correlation is lower than the input

correlation. As the eccentricity becomes lower for decreased

input intensity, the output correlation attenuates. The eccentricity
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depends on the input correlation and the input intensity. In

conclusion, SFA, through changing the input non-linearity of

single neurons, may play an important role in the degree of

correlation in a neural network.

4. Conclusion and discussion

We use conduction-based computation models applied with a

dynamic threshold or adaptation current to analyze the mechanism

of the SFA in modulating the output correlation. We demonstrate

our results using several SFA mechanisms. We find that different

SFA mechanisms modulate and decrease the output correlation by

reducing the firing rate and the attenuated firing rate results in the

correlation decrease. This correlation can be further decreased by

enhanced adaptation conductance and decreased input intensity.

In addition, different stimulation times divide the firing rate

into two stages: rapid and sparse firing. These two processes

caused the correlation to show an initial increase, followed by

a steady reduction. The time and slide windows are found not

to affect the decrease generated by the SFA. Furthermore, a

simple phenomenological neuron model with a simple rectifier

as a transfer function for the inputs supports the results. The

mechanism indicates that the strength of the signal input and the

slope of the linear component of the rectifier together determine

the output correlation so that if SFA decreases the slope or the input

signal decreases, output correlations will decrease.

The spike train output correlation depends on the input

correlation and mean value of the correlated input. These factors

suggest that the output correlation inherits the same trend as

the mean firing rate variation in vitro cortical cells (de la Rocha

et al., 2007; Doiron et al., 2016). Our results demonstrate these

results by simulation experiments, and our simulation results

matched well with the experimental results from the perspective

of firing rate. In addition, inspired by the reduced modulation

effect of the SFA on the firing rate (Ha and Cheong, 2017), we

further prove that the SFA has a decreasing effect on the output

correlation. The simulation results depend on the stimulation

duration, and different stimulation durations have been shown to

generate opposite results (Barreiro et al., 2012). Our study also

found similar results: SFA presented opposite dynamic variations

as stimulation time changed, resulting in opposite correlation

variations. At the onset of stimulation, a transient adaptation

current forms, generating a higher correlation coefficient when

the ISIs are small. When the adaptation current became steady,

the correlation remained lower, where the ISIs are offset to larger

values. The correlation is calculated using the correlation coefficient

related to time and slide windows. This correlation is proportional

to the firing rate, and a larger time window generates a larger

correlation (de la Rocha et al., 2007). Our results revealed a similar

effect: a larger time window caused a stronger correlation in spike

trains. However, the variation in the time window did not affect

the decreasing tendency caused by the SFA on the correlation.

This is because the variation in this factor only influences the

correlation coefficient and does not affect the relationship between

the SFA and correlation. Similar time and slide windows showed a

less significant effect, consistent with a previous study where the

windows are always fixed at a specific value (Shea-Brown et al.,

2008; Litwin-Kumar et al., 2011). Nearby cortical neurons present

a more synchronous response by enhancing the sensory drive

strength (Kohn and Smith, 2005). This visual cortex experiment is

consistent with the results in our study that the increased correlated

inputs enhance the output correlation. The two neighboring

ganglion cells generate a remarkably correlated response in the

retina (Mastronarde, 1989). Our study investigates this correlated

response from the biological perspective and further confirms that

SFA is an important factor to decrease the correlation. In addition,

the correlated response in the visual cortical area of monkeys is

investigated in Bair et al. (2001); the results show that the cross-

correlation is related to the short-term time scale, and the long-term

scale is significant to the auto-correlation. This is consistent with

the results that the time window plays a less important role in the

long-time correlation between pairwise neurons.

This study reveals that SFA can decrease the output correlation

between pairs of neurons with common inputs and can establish a

connection between cellular mechanisms and information coding

at the network level. However, the results of this study require

further experimental validations in vitro. This study is a helpful

supplement to the literature on a possible mechanism of population

information coding from the perspective of SFA. It serves as

a meaningful reference for further research on information

coding strategies.
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