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Optic never fibers in the visual pathway play significant roles in vision formation.

Damages of optic nerve fibers are biomarkers for the diagnosis of various

ophthalmological and neurological diseases; also, there is a need to prevent

the optic nerve fibers from getting damaged in neurosurgery and radiation

therapy. Reconstruction of optic nerve fibers frommedical images can facilitate all

these clinical applications. Although many computational methods are developed

for the reconstruction of optic nerve fibers, a comprehensive review of these

methods is still lacking. This paper described both the two strategies for optic

nerve fiber reconstruction applied in existing studies, i.e., image segmentation

and fiber tracking. In comparison to image segmentation, fiber tracking can

delineate more detailed structures of optic nerve fibers. For each strategy, both

conventional and AI-based approaches were introduced, and the latter usually

demonstrates better performance than the former. From the review,we concluded

that AI-basedmethods are the trend for optic nerve fiber reconstruction and some

new techniques like generative AI can help address the current challenges in optic

nerve fiber reconstruction.

KEYWORDS

optic nerve fiber, visual pathway, image segmentation, fiber tracking, artificial
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1. Introduction

The visual pathway is a general name for a series of brain tissues including the optic

nerve (ON), optic chiasm (OC), optic tract (OT), lateral geniculate nucleus (LGN), optic

radiation (OR), and visual cortex (VC) (Smith and Strottmann, 2001; Jäger, 2005). In the

visual pathway, ON, OC andOT are formed by the axons of the retinal ganglion cells (Becker

et al., 2010), while OR is formed by another type of optic nerve fibers. These two types of optic

nerve fibers are connected at the LGN, which is a relay station of optic signals (Fujita et al.,

2001). The optic never fibers along the visual pathway are responsible for the conduction of

optic signals from the retina to the visual cortex and play significant roles in vision formation.
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Optic nerve fibers can be affected by various ophthalmological

diseases, e.g., glaucoma (Hernowo et al., 2011; Tellouck et al.,

2016; Haykal et al., 2022), age-related macular degeneration

(Prins et al., 2016; Yoshimine et al., 2018) and optic neuritis

(Yamamoto et al., 2005; Spierer et al., 2010; Zhao et al., 2018),

and neurological diseases, e.g., multiple sclerosis (MS) and

Alzheimer’s disease (AD) (Reich et al., 2010; Klistorner et al.,

2015; Mutlu et al., 2018; Wang et al., 2021). For different

types of diseases, optic nerve fibers would represent varied

symptoms like edema, demyelination, atrophy and degeneration at

different locations along the visual pathway, which would change

the original morphological and even structural characteristics
of the optic nerve fibers. Also, the severity of the symptoms

is highly relevant to disease progression. Dysfunction of optic

nerve fibers would cause serious vision problems; describing the
status of optic nerve fibers in morphology and structure can
help determine a patient’s condition and choose the appropriate

treatment strategy.

In addition, it is not uncommon that optic nerve fibers get
compressed or damaged due to tumors and traumas (Romano

et al., 2007, 2009; Chamberland et al., 2018). It requires a clear

delineation of the morphological and structural status of the optic

nerve fibers to evaluate the damage. Meanwhile, the accurate

locations of the optic nerve fibers in the brain play significant roles
in neurosurgery for compression release and damage repair. The

location information of the optic nerve fibers is also crucial for

radiation therapy to protect the optic nerve fibers from radiation

(Isambert et al., 2008; Dai et al., 2021).

Currently, there are several imaging techniques that can

provide an in-vivo delineation of the optic nerve fiber in the visual

pathway. Particularly, computed tomography (CT) and magnetic

resonance imaging (MRI) are used to reveal the optic nerve fibers

at the anterior visual pathway, i.e., from the optic disc to the
LGN (Tamraz et al., 1999; Wichmann and Müller-Forell, 2004),

while diffusion tensor imaging (DTI) is usually applied to delineate

the optic nerve fibers at the OR (Dayan et al., 2015b). These

imaging techniques make it possible to evaluate the morphological

and structural status of the optic nerve fibers and target their

locations in the brain via in-vivo approaches, and reconstructing

the optic nerve fibers from medical images can further facilitate

these approaches.

Manual optic nerve fiber reconstruction is difficult and time-

consuming, thus computational approaches for automated optic

nerve fiber reconstruction are developed. These computational

approaches can be divided into two categories, i.e., image

segmentation and fiber tracking. The former is used for CT/MRI

images, while the latter is performed for DTI data. Despite the

difference in implementation, these approaches face the same

challenge, i.e., the thin-long structure of the optic nerve fibers.

The thin-long structure makes the optic nerve fibers easily affected

by the partial volume effect (PVE) (Mansoor et al., 2016). PVE

can decrease the image contrast to neighboring tissues, increasing

the difficulty of image segmentation (Cabezas et al., 2011); also,

it enables multi-orientations in each voxel, raising the complexity

of orientation estimation for fiber tracking (Alexander et al., 2001;

Jeurissen et al., 2019). Though various computational approaches

are proposed for this challenge in optic nerve fiber reconstruction,

it has not been well addressed yet.

In recent years, some advanced techniques such as generative

artificial intelligence (AI) have been developed and these techniques

exhibit their potential in handling this challenge. Generative AI

has demonstrated its power in image super-resolution and multi-

modal image synthesis (Hu et al., 2020a,b, 2021; You et al.,

2022). The major cause of PVE is the low image resolution, thus

higher image resolution can help get it alleviated. Multi-modal

image fusion is another way to resist PVE. Multi-modal images

can provide consistent and complementary information to release

the confusion caused by PVE. However, it is not common to

see multi-modal approaches for optic nerve fiber reconstruction

as the acquisition of multi-modal data would be expensive and

time-consuming in clinical practice. Multi-modal image synthesis

provides a cheap and efficient way to acquire multi-modal images

(Hu et al., 2021), removing the biggest barrier that hinders multi-

modal research on optic nerve fiber reconstruction.

To apply generative AI and other new techniques in optic

nerve fiber reconstruction, it is better to gain a comprehensive

understanding of the task and the existing methods. However,

to the best of our knowledge, a comprehensive review of the

computational approaches for the reconstruction of optic nerve

fibers frommedical images is still lacking. Therefore, we performed

such a review in this paper. We started with the anatomy

of the visual pathway and imaging techniques of the optic

nerve fibers. Then, we described both the two strategies, i.e.,

image segmentation and fiber tracking, for optic nerve fiber

reconstruction. For each strategy, both conventional and AI-based

methods were introduced. Finally, we discussed the selection

rules and future challenges to performing optic nerve fiber

reconstruction, providing guidance for clinical application and

future studies. More details can be viewed in the following sections.

2. Anatomy of visual pathway

The visual pathway consists of the ON, OC, OT, LGN, OR, and

VC (Tamraz et al., 1999; Smith and Strottmann, 2001; Wichmann

andMüller-Forell, 2004; Jäger, 2005), as shown in Figure 1. The ON

is the first part of the visual pathway. It is a thin-long myelinated

fiber bundle formed by the axons of the retinal ganglion cells. There

is a pair of ONs, which start from the optic disks of each eye, pass

through the orbit and optic canals, and finally get crossed at the

OC. Based on the locations, the ON can be further divided into

four segments, i.e., the intraocular, intraorbital, intracanalicular,

and intracranial segments. The lengths for the four segments are

about 1mm, 30mm, 6mm, and 10mm, respectively. The OC is

a flat x-shape structure located at the junction of the floor and

the anterior wall of the third ventricle. It is just situated anteriorly

to the pituitary stalk. In OC, only the optic nerve fibers from the

medial retina (nasal side) would get crossed, while those from the

lateral retina (temporal side) remain uncrossed. Then, the optic

nerve fibers at each side keep going from the posterolateral angle

of the OC and form the left and right OTs. The optic nerve fibers

in OTs run backward and lateralward of the OC and wind around

the midbrain. Most of these optic nerve fibers get terminated at the

LGN, while there are also some passing over the LGN and reaching

the superior colliculus to coordinate eye movements. The LGN is

located in the lateral geniculate body, which is the posterior-inferior
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FIGURE 1

Schematic of anatomy of visual pathway. ON, optic nerve; OC, optic

chiasm; OT, optic tract; LGN, lateral geniculate nucleus; OR, optic

radiation; VC, visual cortex.

aspect of the thalamus. The LGN consists of alternating gray and

white matter layers and serves as a relay station in the visual

pathway (Fujita et al., 2001). The LGN projects the visual signal

from the retina to the VC, and the optic nerve fiber connecting

the LGN and VC form the optic radiation. The OR can be divided

into three major fiber bundles, i.e., the dorsal, lateral, and ventral

bundles. The dorsal and lateral bundles pass through the temporal

and parietal lobes posteriorly and terminate at the occipital lobe; the

ventral bundle runs anteriorly and laterally into the temporal lobe

and bypasses the temporal horn of the lateral ventricle, generating

the Meyer’s loop (Tamraz et al., 1999; Dayan et al., 2015b). The

VC is also called the striate cortex. It is located at the superior and

inferior lips of the calcarine fissure.

It is seen that the major components of the visual pathway are

optic nerve fibers. Separated by the LGN, the two types of optic

nerve fibers share similar symmetric curved thin-long structures

but vary from each other in length, diameter, and curvature. Also,

they are located with different neighboring tissues. The optic nerve

fibers in the anterior visual pathway, i.e., from the optic disc to the

LGN, are mostly located around muscle, fat, cranium, and blood

vessels, while those in the OR are next to the brain’s gray and white

matters. The differences in these anatomical characteristics lead to

quite different representations in medical images. More details on

imaging would be introduced in the next section.

3. Imaging of optic nerve fibers in
visual pathway

Currently, CT, MRI and DTI are the common imaging

techniques for in-vivo delineation of the optic nerve fibers in the

visual pathway. CT and MRI images are usually used to assess

the optic nerve fibers in the anterior visual pathway (Smith and

Strottmann, 2001; Becker et al., 2010). In general, MRI is superior

in imaging the optic nerve fibers than CT as it can achieve high

contrast among soft tissues. In comparison with CT, it can more

easily differentiate the optic nerve fibers from the complex adjacent

tissues in the orbit and sellar regions. Also, MRI is free from

radiation and is safer than CT. Nevertheless, CT has its advantage

in revealing bony tissues and foreign bodies. It can reveal the

damages to the visual pathway caused by orbital or optic canal

trauma as well as the calcification of the optic nerve fibers due to

the tumor compression. In addition, CT is less affected by motion

artifacts and can be applied to people with metal implants, making

it a better choice than MRI in some special clinical scenarios.

Besides CT and MRI, DTI can also be applied to reconstruct

the optic nerve fibers in the anterior visual pathway; and, it can

provide more details such as the fiber crossing at the OC (He

et al., 2021). But, DTI takes much longer scanning time than

MRI and CT, making it less practical in clinical scenarios. Instead,

DTI is more frequently applied to reconstruct the optic nerve

fibers in the OR (Dayan et al., 2015a; Schurr et al., 2018). The

three fiber bundles in OR are located very close to other white

matter tracts; the subtle variations in white matter signal make it

difficult to reveal the anatomical heterogeneity in OR from CT

and conventional MR images (Yogarajah et al., 2009; Winston

et al., 2012). DTI is a technique to monitor the motion of water

molecules in the human body by collecting multi-gradient MRI

images. As the motion of water molecules is bounded by the nerve

fibers, its speed and direction can be used to describe the structure

and orientation of nerve fibers. Unlike MRI and CT images, the

structure of optic radiation cannot be directly viewed in raw DTI

images. There is a need to calculate the DTI metrics or perform

fiber tracking to reveal the structure of the OR. It is seen that

the three imaging techniques have their unique advantages and

their own application scenarios. Also, the different representations

of the optic nerve fibers in images of different modalities require

different reconstruction methods. Usually, image segmentation is

applied to CT and MRI images where optic nerve fibers exhibit a

certain image contrast to neighboring tissues, while fiber tracking

is performed to DTI data to exploit the structural and orientational

information for more precise delineation of the optic nerve

fibers. Both image segmentation and fiber tracking approaches

can be further classified as conventional and AI-based methods.

In the following two sections, we would describe more details

of both the conventional and AI-based methods using the two

reconstruction strategies.

4. Fiber reconstruction by image
segmentation

4.1. Conventional methods

Image segmentation is usually used to reconstruct optic

nerve fibers from CT and MRI images. Conventionally, there

are various methods to perform image segmentation, such as

thresholding, boundary-based, region-based, model-based, atlas-

based, etc (Despotović et al., 2015; Wang et al., 2016). The
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thresholding methods are not suitable for the segmentation of

the optic nerve fibers given their poor image contrast with

neighboring tissues at some segments of the visual pathway. Also,

their thin-long structures make it difficult to perform boundary-

based and region-based methods. It is found that most methods

for optic nerve fiber reconstruction are model-based or atlas-based

(Table 1).

Model-based methods would first define a model based on the

prior information on the shape and appearance of the tissue to be

segmented and then fit the model to the new images (Heimann

and Meinzer, 2009). The models can be either fixed geometry

models or deformable models. For the fixed geometry models,

they can be easily fitted via an explicit parameter estimation based

on selected landmarks. The deformable models such as active

shape models, active appearance models and level-set are usually

fitted with searching or optimization procedures. Particularly,

Bekes et al. (2008) approximate the ON in a CT image as a

cone and cylinder and fit the cone and cylinder using a semi-

automatic way. This fixed-model-based approach is simple but

its reproducibility is doubted. Noble and Dawant (2011) applied

an atlas-navigated optimal medial axis and deformable model

(NOMAD) to segment the ON and OC based on paired CT

and T1-weighted MRI images. The exploitation of multi-modal

images and hybrid methods (model- and atlas-based) enhances

the segmentation results, but the paired CT and MRI images

are not always available in clinical practice. Yang et al. (2014)

proposed a weighted partitioned active shape model to segment

the anterior visual pathway from T1-weighted MRI images. This

method is also capable to segment the OT, which is believed

as a more challenging task than ON and OC segmentation

before this study. Mansoor et al. (2015) developed a method

entitled PArtitioned Shape and Appearance Learning (PAScAL)

to segment the anterior visual pathway from MRI images.

This method can also be applied to the pathological anterior

visual pathway.

Atlas-based methods treat the segmentation problem as a

registration problem, i.e., aligning the new image and the atlas

(Cabezas et al., 2011). Usually, an atlas contains two image

volumes, one intensity image (template) and one segmented

image (label). Image registration is used to build the geometrical

connection between the new image and the template; then,

the segmentation can be achieved by propagating the label to

the image space via the geometrical connection. D’haese et al.

(2003) manually drew an atlas that includes the ON based on

visually selected MRI images and segmented the ON with the

atlas. Gensheimer et al. (2007) extended single-atlas segmentation

to multi-atlas segmentation and performed additional post-

processing procedures including a ray casting algorithm, reshaping

of unreasonable cross sections, and surface fitting to further modify

the inaccurate contours. Isambert et al. (2008) applied a multi-

atlas segmentation method to segment ON and OC from MRI

images under clinical conditions. Asman et al. (2013) developed

a non-local model to perform multi-atlas segmentation for the

ON based on CT images. Harrigan et al. (2014) and Panda

et al. (2014) paid attention to the robustness of the atlas-based

segmentation for the ON and proposed an improved registration

procedure.

4.2. AI-based methods

AI-based methods are data-driven approaches, which learn the

rules from the data. Such approaches reduce manual operations

like predefining models or atlases and are more easily implemented

in practice. AI-based methods usually treat the segmentation

procedure as a pixel/voxel-wise classification or clustering task.

In the beginning, the classification/clustering is performed using

conventional machine learning algorithms based on hand-crafted

features. For example, Dolz et al. (2015) extracted features from

neighborhood information and applied the support vector machine

(SVM) to conduct the classification. With the occurrence and

development of deep learning techniques, it becomes possible to

integrate the feature extraction procedure into the learning process,

further simplifying the procedure to segment the optic nerve fibers.

The studies on deep learning methods for optic nerve fiber

segmentation from CT/MRI images have passed through three

periods (Table 2). In the early period, deep learning methods

are only used for feature extraction and segmentation is still

implemented by conventional methods. For example, Mansoor

et al. (2016) used a stacked auto-encoder to learn new feature

representations for a model-based segmentation procedure. After

this early period, deep learning is also used for pixel/voxel

classification. At this stage, the network is usually formed by two

network modules, e.g., a convolutional neural network (CNN)

and a fully connected network, responsible for feature extraction

and pixel/voxel classification, respectively. Based on this basic

network structure, Ren et al. (2018) extended the original CNN

to an interleaved structure for joint segmentation of optic nerve

and chiasm; Dolz et al. (2017) replaced the CNN with a stacked

denoised auto-encoders to learn a compact representation of

the hand-crafted features; Duanmu et al. (2020) modified the

CNN using a multi-resolution path approach to combine multi-

scale features. Recently, a more powerful network, i.e., the U-

Net, has been developed (Ronneberger et al., 2015). U-Net is

composed of a down-sampling branch and an up-sampling branch.

The down-sampling and up-sampling branches are made up of

paired encoders and decoders, respectively. The down-sampling

procedure can help extract the context information and the up-

sampling procedure is used for fine localization. Also, there are skip

connections between the encoders and decoders. As there might

be information loss during the up-sampling procedure, the skip

connections make it possible to combine the up-sampling results

with the original information before the down-sampling procedure.

With the skip connections, the localization can be more accurate.

Compared with the two-module network, U-Net further integrates

the feature extraction and pixel/voxel classification procedures.

The state-of-the-art (SOTA) methods for optic nerve fiber

reconstruction from CT/MRI images are mostly based on

the U-Net. Particularly, some researchers tried to modify the

encoders and decoders as well as their connections to enhance

context information exploitation. For example, Zhu et al. (2019)

added squeeze-excitation blocks into the down-sampling and

up-sampling approaches; Tong et al. (2019) and Zhu et al.

(2021) tried DenseNet and V-Net, which enhance the connections

among encoders and decoders, to segment the ON and OC

from CT and MRI images. Also, some researchers tried to add
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TABLE 1 Conventional image segmentation methods for optic nerve fiber reconstruction.

Method type Method description Anatomical region Imaging modality Research

Model-based Geometry model ON CT Bekes et al., 2008

Atlas-navigated optimal medial axis and deformable
model (NOMAD)

ON, OC CT, MRI Noble and Dawant, 2011

Weighted partitioned active shape model ON, OC, OT MRI Yang et al., 2014

PArtitioned Shape and Appearance Learning (PAScAL) ON, OC, OT MRI Mansoor et al., 2015

Atlas-based Single-atlas ON MRI D’haese et al., 2003

Multi-atlas, Post-processing ON, OC CT Gensheimer et al., 2007

Multi-altas ON, OC MRI Isambert et al., 2008

Multi-atlas, non-local model ON CT Asman et al., 2013

Multi-atlas, variable voxel resolution and field of view ON CT Harrigan et al., 2014;
Panda et al., 2014

ON, optic nerve; OC, optic chiasm; OT, optic tract.

TABLE 2 AI-based image segmentation methods for optic nerve fiber reconstruction.

Method type Method description Anatomical region Imaging modality Dataset Research

Machine Learning SVM ON MRI Private Dolz et al., 2015

CNN only Stacked auto-encoder ON, OC, OT MRI Private Mansoor et al., 2016

CNN+FCN Stacked denoised auto-encoders+FCN ON, OC MRI Private Dolz et al., 2017

Interleaved CNN+FCN ON, OC CT PDCCA Ren et al., 2018

Multi-resolution multi-scale
CNN+FCN

ON, OC CT Private Duanmu et al., 2020

U-Net-Like Squeeze-excitation Block ON, OC CT PDDCA, TCIA Zhu et al., 2019

Connection Enhancement, Global
restriction

ON, OC CT PDCCA Tong et al., 2018

Connection Enhancement, Global
restriction

ON, OC CT PDCCA Tong et al., 2019

Connection Enhancement ON, OC CT Private Zhu et al., 2021

Recursive ensemble segmentation ON, OC MRI Private Chen et al., 2019

Localization+Segmentation ON, OC CT PDCCA Wang et al., 2019

Localization+Segmentation, Atlas
information

ON, OC, OT MRI Private Zhao et al., 2019

Localization+Segmentation, Atlas
information

ON, OC, OT CT, MRI Private, PDCCA Ai et al., 2020

Localization+Segmentation ON, OC MRI Private Liu and Gu, 2020

Localization+Segmentation ON, OC CT PDCCA Amjad et al., 2022

Pre-processing OC MRI CHIAS M Puzniak et al., 2021b

Pre-processing ON CT TCIA Ranjbarzadeh et al.,
2022

Post-processing ON, OC CT Private Ibragimov and Xing,
2017

Post-processing ON, OC MRI Private Mlynarski et al., 2020

ON, optic nerve; OC, optic chiasm; OT, optic tract; SVM, support vector machine; CNN, convolutional neural networks.

global loss restrictions to avoid irregular segmentation results due

to the pixel/voxel-wise segmentation strategy. Specifically, Tong

et al. (2018, 2019) added a latent shape restriction as well as

an adversarial restriction to guarantee the global shape of the

segmented ON and OC. Besides the modification of network

blocks and losses, some researchers paid attention to the training

strategies. Chen et al. proposed a recursive ensemble organ

segmentation framework. In this framework, the organs that are

easily segmented, e.g., the eyeballs, would be first segmented; and

then, the segmentation results are fed to the network together
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with the original inputs for the segmentation of more complicated

organs like ON and OC (Chen et al., 2019). Wang et al. proposed

a hybrid network containing two U-Nets for localization and

segmentation, respectively. The U-Net for localization was named

“LocNet” and used to localize the region of the ON, while the

one for segmentation was named “SegNet” and applied only in the

extracted region to exclude other interference (Wang et al., 2019).

Zhao et al. adopted a similar strategy but replaced the LocNet with

an atlas-based approach, i.e., performing registration between the

atlas and a new image to localize the ON. They also generated a

spatial probabilistic distribution map using the atlas to assist the

segmentation (Zhao et al., 2019; Ai et al., 2020). Differently, Liu

and Gu (2020) and Amjad et al. (2022) replaced the SegNet with

a two-module network, where the CNN adopted a multi-resolution

structure.

In addition to the deep learning networks, researchers also tried

to enhance the segmentation results using proper pre-processing

and post-processing approaches. For the pre-processing, Puzniak

et al. (2021b) applied a data-augmentation strategy to train a 3D

U-Net. Ranjbarzadeh et al. (2022) pre-processed the input images

by combining a fuzzy C-mean clustering algorithm, histogram

equalization, and a texture descriptor based on the local directional

number. For post-processing, Ibragimov and Xing (2017) proposed

a post-processing procedure based on Markov random fields.

Mlynarski et al. (2020) developed a graph-based post-processing

approach to guarantee the connectivity between the eyes and OC.

5. Fiber reconstruction by fiber
tracking

5.1. Conventional methods

Fiber tracking, also called fiber tractography, is a computational

procedure to reconstruct nerve fibers from DTI images. Although

there is a debate on the reliability of fiber tracking in delineating the

true brain nerve fibers, it has been widely applied in both medical

research and clinical practice. There are also plenty of studies

focusing on the reconstruction of optic nerve fibers, especially for

the OR, using fiber tracking.

Fiber tracking would estimate a series of streamlines to

delineate the global fiber tractography using deterministic,

probabilistic, or global algorithms (Jeurissen et al., 2019; Li

et al., 2020). Deterministic algorithms are proposed based on

the assumption that there is a predominant orientation in each

voxel of DTI images. Common deterministic algorithms include

streamlines tracking (STT) (Basser, 1998; Basser et al., 2000), fiber

assignment by continuous tracking (FACT) (Mori et al., 1999; Chao

et al., 2008), Tensor-lines (Weinstein et al., 1999), tensor deflection

(TEND) (Lazar et al., 2003), and vector criterion tracking (VCT)

(Kim et al., 2004). These algorithms usually select the diffusion

tensor as the model to describe fibers’ microstructures at each

voxel. But, the diffusion signal would be inevitably distorted by

noise and artifacts, affecting the certainty of voxel orientation

inferred from the diffusion tensor (Jones, 2010). The assumption

of one orientation per voxel is also doubted due to the existence

of crossing fibers (Behrens et al., 2007). The existence of these

problems raises concerns about the deterministic algorithms; the

probabilistic algorithms are then proposed. To cope with the

uncertainty, the probabilistic algorithms use the probability density

functions (PDF) (Behrens et al., 2003) and fiber orientation

distribution (FOD) (Tournier et al., 2004) to represent fibers’

microstructures at each voxel. Based on these probabilistic models,

the algorithms like probabilistic index of connectivity (PICo)

(Parker et al., 2003), unscented Kalman filter (UKF) (Malcolm et al.,

2010), probabilistic tracking with crossing fibers (PROBTRACKX)

(Behrens et al., 2007), ConTrack (Sherbondy et al., 2008), particle

filtering tractography (PFT) (Zhang et al., 2009), and 2nd-order

Integration over Fiber Orientation Distributions (iFOD2) (Smith

et al., 2012) are proposed. Compared with deterministic algorithms,

probabilistic algorithms can delineate more complicated nerve

fiber distributions; but, they would also cause a large number of

false positive streamlines and suffer from heavy computational

costs. Both the deterministic and probabilistic algorithms are

based on local information, while global algorithms treat fiber

tracking as a global optimization problem. The existing global

algorithms can be mostly divided into two categories, i.e.,

graph-based algorithms (Iturria-Medina et al., 2007) and Gibbs

algorithms. Graph-based algorithms should set the seeding and

targeting regions, which is not necessary for Gibbs algorithms

(Kreher et al., 2008). Global algorithms can avoid the error

accumulation problem in local algorithms and reduce the number

of false positive streamlines; but, their computational costs are

much greater than local algorithms and convergent solutions are

not guaranteed.

Besides the algorithm, there are also some key operations and

settings to ensure an accurate fiber tracking procedure (Jacquesson

et al., 2019; Jeurissen et al., 2019). For local algorithms and graph-

based global algorithms, there is a need to determine the seeding

and target regions of interest (ROIs). The seeding and target

ROIs mean the two ends of the generated fibers by the tracking

algorithms. Except for the whole-brain tracking, these two ROIs

can be drawn in a manual way (Rossi-Espagnet et al., 2020; Haykal

et al., 2022) or by projecting the labels in a built brain atlas (Karahan

et al., 2019; Papadopoulou et al., 2021). In addition, the ROIs can

also be acquired by other fiber tracking procedures (Davion et al.,

2020). Besides these two types of ROIs, there are also inclusive

and exclusive ROIs for the filtering of valid fibers (Horbruegger

et al., 2019). In addition, some thresholds to constrain the fibers’

lengths, curvatures/angles, and fractional anisotropy (FA)/fiber

orientation distribution function (fODF) values are also set for the

filtering process.

The specific methods for optic nerve fiber reconstruction are

shown in Table 3. The reconstruction of the optic nerve fibers

from DTI images follows the above fiber tracking frameworks; but,

the selection of tracking algorithms, ROI drawing, and thresholds

setting would change with the location of optic nerve fibers.

Particularly, deterministic algorithms can be applied to the optic

nerve fibers in the anterior visual pathway (Dasenbrock et al., 2011;

De Blank et al., 2013; Takemura et al., 2017; Hofstetter et al., 2019;

Jin et al., 2019) but they are not suggested for OR reconstruction

(Yogarajah et al., 2009). The OR region is close to the neighboring

white matter tracts and image voxels in this region are more likely

to contain multiple orientations. The probabilistic algorithms can
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be applied for both the two types of optic nerve fibers (Dayan

et al., 2015a; Kammen et al., 2016; Zolal et al., 2016; Backner

et al., 2018; Yoshimine et al., 2018; Ather et al., 2019; Glick-Shames

et al., 2019; Wu et al., 2019; Davion et al., 2020; Lacerda et al.,

2020; Rossi-Espagnet et al., 2020; Reid et al., 2021; Haykal et al.,

2022; Liu et al., 2022); but, there are still some differences. The

probabilistic algorithms are proposed to handle the uncertainty and

they can be classified into different categories based on the source

of the uncertainty (Jeurissen et al., 2019). The reconstruction of

optic nerve fibers at the anterior visual pathway and in the OR

has different uncertainty sources. The former’s uncertainty comes

from the interference of the complicated skull base environment,

which contains nerves, bone, air, soft tissue, and cerebrospinal

fluid; the latter’s uncertainty is mainly due to the multi-orientation

problem. The difference in uncertainty sources would affect the

selection of the probabilistic algorithms. In addition, the seeding

ROIs for the ON and OT reconstruction are usually set as the end

of the eyeballs and the OC, respectively, while those for the OR

are set as the LGN. The target ROIs include the OC, LGN and VC

for the reconstruction of the ON, OT and OR, respectively. The

other settings like the inclusive and exclusive ROIs as well as the

thresholds would be more task-specific.

5.2. AI-based methods

The conventional framework for fiber tracking is a complicated

procedure containing the processes like pre-processing, seeding,

tractography, and filtering of valid streamlines. Although several

softwares integrate these processes (Table 3), the operations like

ROI drawing, tracking algorithm selection, and threshold setting

still require manual implementation. In recent years, AI technique

has developed rapidly; researchers are trying to replace these

manual operations with automated ways using AI technique

(Table 4).

AI-based methods are applied first in the tractography process.

Neher et al. (2017) tried to perform the tractography by machine

learning. They applied a random forest classifier to learn multiple

potential directions of a streamline from the raw diffusion

signals and determined the streamline’s progressing direction and

termination using a neighborhood sampling strategy and a voting

scheme, respectively. Poulin et al. treated the tractography as a

regression problem and proposed the recurrent neural networks

(RNN) to acquire the mapping between the diffusion signal and

the streamlines’ directions for both whole-brain and bundle-

specific tractography (Poulin et al., 2017, 2018). The RNN can

exploit both the new observations and the past seen information

along the tracked streamlines. In addition to the diffusion signals,

Jörgens et al. (2018) further pointed out the importance of the

previous step directions for the tractography. They adopted an

alternative way to predict the next step direction of a streamline

via a multi-layer perceptron (MLP), whose input is a vector

acquired by concatenating the diffusion signals and previous

step directions. Wegmayr et al. (2018) also used an MLP to

perform the tractography and further validated the significance

of previous step directions; but, they changed the input of the

MLP as a vector formed by a flattened data block and several

incoming vectors. The tractography can also be implemented

via reinforcement learning and Théberge et al. (2021) proposed

a general framework for this strategy. Apart from these local

tractography methods, Wasserthal et al. (2018) developed a U-Net-

like network to directly reconstruct the fiber tracts from the fields

of fODF peaks.

Recently, several AI-based methods have been applied

in processes other than tractography. For the pre-processing

approach, AI-based methods focus on two aspects, i.e., generating

high-fidelity diffusion signals from low-quality input and building

the diffusion model from the raw diffusion signals. Acquiring

high-fidelity diffusion signals usually requires a certain number

of diffusion-encoding directions and multi-shell acquisitions,

which takes a long scanning time. Tian et al. (2020) proposed

a 10-layer CNN to reduce the requirement on the number of

diffusion-encoding directions, particularly limiting the number

to the minimum level for diffusion tensor calculation. Koppers

et al. (2017) and Jha et al. (2022a) reconstructed the multi-shell

diffusion signals from single-shell acquisitions using DNN and

U-Net-like network, respectively. Zeng et al. (2022) proposed a

super-resolution network to enhance the FOD model that was

built based on the single-shell acquisition, and Jha et al. (2022b)

developed a more complicated network containing multiple

encoder-decoder structures and discriminators. Mapping raw

diffusion signals to diffusion models is also very challenging. It

is quite difficult for conventional methods to estimate the fibers’

number and orientations per voxel from raw diffusion signals. Li

et al. (2021) demonstrated the advantages of AI-based methods

in this challenging task. They proposed a SuperDTI network for

diffusion model generation and the test results suggest that their

model is less sensitive to noise and more robust to misregistration

than conventional tensor fitting methods. Karimi et al. (2021a,b,c)

further verified the superiority of AI-based methods via a series of

explorations on diffusion metric map generation, fODF generation

and fibers’ number and orientations estimation. In addition to

the pre-processing process, AI-based methods are also used to

achieve automatic seeding. Avital et al. (2019) and Wasserthal

et al. (2019) tried automated seeding using U-Net and U-Net-like

network, respectively. There are also studies focusing on AI-based

automated filtering of valid streamlines. Particularly, AI can be

used to draw inclusive or exclusive ROIs, such as He’s work (He

et al., 2023). Also, AI models can be used to directly classify or

cluster the reconstructed streamlines (Xu et al., 2019; Zhang et al.,

2020; Chen et al., 2021; Xue et al., 2022, 2023).

Although multiple AI-based methods are proposed for fiber

tracking, the application of these methods in optic nerve fiber

reconstruction is still rare. To the best of our knowledge, Reid

et al. (2021) applied a U-Net-like network to automatically draw

seeding ROI at the optic tract. He et al. (2023) proposed a unified

global tractography framework for automatic visual pathway

reconstruction. Li et al. (2022) used a modified SupWMA network

to cluster the streamlines in the anterior visual pathways. These

methods demonstrate the feasibility and effectiveness of AI-based

methods in optic nerve fiber reconstruction, while there is still

room for further improvement.
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TABLE 3 Conventional fiber tracking approaches for optic nerve fiber reconstruction.

Method type Model/algorithm Anatomical region Software Research

Deterministic Tensor/FACT OT DTI Studio Dasenbrock et al., 2011

Tensor/FACT OT TrackVis Jin et al., 2019

Tensor/FACT OT dTV II FZRx Takemura et al., 2017

Tensor/FACT ON, OT, OR DTI Studio De Blank et al., 2013

FOD/STT OT, OR ExploreDTI Hofstetter et al., 2019

Probabilistic Tensor/PICo ON FSL Zolal et al., 2016

Tensor/PICo OR Camino Dayan et al., 2015a

Tensor/ConTrack OT, OR VISTA Backner et al., 2018

Tensor/ConTrack OT, OR VISTA Glick-Shames et al., 2019

Tensor/ConTrack OT, OR VISTA Yoshimine et al., 2018

Tensor/PROBTRACKX ON, OT FSL Wu et al., 2019

Tensor/PROBTRACKX2 ON, OC, OT FSL Ather et al., 2019

FOD/iFOD2 OR MRtrix3 Davion et al., 2020

FOD/iFOD2 OR MRtrix3 Lacerda et al., 2020

FOD/iFOD2 OT, OR MRtrix3 Rossi-Espagnet et al., 2020

FOD/iFOD2 OR MRtrix3 Reid et al., 2021

FOD/iFOD2 OT, OR MRtrix3 Haykal et al., 2022

FOD/iFOD2 OR MRtrix3 Liu et al., 2022

ON, optic nerve; OC, optic chiasm; OT, optic tract; OR, optic radiation; FOD, fiber orientation distribution.

6. Discussion

Optic nerve fiber reconstruction is a common step to

evaluate or project optic nerve fibers in clinical diagnosis and

treatment. As shown in section 2, optic nerve fibers have thin-

long structures and varying curvatures at different segments of

the visual pathway, making them difficult to evaluate in either

qualitative or quantitative ways without the reconstruction from

the medical images. Also, manual delineation of the optic nerve

fibers would be a tough task and costs a lot of time. As a

result, computational methods are highly needed for clinical

applications on optic nerve fibers. It is found that optic nerve fibers

can be revealed in images of multiple modalities and there are

different reconstruction strategies for each imaging modality. Also,

each reconstruction strategy has both conventional and AI-based

implementations. This paper reviews the existing computational

methods to guide optic nerve fiber reconstruction in medical

research and clinical practice and demonstrates the trend for

future studies.

CT and MRI images are widely used for the visualization

of the optic nerve fibers at the anterior visual pathway, i.e.,

from the end of the eyeballs to the LGN, while DTI can be

used to visualize the optic nerve fibers along the entire visual

pathway. Even though, DTI would not replace CT and MRI

for optic nerve fiber reconstruction in clinical practice at the

current stage. On one hand, DTI is with longer scanning time

and lower image resolution than CT and MRI, making it less

applicable in clinical practice. On the other hand, there are still

debates on the consistency between the reconstructed fibers from

DTI data and the real fibers in anatomy (Jeurissen et al., 2019),

which limits its application scenarios such as the OAR drawing in

radiation therapy.

Image segmentation and fiber tracking are two different

reconstruction approaches for CT/MRI and DTI, respectively.

Besides that, there are some other differences between these

two approaches. Fiber tracking can achieve a more precise

delineation of the optic nerve fibers than image segmentation,

allowing the extraction of more accurate features to describe

the morphological and structural changes of optic nerve fibers.

For example, optic nerve fiber degeneration can be described by

the volume change based on image segmentation results while

it can be more precisely evaluated by the reduction in optic

nerve fiber number based on fiber tracking results. Nevertheless,

fiber tracking is time-consuming and its computational process is

complicated and easily affected by noises and artifacts (Tournier

et al., 2002; Lazar and Alexander, 2003). Also, it is not

uncommon that there are false positive results and it requires

abundant experience and enough knowledge of brain anatomy

to ensure an accurate result (Jeurissen et al., 2019). These

drawbacks restrict the scenarios where it can apply in clinical

practice. In comparison to fiber tracking, image segmentation

would be more efficient and robust; also, its results can be

easily evaluated.

In comparison with conventional methods, AI-based methods

are believed to be the trend for both image segmentation and

fiber tracking. For image segmentation, AI-based methods

are preferred to conventional model-based and atlas-based

methods. Model-based methods require the design of complicated
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TABLE 4 AI-based fiber tracking approaches.

Process AI model Research

Pre-processing CNN Tian et al., 2020

DNN Koppers et al., 2017

U-Net-like Jha et al., 2022a

SRN Zeng et al., 2022

Encoder-decoder, Discriminator Jha et al., 2022b

SuperDTI network Li et al., 2021

MLP, U-Net Karimi et al., 2021a,b,c

Seeding U-Net Avital et al., 2019

U-Net-like Wasserthal et al., 2019

Tractography Random forest classifier Neher et al., 2017

RNN Poulin et al., 2017, 2018

MLP Jörgens et al., 2018;

MLP Wegmayr et al., 2018

Reinforcement learning Théberge et al., 2021

U-Net-like Wasserthal et al., 2018

Filtering U-Net-like He et al., 2023

CNN Xu et al., 2019

CNN Zhang et al., 2020

Siamese networks Chen et al., 2021

Contrast learning Xue et al., 2022, 2023

CNN, convolutional neural networks; DNN, deep neural networks; RNN, recurrent neural

networks; SRN, super-resolution networks.

models to fit the thin-long structure of the optic nerve fiber;

such models are difficult to estimate based on the complex

background along the visual pathway and their robustness

is doubted. Atlas-based methods require the registration

between the target and template, while it is not easy to get

two images fully aligned given the individual differences and

interference from noises and artifacts. AI-based methods are

data-driven approaches, which can automatically learn rules

from complicated data. AI-based methods are more easily

performed than those conventional methods and demonstrate

much better segmentation accuracy and robustness. The only

disadvantage of AI-based methods now is their high demand for

fine-annotated labels.

For fiber tracking, the superiority of AI-based methods over

conventional methods is not as great as image segmentation at

the current stage. On one hand, AI-based methods are mostly

proposed for one certain step of the fiber tracking procedure

and a proper end-to-end AI-based fiber tracking approach is

still lacking. On the other hand, the conventional methods for

each fiber tracking step have been well integrated into toolboxes

and software, decreasing their difficulty in implementation.

Even though, it is seen that more and more studies on fiber

tracking are trying to replace the conventional methods with AI-

based ones.

It is also noticed that there are still some challenges in the

reconstruction of optic nerve fibers from medical images with

AI-based methods. These challenges point out the direction of

future studies. The first challenge is the thin-long structure of

the optic nerve fibers. The long optic nerve fibers pass through

various brain regions that are formed by different brain tissues,

yielding complicated contextual information. Meanwhile, the thin

structure makes the signal intensities of the optic nerve fibers

easily affected by their neighboring tissues due to the PVE, yielding

varied signal intensities at different segments of the visual pathway.

The existing image segmentation methods applied multi-scale,

coarse-to-fine, or iterative strategies to handle the variations in

signal intensity and contextual information; pre-processing and

post-processing are also used to modify the false-positive and

missing voxels. Even though measures are taken, it is seen that

the improvement is far from satisfactory, suggesting that the

current local voxel-based segmentation strategy would not be

powerful enough to handle such a complicated problem. Also,

the long optic nerve fibers have varied curvatures. In existing

fiber tracking frameworks, the curvature is a significant sign for

tracking termination and fiber selection. The varied curvatures

increase the difficulty of setting these rules. Furthermore, it

requires a large field of view to reveal the long optic nerve fibers

in an image at the current stage. To achieve such a field of

view, the image resolution has to be sacrificed to maintain an

acceptable scanning time in clinical practice, increasing the PVE.

Thus, more powerful segmentation and fiber tracking strategies

are required to cope with the challenges brought by the thin-

long structure.

The second challenge is the lacking of task-specific datasets.

AI-based methods are data-driven methods and their performance

highly depends on the quality of data. To the best of our knowledge,

most existing studies on image segmentation and fiber tracking are

based on private datasets, which are not available to the public.

There are a minor number of publicly available datasets, such as

PDDCA (Raudaschl et al., 2017), TCIA (Clark et al., 2013; Zhu

et al., 2019), and CHIASM (Puzniak et al., 2021a,b) for image

segmentation and HCP for fiber tracking. However, these datasets

are not initially collected for optic nerve fiber reconstruction.

Most of these datasets require further cleaning and annotation

operations. Meanwhile, the imaging protocols and pre-processing

steps in these datasets may not be consistent with those used

in clinical practice. Also, in some of the datasets, the images

only cover part of the optic nerve fibers and cannot be used to

reconstruct the entire visual pathway. In addition, the situations

like multi-modal images and disease-specific deformation are not

fully considered in these existing datasets. Therefore, building

a dataset specifically for optic nerve fiber reconstruction is in

great need.

The third challenge is the control of computational cost.

For image segmentation, more powerful segmentation networks

are usually with more complicated network structures at

the current stage. Also, the inputs are 3D brain images

for the reconstruction of optic nerve fibers. These together

indicate a high computational cost. For fiber tracking,

the tractography is usually an iterative process and time-

consuming for both conventional and AI-based methods. The

Frontiers inNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fnins.2023.1191999
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Jin et al. 10.3389/fnins.2023.1191999

high computational cost would reduce the value of clinical

application. The way to balance the computational cost and

reconstruction performance would be another challenge in

future studies.

There are some new techniques such as generative AI that

can help address these challenges. Generative AI has demonstrated

its power in image super-resolution and image synthesis. Image

super-resolution can be used to cope with the low-resolution

problem caused by the large field of view. Also, image synthesis

can be used to generate more data to get full exploitation of

the existing datasets. In addition, it is realized that multi-modal

fusion would be a possible way to enhance the performance

of optic nerve fiber reconstruction. There are many other

examples to support its effect on segmentation (Menze et al.,

2014; Ibtehaz and Rahman, 2020; Wang et al., 2022). The

combination of segmentation results and fiber tracking has

once been explored (Reid et al., 2021; He et al., 2023). The

segmentation results can be used as the seeds for tractography

or the masks to filter valid streamlines. Therefore, developing

new fusion and combination methods would be a feasible way

to improve the reconstruction performance. Nevertheless, this

kind of method would face the problem that multi-modal

images are difficult to acquire in clinical practice. Generative

AI provides a way for multi-modal image synthesis. Thus, in

the future, we can try these new techniques in optic nerve

fiber reconstruction.

7. Conclusion

In this paper, we provided a comprehensive review of the

current SOTA computational methods for the reconstruction of

optic nerve fibers. We described the difficulties to delineate or

evaluate the optic nerve fibers directly from medical images,

suggesting the necessity of optic nerve fiber reconstruction. We

reviewed both the image segmentation and fiber tracking methods

and the successful application of these methods in previous studies

indicates the feasibility and effectiveness of computational methods

in optic nerve fiber reconstruction. Also, we introduced both the

conventional and AI-based implementations, and there is no doubt

that AI-based methods are better choices for optic nerve fiber

reconstruction. Meanwhile, we also pointed out the challenges for
the existing AI methods, and future studies are needed to address

these challenges.
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