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In this study, a multiple-constraint estimation algorithm is presented to estimate

the 3D shape of a 2D image sequence. Given the training data, a sparse

representation model with an elastic net, i.e., l1−norm and l2−norm constraints,

is devised to extract the shape bases. In the sparse model, the l1−norm and

l2−norm constraints are enforced to regulate the sparsity and scale of coe�cients,

respectively. After obtaining the shape bases, a penalized least-square model is

formulated to estimate 3D shape and motion, by considering the orthogonal

constraint of the transformation matrix, and the similarity constraint between

the 2D observations and the shape bases. Moreover, an Augmented Lagrange

Multipliers (ALM) iterative algorithm is adopted to solve the optimization of

the proposed approach. Experimental results on the well-known CMU image

sequences demonstrate the e�ectiveness and feasibility of the proposed model.

KEYWORDS

non-rigid structure from motion, elastic net, similarity constraint, Augmented Lagrange
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1. Introduction

As an important component of computer vision, 3D shape reconstruction has been

widely used in many applications (Li et al., 2016, 2018; Adamkiewicz et al., 2022; Chiang

et al., 2022; Fombona-Pascual et al., 2022; Jang et al., 2022; Lu et al., 2022; Nian et al., 2022a,b;

Wang et al., 2022; Wen et al., 2022). Among the various 3D shape reconstruction methods,

non-rigid structure from motion (NRSFM) offers a technique to simultaneously recover the

3D structures and motions of an object, by using the 2D landmarks in a series of images

(Graßhof and Brandt, 2022; Kumar and Van Gool, 2022; Song et al., 2022). Nevertheless,

NRSFM is still an underconstrained and challenging issue because of lacking any prior

knowledge of 3D structure deformation.

To alleviate the uncertainty, the various constraints are exploited constantly. Bregler

et al. (2000), proposed a low-rank constraint-based approach to decompose the observation

matrix into a motion factor and a shape basis. In order to reduce the number of the unknown

variables proposed by Bregler et al. (2000), a point trajectory approach was presented by

Akhter et al. (2010) by using the predefined bases of discrete cosine transform (DCT).

However, the high-frequency deformation cannot be reconstructed well via this trajectory

representation because of the low-rank constraint. Gotardo and Martinez (2011) modeled

a smoothly deforming 3D shape as a single point moving along a smooth time trajectory

within a linear shape space. In addition to the low-rank constraint, the higher frequency

DCT was adopted to capture the high-frequency deformation.
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For the low-rank constraint methods, it is difficult to

determine the optimal number of shape bases or trajectory

bases. To solve this problem, a Procrustean normal distribution

(PND) model was presented by Lee et al. (2013) to separate

the motion and deformation components strictly, without any

additional constraints or prior knowledge. The experimental

results demonstrate the performance of PND. Subsequently, the

Procrustean Markov Process (PMP) algorithm was proposed by

Lee et al. (2014), by combing in a first-order Markov model

representing the smoothness between two adjacent frames with

PND. Lee et al. (2016) reported a consensus of non-rigid

reconstruction (CNR) approach to estimate 3D shapes based on

local patches. However, the reconstruction performance of these

methods may degrade significantly when the number of images

becomes small, especially for a single image.

Referring to the active shape model (Cootes et al., 1995), a

limb length constraint-based approach was presented by Wang

et al. (2014) to estimate the 3D shape of an object from a

single 2D image, by solving a l1−norm minimization problem.

Zhou et al. (2013) proposed a sparse representation-based convex

relaxation approach (CRA) to guarantee global optimality. The

shape bases were extracted from a given training data by using a

sparse representation model. The corresponding coefficients were

obtained by adopting a convex relaxation assumption. A prominent

advantage of CRA is that the algorithm can deal with a single image.

To further enhance the performance of the CRA algorithm,

a multiple-constraint-based estimation approach is proposed to

estimate the 3D shape of a 2D image sequence. Inspired by Zhang

and Xing (2017), a dictionary learning model with l1−norm and

l2−norm, i.e., elastic net, is constructed to extract more effective

shape bases from a given training set. Referring to (Cheng et al.,

2015), a penalized least-square model is constructed to estimate 3D

shape and motion, by considering the orthogonal constraint of the

transformation matrix and the similarity constraint between the

FIGURE 1

One frame of those eight categories.

2D observations and the shape bases. In addition, an augmented

Lagrange multipliers (ALM) iterative algorithm is developed to

optimize the reconstructionmodel. The effectiveness and feasibility

of the proposed algorithm are verified on the well-known CMU

image sequences.

The rest of this article is organized as follows. A detailed

description of the designed MCM-RR approach is introduced in

Section 2. In Section 3, we report the experimental results. Finally,

the article is concluded in Section 4.

2. Methods

According to the shape-space model by Zhou et al. (2013),

the unknown 3D shape S ∈ R
3×p is constructed as a linear

combination of a few shape bases Bi ∈ R
3×p, i.e.,

S =

K∑

i=1

ciRiBi, (1)

where p and K are the numbers of feature points and shape bases,

respectively. The parameter ci and Ri ∈ R
3×3 denote the coefficient

and rotation matrix, respectively. In terms of the weak-perspective

projection model, the corresponding 2D observations are modeled

as a matrixW ∈ R
2×p,

W =

K∑

i=1

MiBi. (2)

The matrixMi ∈ R
2×3 can be represented as

Mi = ciR̃i, (3)

where R̃i ∈ R
2×3 is the first two rows of Ri. Combining the

orthogonal constraint, the matrixMi satisfies

MiM
T
i = c2i I2, (4)

where I2 ∈ R
2×2 is an identity matrix. The 3D shape, i.e.,

z−coordinates, and the motion parameters ci and Ri, are estimated

by utilizing the observationsW, i.e., the (x, y) coordinates of feature

points.

In the proposed method, the shape bases B ∈ R
3K×p are

extracted via a sparse model with the elastic net constraint. The B

is the stacking of Bi(i = 1, ...,K). The matrix M are solved by a

penalized least-square model. Given M, the parameters ci and Ri

are derived via refinement decompose (Zhou et al., 2013). After

obtaining ci, Ri and Bi, the unknown 3D shape can be computed

via (1). The pseudocode of the proposed algorithm is summarized

in 1. The pseudocode of the proposed algorithm is summarized in

Algorithm 1.

2.1. Extraction of shape bases via a sparse
model with elastic net constraint

For a given 3D training set A ∈ R
3p×F , i.e., the (x, y, z)

coordinates of feature points of training images, the shape bases
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TABLE 1 Mean and standard deviation (µ ± σ ) of the 3D reconstruction errors ξ of eight motion categories for five methods.

Sequence PMP CNR PND2 CRA MCM-RR

Walk 97.06± 17.35 78.28± 15.70 104.20± 26.13 38.98± 19.64 35.37± 18.49

Run 119.37± 31.37 65.92± 23.69 124.54± 28.82 55.69± 18.13 52.64± 17.05

Jump 102.22± 30.74 61.66± 40.35 84.64± 41.80 57.08± 41.56 44.56± 27.30

Climb 119.08± 39.39 69.36± 30.21 87.72± 56.04 58.87± 24.73 50.25± 25.88

Box 252.61± 41.28 82.83± 33.65 146.91± 45.17 72.90± 30.64 65.28± 26.82

Dance 118.24± 35.34 105.73± 38.81 118.52± 62.07 102.36± 44.93 83.59± 34.88

Sit 96.31± 32.77 69.58± 42.18 73.20± 32.47 75.68± 36.29 62.72± 26.79

Basketball 121.26± 44.83 67.63± 38.97 105.38± 72.17 63.66± 27.92 57.57± 22.96

TABLE 2 Corresponding 3D reconstruction error decreasing percentage

ξp(%) of MCM-RR compared to CRA for eight motion categories.

Sequence ξp

Walk 9.26

Run 5.48

Jump 21.93

Climb 14.64

Box 10.43

Dance 18.34

Sit 17.12

Basketball 9.57

N ∈ R
3p×K and the coefficient matrix X ∈ R

K×F can be obtained

from the following sparse model:

min
N1 ,··· ,NK

1

2
‖A−NX‖2F + λ

(
τ ‖X‖1 + (1− τ ) ‖X‖22

)

s.t. ‖Ni‖F ≤ 1, Xij ≥ 0, ∀i ∈ [1,K] , j ∈ [1, F] ,

(5)

where F and τ are the number of frames and a weight coefficient,

respectively. The Ni ∈ R
3p×1 is the i-th column of N. The

linear combination of l1−norm and l2−norm, called elastic net

constraint, are enforced to constraint the sparsity of coefficients X

as well as scale. The parameter λ is a trade-off parameter between

the reconstruction error and the elastic net constraint.

For (5), we first compute the partial differentials of X and N,

i.e.,

∂X = (Nt)T
(
A−N

t
X

)
+ λ

(
τ IKF + 2(1− τ )X

)
, (6)

∂N =
(
A−N

(
X
t+1

)T) (
X
t+1

)T
, (7)

where IKF is a K × F identity matrix. Thereafter, X and N can be

updated alternately as

X
t+1 = X

t − φ1∂X, (8)

N
t+1 = N

t − φ2∂N, (9)

1: Compute the shape bases B via the elastic net

based sparse model (5).

2: Initialize α, β, γ.

3: Initialize M0, Z0, Y0, µ0, t = 0.

4: while t <= 1000 do

5: Compute the optimized Mt+1 according to (15) by

fixing Zt, Yt, and µt,

6: Update Zt+1 via (17) by fixing Mt+1, Yt, and µt,

7: Update Yt+1 via (18) by fixing Mt+1, Zt+1,

8: if δ1 < ε & δ2 < ε then

9: break,

10: else

11: if δ1 > 10δ2 then

12: µt+1 = 2µt,

13: else {δ2 > 10δ1}

14: µt+1 = µt/2.

15: end if

16: end if

17: Update t← t + 1.

18: end while

19: if refinement reconstruction then

20: Compute R and c according to (22) via the

alternating minimization (Zhou et al., 2013).

21: end if

22: Estimate S by using (1)

Algorithm 1. Pseudocode of the MCM-RR algorithm.

where φ1 and φ2 are the step size of ∂X and ∂N, respectively.

After convergence, the shape bases B can be obtained by a re-

arrangement of N.

2.2. 3D shape estimation via a penalized
least-square model with similarity
constraint

In terms of (2), the proposed penalized least-square model,

including a relaxed orthogonality constraint (Zhou et al., 2013) and
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a similarity constraint (Cheng et al., 2015) can be formulated as

min
M̃,Z

1

2

∥∥W− ZB̃
∥∥2
F
+ α

K∑

i=1

‖Mi‖2 +
β

2
‖ZD‖22

s.t. M̃ = Z,

(10)

where Z ∈ R
2×3K is an auxiliary variable and M̃ = [M1, · · · ,MK],

B̃ =
[
B
T
1 , · · · ,B

T
K

]T
. The parameters α and β are used to weight

the two regularization terms. The diagonal matrix D ∈ R
3K×3K is

represented as

D =
(
D̄⊗ I3

)
. (11)

For the diagonal similarity matrix D̄ ∈ R
K×K , the diagonal

element di is computed as

di = exp

(
‖W−5Bi‖

2γ 2

)
, (12)

where 5 = [1, 0, 0; 0, 1, 0], γ 2 is the parameter of an exponential

function.

With the ALM iterative algorithm, the penalized least-square

model (10) can be reformulated as

L =
1

2

∥∥W− ZB̃
∥∥2
F
+ α

K∑

i=1

‖Mi‖2 + 〈Y, M̃− Z〉

+
β

2
‖ZD‖22 +

µ

2

∥∥M̃− Z
∥∥2
F
,

(13)

where Y and µ are a dual variable and a weight of penalty term,

respectively. In (13), there are four unknown variables M̃, Z, Y, and

µ. The solutions can be solved by the alternating direction method

of multipliers (ADMM).

First, the optimal M̃ at the (t + 1)th iteration can be formulated

as

M̃
t+1 = arg min

M̃

K∑

i=1

1

2

∥∥Mi − P
t
i

∥∥2
F
+

α

µ
‖Mi‖2 , (14)

where P
t
i is the ith column-triple of Zt − 1

µ
Y
t . According to the

proximal problem (Zhou et al., 2013),Mt+1
i can be computed as

M
t+1
i = Udiag

(
6 −

α

µ
Pl1

(
6µ

α

))
VT , i ∈ [1,K], (15)

where U6VT = svd(Pti ). The operation Pl1 (·) denotes the

projection of a vector to the unit l1−norm ball (Zhou et al., 2013).

Similarity, the optimal Z at the (t + 1)th iteration can be

formulated as

Z
t+1 =arg min

Z

1

2

∥∥W− ZB̃
∥∥2
F
+ 〈Yt , M̃t+1 − Z〉

+
β

2
‖ZD‖22 +

µ

2

∥∥M̃t+1 − Z
∥∥2
F
.

(16)

We compute the one-order partial derivative of (16) with

respect to Z and set it as zero. Thereafter, Zt+1 can be given by

Z
t+1 =

(
WB̃

T + µM̃t+1 + Y
t
) (

B̃B̃
T + µI+ βDD

T
)−1

. (17)

Afterward, the optimal Y at the (t + 1)th iteration can be

computed as

Y
t+1 = Y

t + µ
(
M̃

t+1 − Z
t+1

)
. (18)

Given a weight τ , the coefficient µ at the (t + 1)th iteration can

be given by

µt+1 =

{
2µt , if δ1 > τδ2,

µt/2, if δ2 > τδ1,
(19)

where

δ1 =

∥∥M̃t+1 − Z
t+1

∥∥
F∥∥Zt

∥∥
F

, δ2 =

∥∥Zt+1 − Z
t
∥∥
F∥∥Zt

∥∥
F

. (20)

The iterations are repeated until

δ1 < ε & δ2 < ε, (21)

where ε is a small threshold value. After obtainingMi, the unknown

3D shape can be reconstructed by refinement reconstruction (Zhou

et al., 2013).

In the refinement reconstruction, we assume that the rotation

matrices of each shape base are equal, denoted as R̄. Thereafter, ci
and R̄ can be estimated by the following rotation synchronization

model

min
c,R̄

k∑

i=1

∥∥Mi − ciR̄
∥∥2
F

s.t. R̄R̄
T = I2,

, (22)

which can be solved via the alternating minimization (Zhou et al.,

2013). Finally, the 3D shape S can be estimated afterMi is obtained.

3. Experimental results

3.1. Experimental comparison of di�erent
algorithms

The performance evaluation of the proposed 3D shape

reconstructionmodel (denoted asMCM-RR) is carried out on eight

motion categories (walk, run, jump, climb, box, dance, sit, and

basketball) from the CMU motion capture dataset (Zhou et al.,

2013). Figure 1 shows one frame of those eight categories.

In the experiments, the performance of several state-of-the-

art 3D shape estimation methods are used to compare with the

presented approach, including PND2 (Lee et al., 2013), CNR (Lee

et al., 2016), PMP (Lee et al., 2014), and CRA (Zhou et al., 2013).

Mean error ξ of 3D shapes is calculated as the performance

indicator to measure the estimation results:

ξ =
1

F

F∑

t=1

‖S̃t − St‖
2
F , (23)

where S̃t ∈ R
3×p and St ∈ R

3×p are the reconstructed 3D structure

and real 3D structure of tth frame, respectively.

Table 1 displays the mean and standard deviation (µ ± σ )

of reconstruction errors ξ of eight motion categories for the five
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FIGURE 2

Comparisons of estimated shapes for single frame of Jump between MCM-RR and other methods from three di�erent viewpoints. The symbol “◦”

denotes the observed real points, whereas “+” denotes reconstructed points.

TABLE 3 Mean and standard deviation (µ ± σ ) of the 3D reconstruction errors ξ of eight motion categories for four methods.

Sequence CRA CRA-EN CRA-SC MCM-RR

Walk 38.98± 19.64 36.56± 19.18 38.64± 19.03 35.37± 18.49

Run 55.69± 18.13 52.60± 16.70 56.06± 18.03 52.64± 17.05

Jump 57.08± 41.56 46.61± 33.79 56.42± 39.52 44.56± 27.30

Climb 58.87± 24.73 49.99± 25.53 58.99± 24.88 50.25± 25.88

Box 72.90± 30.64 65.32± 27.64 73.02± 30.10 65.28± 26.82

Dance 102.36± 44.93 85.23± 35.63 101.49± 44.01 83.59± 34.88

Sit 75.68± 36.29 63.12± 26.79 74.92± 34.80 62.72± 26.79

Basketball 63.66± 27.92 57.81± 22.58 63.28± 28.29 57.57± 22.96

methods, respectively. The best results are highlighted in red,

whereas the second best is in blue.

Table 1 shows the estimation errors of the last two methods

are clearly less than that of the first triple algorithms. Among

eight categories, the mean reconstruction errors of MCM-RR are

the lowest compared to CRA. Moreover, the standard deviations

of MCM-RR are less than that of CRA among most categories.

Therefore, compared to CRA, both accuracy and robustness are

effectively improved for the proposed method.

Compared to CRA, the 3D reconstruction error decreased the

percentage ξp(%) of MCM-RR can be computed as

ξp =
ξCRA − ξMCM-RR

ξCRA
× 100%. (24)

From Table 2, we can see that the mean reconstruction errors

of MCM-RR decreased about 5.48% ∽ 21.93% compared to CRA.

Thus, MCM-RR has a better 3D reconstruction performance than

CRA for the eight motion categories.

Take one frame of Jump as an example. Figure 2 displays a

comparison of reconstructed shapes between MCM-RR and the

other methods from three different viewpoints. From Figure 2,

we can see that compared to other methods, most estimated

shapes of MCM-RR are closer to real points than that of the

other methods.

3.2. Ablation experiment

In order to verify the feasibility of the proposed two

strategies, the elastic net (denoted as CRA-EN) and similarity

constraint (denoted as CRA-SC) are separately applied to

the original algorithm CRA. Table 3 displays the mean

and standard deviation (µ ± σ ) of 3D reconstruction

errors ξ of eight motion categories for the four methods,

respectively. Compared to CRA, both the elastic net and

similarity constraint can decrease the 3D reconstruction errors.

Therefore, the 3D reconstruction performance can be effectively

improved once the two methods are simultaneously designed

into CRA.
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4. Conclusion

In this study, a multiple-constraint algorithm is devised to

estimate the 3D shape of a 2D image sequence. Experimental results

on the well-known CMU datasets demonstrated that the proposed

methods have higher accuracies and more robustness. Compared

with CRA, the 3D reconstruction error is decreased by at least

5.48%.
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