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Human behavior in free search 
online shopping scenarios can 
be predicted from EEG activation 
using Hjorth parameters
Ninja Katja Horr *, Bijan Mousavi , Keren Han , Ao Li  and 
Ruihong Tang 
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The present work investigates whether and how decisions in real-world online 
shopping scenarios can be predicted based on brain activation. Potential customers 
were asked to search through product pages on e-commerce platforms and 
decide, which products to buy, while their EEG signal was recorded. Machine 
learning algorithms were then trained to distinguish between EEG activation when 
viewing products that are later bought or put into the shopping card as opposed 
to products that are later discarded. We  find that Hjorth parameters extracted 
from the raw EEG can be  used to predict purchase choices to a high level of 
accuracy. Above-chance predictions based on Hjorth parameters are achieved 
via different standard machine learning methods with random forest models 
showing the best performance of above 80% prediction accuracy in both 2-class 
(bought or put into card vs. not bought) and 3-class (bought vs. put into card 
vs. not bought) classification. While conventional EEG signal analysis commonly 
employs frequency domain features such as alpha or theta power and phase, 
Hjorth parameters use time domain signals, which can be calculated rapidly with 
little computational cost. Given the presented evidence that Hjorth parameters 
are suitable for the prediction of complex behaviors, their potential and remaining 
challenges for implementation in real-time applications are discussed.
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Introduction

Human decision-making in real-life situations is complex and dependent on a myriad of 
known and unknown influencing factors. Based on intensive research, our understanding of 
logical reasoning, heuristics and biases that determine human decisions increased rapidly in the 
past decades (Johnson and Ratcliff, 2014; Benjamin, 2019). Still, combining all of these factors 
into realistic predictions of what will be the outcome of any individual choice, is a difficult 
endeavor. While choices in simple decision scenarios may be predicted via few environmental 
parameters (e.g., Brandstätter et al., 2006; Ge and Godager, 2021), such predictions become 
infinitely complex when looking into realistic choice settings from everyday life.

In order to approach the prediction of complex real-world decisions, it therefore makes 
sense to move from situational and cognitive factors to the brain, where all decision-making 
happens. Brain activation should, in theory, contain all the information necessary to predict any 
decision that will be made in the near enough future. However, the difficult question is, how the 
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relevant activation can be  identified and isolated from the large 
amount of noise, that is, activation which is uninformative regarding 
the decision at hand. The brain processes related to both simple and 
complex choices and how they interact to arrive at the final decision 
is an active field of research (Bault and Rusconi, 2020; Serra, 2021). 
Neuro-cognitive models have been developed to explain the brain 
processes behind decisions in laboratory experiments (e.g., Knutson 
and Bossaerts, 2007; Mulder et al., 2014; Tavares et al., 2017). However, 
such models may not be easily transferable to the complexity of real-
world decision-making. Machine learning algorithms can, however, 
search the data for patterns and regularities which are related to a 
certain type of outcome, even without full understanding of the 
underlying processes. Therefore, applying machine learning to 
measurements of human brain activation may allow for the prediction 
of processes as complex as real-life human decision-making behavior.

The use of machine learning algorithms to increase the 
understanding of human brain functions and predict human behavior 
based on neural activation has become increasingly common in recent 
years (Vu et al., 2018). Low-level perceptual stimulus characteristics 
(e.g., Swisher et  al., 2010; Schuck et  al., 2015; Allen et  al., 2021; 
Hajonides et al., 2021) and perceptual decisions (e.g., Sajda et al., 2009; 
Barik et al., 2019; Mercier and Cappe, 2020) can be predicted with 
often high levels of accuracy. There are also studies showing that more 
complex choice behavior, like choices based on learned environmental 
reward probabilities (e.g., Hampton et  al., 2006), environmental 
exploration in order to seek information (e.g., Desender et al., 2019) 
and social decision-making (e.g., Speer and Boksem, 2019), can 
be decoded from brain activation.

In the present work, we  focus on the prediction of purchase 
choices for basic consumer products. The prediction of purchase 
choices is an ongoing topic of marketing research and remains very 
challenging, despite a large amount of available information on both 
product and customers (Gal and Simonson, 2021). Similarly, 
neuromarketing research has not yet given sufficient evidence for 
specific neural correlates that robustly perform better than 
traditional methods in determining consumer preferences (Hakim 
and Levy, 2019). Regarding machine learning methods, some 
promising results for the prediction of purchase choices from brain 
activation have been reported. For example, Jai et al. (2021) report 
up to 95 percent prediction accuracy based on fMRI activation for 
purchase choices in an experimental setting. Mashrur et al. (2022) 
find up to 87 percent decoding accuracy with EEG. On the other 
hand, Garczarek-Bąk et al. (2021) concluded that EEG activation 
could not significantly improve the prediction of purchase choices 
compared to a prediction solely based on electrodermal activation 
(EDA) and product familiarity.

Besides aiming for a high prediction accuracy, we need to consider 
the requirements that make an algorithm predicting purchase choices 
via brain activation practically useful. Everyday life purchase choices 
are characterized by an extremely high variability in possible products 
and platforms. Therefore, general rules and heuristics cannot provide 
sufficient insights into how any given product should be presented. 
Rather, every single product or product line needs to be considered 
individually. The step-by-step manual adaptation of product 
presentation based on consumer research is a tedious process that only 
allows for a limited number and range of modifications to be made. 
Furthermore, while consumer profiles and explicit opinions based on 
buyer statistics or questionnaires can be obtained comparatively easily, 

cheaply and in large numbers, collecting brain activation data will 
always require more efforts. Therefore, to make the most out of brain 
activation data as an information source for consumer research, the 
development of algorithms that allow for real-time analysis is 
important. With real-time analysis future choice behaviors can 
be predicted during the decision process itself. On top of a faster 
turnaround on par with or even exceeding traditional consumer 
research measures, real-time prediction is the number one prerequisite 
for the qualitatively important step from a passive measurement of 
brain activation to an active feedback loop. Direct interaction between 
the potential customer’s brain activation and the product can 
be  enabled through automated adjustment of the sensory input 
according to the outputs of a real-time algorithm. Individualized 
computer-generated product presentations can be created and the 
optimal presentation – the one which gives the highest probability of 
future purchase – can be  determined for every given product 
and consumer.

With such future applications in mind, the present work attempts 
an EEG-based prediction of realistic purchase choices in an online 
shopping scenario. Participants are using their own devices and are 
spending their own money. Every product can be labeled as bought, 
put into the virtual shopping card or discarded (not bought). A range 
of commonly used machine learning algorithms is employed for 
predicting these labels. The method of EEG is an obvious choice when 
working with real-life decision-making, as it allows participants to 
interact naturally with their environment while providing a signal 
with high temporal resolution that can, via eye-tracking glasses and 
screen monitoring, be  directly linked to participants’ momentary 
visual input (Horr et al., 2022).

A crucial question is, which aspect of the EEG signal should 
be used to train the algorithm. EEG measures electrical activation at 
the scalp with millisecond accuracy and a spatial resolution 
determined by the number of measurement electrodes or EEG 
channels (Jackson and Bolger, 2014). At each channel the signal can 
be  decomposed into its frequency components, with a natural 
trade-off between time and frequency resolution (Cohen, 2011). 
While time-frequency decomposition is useful to identify neural 
correlates of behavior (Herrmann et  al., 2016), it’s calculation is 
computationally intensive. This limits its applicability for rapid real-
time predictions. A balance needs to be  found between feature 
extraction that is sufficiently detailed to give accurate predictions and 
sufficiently simple for an algorithm whose speed and efficacy suits the 
application at hand. The time-frequency parameters described by 
Hjorth (1970) may be a feasible choice, both in terms of prediction 
accuracy and speed. Hjorth parameters describe the signal’s frequency 
characteristics in the time domain without the need to perform time-
frequency decomposition. They are easy to calculate from the raw 
signal and can be stored as one signal vector per channel, rather than 
a time by frequency matrix. They therefore provide a much less 
complex basis for machine learning models of brain data than 
traditional measures, while still containing the basic temporal 
information of interest. These properties make Hjorth parameters 
promising features to focus on when building machine learning 
models based on brain data, especially when real-time prediction is of 
interest (e.g., Vidaurre et  al., 2009; Mehmood et  al., 2022; Rizal 
et al., 2022).

To our knowledge, the present study is the first to apply Hjorth 
parameters for the prediction of choices in a real-world scenario. 
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Common linear and non-linear machine learning algorithms are 
trained and tested for their prediction accuracy to (1) determine the 
possibility to predict complex human decisions based on Hjorth 
parameters in a standard machine learning framework and (2) find 
out which algorithms and approaches are most suitable to predict such 
decisions. The present research should be considered as a first step 
toward the prediction of complex real-world decision-making in 
purchase situations. It can thereby serve as the basis for future 
improvements and for the development of brain-computer-interfaces 
(BCIs), that enhance product optimization by predicting online 
buying choices in real time.

Methods

Participants

Over a 3-year period, a total of 12 batches of participants were 
recorded in a realistic free browsing and free choice online shopping 
scenario. The main difference between the batches were the currently 
available and relevant product pages. The batches did not differ in 
study setup, location and equipment. Also, the general instructions 
remained the same for all batches. The batches did differ, however, in 
target products of interest and in the incentive given to participants. 
Table 1 summarizes participant characteristics for each of the batches. 
Data from a total of 391 individuals was collected, 262 (67%) of which 
were female and 129 (33%) were male. The average participant age was 
29.0 years (SD = 5.3). All participants were naïve to the purpose of the 
study, had normal or corrected-to-normal vision and no history of 
neuropsychological diseases. Given every batch focused on a 
particular product type (e.g., certain types of hygiene products, 
cosmetics products, nutrition, and household products), pre-screening 
questionnaires ensured that the participants had a current intention 
to buy the respective product type. Participants received between 50 

and 100 CNY/h for participation in the study as well as a up to 30% 
discount on all purchases. They gave their written consent after 
written and verbal explanation of task, procedure, measurement, and 
anonymized use of the data.

Data collection

All data were collected at the EEG laboratory of Brain Intelligence 
Neuro-Technology Ltd. In an electrically shielded room, participants’ 
EEG, eye movements and field of vision were recorded while they used 
their personal phone to browse online shopping websites. A study 
session lasted up to 1.5 h, including about half an hour for equipment 
set up and subsequent free browsing without a fixed time limit. Eye 
movement and field of vision recordings were done using SMI eye 
tracking glasses (SensoMotoric Instruments GmbH, Teltow, 
Germany). EEG was recorded with an EasyCap system (EasyCap 
GmbH, Herrsching-Breitbrunn, Germany).

The EEG cap consisted of 63 Ag/AgCl electrodes placed at the 
standard locations of the international 10/10 system. Position AFz 
served as the ground electrode and position FCz as the reference 
electrode. One additional external electrode was placed under the 
right eye. Electrode impedance was kept below 5 kΩ throughout the 
course of the experiment. The sampling rate for signal digitization was 
500 Hz. After the recording the signal was re-referenced to the average 
over all non-rejected measurement electrodes.

Upon completion of the setup 1 min of resting state activation was 
recorded during which participants sat still with their eyes open. Then 
participants were instructed to take out their phone and use an online 
shopping application of their choice to search for a particular type of 
product. They were told to spend as long as they like browsing through 
the application and buying their products of choice.

All products were bought from participants’ own money and 
shipped to their own addresses making the study situation a realistic 
online shopping scenario. As noted above, varying types of products 
were the focus of the different batches and varying amounts of buying 
incentives were guaranteed. An overview over the collected data and 
their use for building prediction models can be seen in Figure 1.

Data analysis

EEG pre-processing
Matlab R2017B (The MathWorks, Natick, Massachusetts) and the 

Matlab-based software package Fieldtrip (Oostenveld et al., 2011) 
were used for pre-processing. A 0.5 Hz highpass and 48–52 Hz 
bandpass filter were applied over the full signal.

Principal component analysis with a logistic infomax ICA 
algorithm was employed to remove eye-artifacts (Makeig et al., 2002). 
Further EEG artifacts were rejected via visual inspection. Episodes 
containing artifacts over all channels were removed. Rejected channels 
were interpolated using the average of their neighboring channels 
weighted by distance.

Data segmentation and tagging
The EEG signal was cut into episodes with each episode marking 

the complete time span during which an individual product page was 
viewed without interruption. Entering and leaving of each product 

TABLE 1 Overview over participant characteristics in all batches.

Project 
date

N Age Gender

M SD Min Max Male Female

01/05/2018 40 31 2.7 26 36 14 26

01/06/2018 4 24 1.6 21 25 0 4

01/08/2019 30 26 4.8 19 35 7 23

01/10/2019 78 30 5.4 19 45 31 47

11/11/2019 11 27 4.7 19 35 4 7

12/12/2019 51 27 4.4 18 35 16 35

01/01/2020 47 29 6.0 19 40 15 32

01/04/2020 31 29 7.4 19 43 13 18

01/06/2020 30 30 4.8 21 39 10 20

01/08/2020 26 29 5.0 18 38 7 19

11/11/2020 15 28 3.4 22 34 3 12

12/12/2020 28 28 4.3 20 35 9 19

Participant characteristics are shown separated by batch with each batch focusing on 
different target products and therefore different available product pages. The general 
procedure was the same for each batch.
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page was marked manually based on the field of vision recordings. As 
the leaving of the page was considered the point when the final 
decision for this view of the given product has been reached, it was 
termed decision time and used as the reference point for the time 
snippets analyzed. The starting point was only used to determine the 
maximum time available for each product page. A visual illustration 
of the segmentation process is shown in Figure 2. Each episode of 
viewing a product page was tagged according to the buying status 
regarding that product. The tags defined the labels the prediction 
algorithm had to forecast. We used two different approaches of data 
tagging – a two-class and a three-class approach.

The two-class approach simply differentiated between the labels 
buy and no-buy. All episodes of viewing products that have either 
been bought or put into the shopping cart at any point in time during 
the study session were labeled as buy episodes. All others were labeled 
as no-buy episodes. The rationale behind combining buy and cart 
episodes was that both are assumed to represent a positive attitude 
toward the product and the general willingness to buy it (Horr 
et al., 2022).

The three-class approach differentiated between buy, cart and 
no-buy episodes. All episodes of products that are never purchased or 
put into the cart were tagged as no-buy. As soon as a product was put 
into the cart all later and previous episodes of that product were 
tagged as cart. As soon as a product was bought all later episodes and 
all previous episodes up until the point when the product has been put 
into the cart were marked as buy. For instance, if a product was viewed 
six times, added to the cart during the third view and purchased 
during the fifth view, the tagging would have been [c, c, c, b, b, b] with 

c representing cart and b representing buy. The three-class approach 
is less focused on the general opinion or approach tendency toward 
the product and more on the practical outcome of the decision. The 
backward labeling with episodes from the same product being labeled 
first as card and then as buy assumed that the time before a decision 
marks activation in favor of this decision, while as long as no further 
decision is recorded the general stance toward the product stays the 
same. As opposed to the two-class approach, the three-class approach 
made it possible that the very same product page belonged to a 
different category within one person with the only differentiation 
being the participants’ subsequent decision regarding the product.

Data augmentation
To increase the number of data samples that can be  used for 

training the prediction model and to take human error into account, 
four samples of equal duration were created for each time span 
representing a tagged product page view. To model error performance, 
we let the operators mark start and end points of at least 500 product 
pages twice. The maximum error turned out to be in the range of 
200 msec. Taking this calculated maximum human error into account, 
each decision point was taken to start at t – 200 msec, t – 100 msec, t 
and t + 100 msec, respectively. This led to four differently timed 
samples of 100 msec duration: [t – 200, t – 100], [t – 100, t], [t, t + 100], 
and [t + 100, t + 200].

Though adding more augmented data, that is, splitting the signal 
up into more time spans, would further increase accuracy, this comes 
at the expense of calculation complexity and time. Splitting up each 
signal into four therefore was found to be a good balance. Note that as 

FIGURE 1

Overview of collected data and modeling rationale. The available data can be divided into EEG recordings and field-of-vision screen recordings relating 
EEG activation to the real-world online shopping scenario. The screen recordings were used to choose critical points in time and label the EEG time 
snippets according to their buying status. Features extracted from EEG activation around the critical points in time were used for prediction of the 
buying status.
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opposed to common practices, for example in image processing, the 
augmentation here is based on real data simply differing in the 
selected window of time.

For each thus generated time window, maximum global field 
power (GFP) was chosen as the critical time point within the given 
time span and was used for further feature engineering. It has been 
shown that points of maximum GFP are the ones with the highest 
signal-to-noise ratio (Damborská et al., 2019). The choice of maximum 
GFP as the critical time point was therefore based on practical 
considerations regarding extractable information from the signal 
rather than theoretical considerations of which kinds of information 
represent decision-making. The data augmentation and extraction of 
GFP is illustrated in Figure 3.

Feature engineering
At each critical point of highest global field power Hjorth 

parameters were extracted from the time-domain EEG signal for time 
periods denoted by τ over all 61 channels. While the full duration of 
each product page viewing was theoretically available, it was attempted 
to use the minimal duration of data sufficient to predict decisions. 
Minimal data has a lower processing complexity, which means that the 
speed of the algorithms is faster and less expensive hardware is 
required for sufficiently rapid real-time predictions. Prediction was 
attempted with time snippets τ of 1,200, 1,400, 1,600, 1,800, and 
2,000 msec around the point of highest global field power. 1 × 61 brain 
feature maps of the Hjorth mobility and the Hjorth complexity 

parameter for each time period τ were used to classify 
purchasing behavior.

Since Bo Hjorth's, 1970 conception (Hjorth, 1970), Hjorth 
parameters have been used for time-domain signal processing as 
identifiers of statistical properties in a multitude of applications (e.g., 
Mouzé-Amady and Horwat, 1996; Leite and Moreno, 2018). Hjorth 
parameters have also frequently been used to extract information 
about the temporal characteristics of EEG signals (e.g., Elbert et al., 
1992; Cecchin et  al., 2010; Mehmood and Lee, 2015). In EEG 
applications they are referred to as normalized slope descriptors 
(NSDs, Mouzé-Amady and Horwat, 1996).

The advantage of Hjorth parameters is that they can directly 
extract frequency moments from the time domain of the signal 
without having to undertake transformations into the frequency 
domain. This is of particular interest when building machine learning 
algorithms and brain-computer interfaces, as it has been shown to 
allow the prediction of complex states with relatively simple modeling 
approaches (e.g., Vidaurre et al., 2009; Mehmood et al., 2022; Rizal 
et al., 2022). Due to the computational efficiency of both the data 
transformation and the applied models, Hjorth parameters are 
promising features for developing algorithms that can make rapid 
real-time predictions from brain activation recorded via EEG.

The three Hjorth parameters are activity, mobility, and complexity 
(Hjorth, 1970). The Hjorth activity parameter (1) describes the zero-
order moment of the frequency domain representing the variance of 
the frequency amplitude. The Hjorth mobility parameter (4) is the 

FIGURE 2

Illustration of the data segmentation. (A) Each subject’s browsing time was manually marked at each point a product page was entered or left. The time 
the product page was left is deemed the decision time (vertical red lines), i.e., the point at which the current decision about the product is definitely 
made. (B) Each decision time was labeled according to the buying status of the product and the full duration of the product viewing was available for 
each label (horizontal green and blue lines  =  examples of product page views for each participant; green  =  no-buy, blue  =  buy).
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second order moment (2) divided by the first order moment (1) of the 
frequency domain and denotes the power spectrum’s mean frequency. 
The Hjorth complexity parameter (5) is the fourth order moment (3) 
divided by the second order moment (2) of the frequency domain and 
quantifies the variation in frequency. This parameter compares the 
signal to a pure sine wave with a value of 1 indicating a perfect match.
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The input signal for the calculation of Hjorth parameters as 
features for the present models was the artifact-corrected raw EEG 
signal with a timespan of τ around the point of highest GFP. Due 
to the augmentation four raw EEG signal snippets were available 
for each product page. Hjorth parameters were calculated 
separately for each channel resulting in a 61-channel feature 
vector of parameter values for each snippet. In order to ensure a 
consistent value range across all snippets and increase model 
robustness against outlier values, a min-max normalization 
scaling the values to a range between 0 and 1 was applied over 
feature vectors (Singh and Singh, 2020). Such normalized Hjorth 
mobility and Hjorth complexity feature vectors were used to train 
the algorithm.

Prediction model

Python 3.8 and the Python-based toolbox scikit-learn 1.0.2 
(Pedregosa et al., 2011) were used for modeling. We employed and 
compared a range of simple machine learning algorithms to 
predict buying status on the basis of Hjorth mobility and Hjorth 
complexity brain feature maps. Initially, 80 percent of the data was 
used for training the model and 20 percent was used as the test 
set. Prediction accuracies were calculated based on 5-fold 

FIGURE 3

Illustration of the data augmentation and extraction of maximum GFP. (A) For each decision time four samples were created. Each sample contained 
the activation of all channels, but fixing the decision time at a slightly different time point to (1) augment the data with additional samples and (2) take 
human error of a maximum of 200  msec into account. (B) From each sample Hjorth parameters at the time of maximum global field power (GFP) were 
used for prediction.
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cross-validation. In a second step, snippets with the lowest 
possible tau were reanalyzed using a leave-one-subject-out cross-
validation procedure, for which accuracies were calculated as the 
average accuracy over all subjects. The latter validation ensured, 
as opposed to the former, that there could never be augmented 
variants of the same product page view both in the training and 
in the test set. In the following each of the employed machine 
learning algorithms compared is shortly described. Wherever not 
otherwise specified the default settings of the scikit-learn version 
1.0.2 were used.

Linear discriminant analysis
Linear discriminant analysis (LDA) seeks to classify the outcomes 

of a categorical target variable by dividing it in N-dimensional feature 
space through linear combinations of the dependent variables. The 
predicted category for each sample (buy, no buy or cart) is determined 
based on its position in feature space.

Logistic regression
Logistic regression (LR) is another method that allows for the 

prediction of categorical target variables as a linear combination of 
independent variables. Here, the continuous log odds of the target 
variables are predicted from the linear combinations of predictors. The 
log odds are transferred back into the probability of one compared to 
another category (e.g., 70% probability of buying compared to 30% of 
no-buying) and the more likely category will be  predicted by 
the model.

K-nearest neighbors (k-NN)
The k-nearest neighbors (k-NN) technique divides the data into 

categories based on the similarity between samples. Different k values, 
that is, number of neighbors accounted for, were tried for the present 
algorithms. As k = 5 outperformed the others, the result of k = 5 is the 
one presented here.

Support vector machines
Support vector machines (SVM) are used to classify data by 

locating a hyperplane in N-dimensional feature space. Along with 
linear classification, SVMs can perform efficient non-linear 
classification using a technique called the kernel trick (Ben-Hur et al., 
2008), which involves implicitly mapping their inputs into high-
dimensional feature spaces. SVMs with linear, polynomial, and radial 
basis function kernels (RBF) were applied on the present data. The 
SVMs with RBF kernels performed the best for classification based on 
complexity and are therefore the ones reported. For mobility the SVM 
algorithms did not reach convergence.

Random forest
Random forests (RF), alternatively called random decision 

forests, are an ensemble learning technique for classification that 
utilizes a large number of decision trees to train. A random forest 
model determines the predicted category by the one that the 
majority of trees in the classification task selected. Random forests 
allow to identify which feature contributes the most to the 
classification accuracy, that is, for the present data it could be used 
to determine which EEG channels contributed most to making 
accurate predictions.

Results

Descriptive results

Over all 12 batches and 391 participants a total of 6,030 product 
pages were viewed (M pages per participant = 8.38, SD = 11.52, Min = 1, 
Max = 123). 24% were bought, 25% were put into the shopping cart 
and 51% were discarded. Per participant the average number of 
bought pages was M = 4.05 (SD = 6.54, Min = 0 Max = 47). Of cart pages 
it was M = 4.11 (SD = 9.22, Min = 0, Max = 123) and of not bought 
pages M = 8.84 (SD = 11.35, Min = 0, Max = 85). Mean viewing time for 
an individual page was M = 9.82 s (SD = 10.89, Min = 0.23, Max = 40). 
The mean viewing time for products over multiple pages was 
M = 31.83 s (SD = 12.70, Min = 1.06, Max = 40). An overview over the 
viewed number of pages by the number of times the page has been 
viewed and the labeling categories buy, cart and no-buy can be seen 
in Figure 4A. Figure 4B shows the distribution of viewing times for 
the three labeling categories. Participants spend an average of 
M = 13.46 min (SD = 12.57, Min = 0.64, Max = 81.56) browsing for 
products. Hjorth mobility and complexity of product page views were 
calculated separately for each EEG channel at the point of maximum 
GFP around the decision time of interest. An example of a Hjorth 
Complexity brain map for a single buy and single no-buy product page 
view can be seen in Figure 5. Figure 6A shows the average Hjorth 
mobility and Hjorth complexity values for the 3-class classification 
and Figure 6B for the 2-class classification.

Prediction of buying behavior

Hjorth mobility
Table 2 summarizes the balanced classification accuracies using 

Hjorth mobility to differentiate between three classes (buy, cart and 
no buy). The performance of the linear discriminant analysis using 
5-fold cross-validation (CV) is identical to random selection for all 
values of τ between 1,200 and 2000 msec (M = 33.0%, SD = 0%). With 
Leave-one-subject-out CV the accuracy almost doubles to 62%. The 
mean balanced accuracy of the logistic regression algorithm is only 
slightly above chance with 5-fold CV (M = 45.8%, SD = 3.91%) and 
even worse with leave-one-subject-out CV (34%). These poor results 
of linear classification approaches indicate that the feature distribution 
in N-dimensional space with N = 61 channels is non-linear, so that a 
planar hyperplane is not sufficient to accurately classify the data. The 
non-linear SVM performs equally poorly over all τ-coefficients both 
with 5-fold CV (M = 48.0%, SD = 0.0%) and leave-one-subject-out CV 
with τ = 1,200 msec (38%). Note that these results can be attributed to 
the SVM algorithm not reaching convergence. The k-NN algorithm 
shows an only slightly better average prediction accuracy over all 
τ-coefficients in 5-fold CV (M = 65.0%, SD = 0.63%) as well as leave-
one-subject-out CV (61%). The random forest model results in by far 
the best prediction accuracies for all algorithm variants (5-fold cross-
validation: M = 89.60%, SD = 0.49%; leave-one-subject-out CV = 82%). 
It can be seen that there is no systematic improvement of prediction 
accuracy due to adding more history, that is, longer τ-coefficients, to 
the data. The leave-one-subject-out CV shows worse prediction 
accuracies for all but the LDA algorithm – however, predictions can 
be considered more valid, as augmented samples based on the same 
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product page view (as well as the same subject) can never be both in 
the training and in the test set.

The prediction accuracies for the Hjorth mobility two-class 
classification results are presented in Table 3. Similar as in the case of 
3-class classification linear algorithms showed an insufficient 
prediction accuracy close to chance with 5-fold CV M = 53.2% 
(SD = 0.74%; leave-one-subject-out CV = 61%) for LDA and M = 58.5% 
(SD = 0.40%; leave-one-subject-out CV = 57%) for logistic regression. 
SVM performed equally poorly and without convergence (5-fold CV 
M = 57.6%, SD = 0.55%, leave-one-subject-out CV = 57%). The 
non-linear k-NN approach reached a decoding accuracy of M = 74.6% 
(SD = 0.80%: leave-one-subject-out CV = 67%). The by far best 
classification accuracy was again found for the random forest model 
with M = 91.8% (SD = 0.40%; leave-one-subject-out CV = 86%).

Hjorth complexity
For most algorithms, Hjorth complexity shows similar results to 

Hjorth mobility for both the 3-class (see Table 4) and the 2-class (see 
Table 5) classification. In the 3-class classification, linear algorithms still 
show the worst prediction accuracy with M = 38.0% (SD = 0%; leave-one-
subject-out CV = 64%) for LDA and M = 48.0% (SD = 0.63; 

leave-one-subject-out CV = 37%) for logistic regression. Also, the k-NN 
approach shows similar prediction accuracies for Hjorth complexity as 
for Hjorth mobility (M = 62.4%, SD = 0.49%; leave-one-subject out 
CV = 67%). A clear improvement is seen regarding the prediction 
accuracy of the support vector machine algorithm (M = 88.2%, 
SD = 0.40%; leave-one-subject-out CV = 86%), which, now converging, 
is superior compared to the other three algorithms and is almost on par 
with the barely changed prediction accuracy of the random forest model 
(M = 89.0%, SD = 0%; leave-one-subject-out CV = 86%). Higher τ values 
always lead to similar or higher prediction accuracies. The improvement 
due to τ, however, is very small. In the successful algorithms (SVM and 
RF) the less error-prone leave-one-subject-out procedure leads to a slight 
decrease in prediction accuracies.

For two-class classification LDA (M = 57.6%, SD = 0.48%; leave-
one-subject-out CV = 59%) and logistic regression (M = 58%, SD = 0%; 
leave-one-subject-out CV = 58%) again show the worst performance. 
Also, the k nearest neighbor performance does not differ much 
between complexity and mobility (M = 73.0%, SD = 0.63%; leave-one-
subject-out CV = 67%). Compared to Hjorth mobility, a strongly 
improved performance is again found for the support vector machine 
(M = 90.6%, SD = 0.49%; leave-one-subject-out CV = 86%), which now 

FIGURE 4

Number of pages viewed and viewing times. (A) Distribution of the number of pages by number of views (Total N pages  =  6,030). (B) Distribution of 
viewing time in seconds. Both (A,B) are separated by labeling category.

FIGURE 5

Exemplary Hjorth complexity brain map for one buy and one no-buy product page view. Example of Hjorth complexity distribution across the brain in 
a single product page view for (A) a buy and (B) a no-buy view in the same participant.
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converges. The random forest model (M = 91.6%, SD = 0.49%; leave-
one-subject-out CV = 86%) shows no improvement for complexity 
compared to mobility and is now on par with the support vector 
machine algorithm.

Channel importance
The random forest model led to the best decoding accuracies 

in both decoding approaches (2-class and 3-class), for both 

mobility and complexity as well as across all τ-coefficients. 
Using a random forest model, it can be calculated which channels 
contributed most to category predictions. Figure 7A illustrates 
the channels with the greatest effects for Hjorth mobility and for 
Hjorth complexity in the 3-class classification approach and 
Figure  7B in the 2-class classification approach. Feature 
importance is depicted for both 3-class and 2-class classification 
mobility and complexity with τ equal to 1,200 msec. The mean 

FIGURE 6

Average Hjorth mobility and complexity per channel. Average Hjorth mobility and Hjorth complexity for each EEG channel over all trials and subjects, 
seperated by (A) buy, cart and no-buy for the 3-classification case and (B) buy, no-buy and merged over all trials for the 2-classification case.
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and standard deviation of the impurity decrease within each tree 
are used to determine the feature importance (Altmann et al., 
2010). The advantage of such permutation-based feature 
importance is that it is not biased toward features with a high 
cardinality, i.e., many unique values, and is suitable to 
be computed on a left-out test set.

Comparison to time-frequency-based prediction
To allow for a direct comparison between Hjorth-parameter 

and time-frequency based prediction, the 2-class and 3-class 
classification with the reported machine-learning algorithms was 
repeated using alpha-power (8–13 Hz) and theta-power (5–7 Hz) 
gained from traditional time-frequency decomposition based on 

TABLE 4 Prediction accuracy for 3-class classification with the complexity feature.

Model 20–80% 5-fold CV
τ in msec

Leave-one-
subject-out CV

τ in msec

1,200 1,400 1,600 1800 2000 1,200

Prediction accuracy in %
Prediction 

accuracy in %

LDA 38 38 38 38 38 64

LR 47 48 48 48 49 37

k-NN 62 62 62 63 63 61

SVM 88 88 88 88 89 79

RF 89 89 89 89 89 82

LDA, linear discriminant analysis; LR, logistic regression; k-NN, k nearest neighbor; SVM, support vector machine; RF, random forest; CV, cross-validation. Algorithm parameters as 
described in the methods section.

TABLE 2 Prediction accuracy for 3-class classification with the mobility feature.

Model 20–80% 5-fold CV
τ in msec

Leave-one-
subject-out CV

τ in msec

1,200 1,400 1,600 1800 2000 1,200

Prediction accuracy in %
Prediction 

accuracy in %

LDA 33 33 33 33 33 63

LR 47 47 48 48 48 34

k-NN 64 64 65 65 65 61

SVM 48 48 47 48 48 38

RF 88 88 89 89 89 82

LDA, linear discriminant analysis; LR, logistic regression; k-NN, k nearest neighbor; SVM, support vector machine; RF, Random Forest; CV, cross-validation. Algorithm parameters as 
described in the methods section.

TABLE 3 Prediction accuracy for 2-class classification with the mobility feature.

Model 20–80% 5-fold CV
τ in msec

Leave-one-
subject-out CV

τ in msec

1,200 1,400 1,600 1800 2000 1,200

prediction accuracy in %
prediction 

accuracy in %

LDA 54 54 53 53 52 61

LR 58 59 59 59 58 57

k-NN 75 74 76 74 74 67

SVM 57 58 58 57 58 57

RF 91 92 92 92 92 86

LDA, linear discriminant analysis; LR, logistic regression; k-NN, k nearest neighbor; SVM, support vector machine; RF, random forest; CV, cross-validation. Algorithm parameters as 
described in the methods section.
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Morlet-wavelet convolution with 7 wavelet cycles. This led to 
prediction accuracies below 65% in both the 2-class and the 
3-class classification for all algorithms. The above frequency 
bands were chosen, as they were previously shown to be related to 

purchase choices in the present online shopping scenario (Horr 
et al., 2022). Of course, adding additional time-frequency features 
may still result in a better prediction. However, the decomposition 
of the EEG signal into its complete frequency representation is 

TABLE 5 Prediction accuracy for 2-class classification with complexity feature.

Model 20–80% 5-fold CV
τ in msec

Leave-one-
subject-out CV

τ in msec

1,200 1,400 1,600 1800 2000 1,200

prediction accuracy in %
prediction 

accuracy in %

LDA 58 58 57 57 58 59

LR 58 58 58 58 58 58

k-NN 73 73 72 73 74 67

SVM 90 91 91 91 90 86

RF 91 91 92 92 92 86

LDA, linear discriminant analysis; LR, logistic regression; k-NN, k nearest neighbor; SVM, support vector machine; RF, random forest; CV, cross-validation. Algorithm parameters as 
described in the methods section.

FIGURE 7

Random forest channel importance based on Hjorth mobility and complexity Note. Channel importance calculated via mean impurity decrease in the 
random forest model for (A) 3-class classification and (B) 2-class classification with τ  =  1,200  msec.
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much more computationally demanding than the calculation of 
Hjorth parameters (Hjorth, 1970; Vidaurre et  al., 2009; Rizal 
et al., 2022).

Discussion

The present study used EEG activation from realistic online 
shopping scenarios to predict participants’ purchase choices. 
Predictions were based on Hjorth mobility and Hjorth complexity 
(Hjorth, 1970) during the viewing of product pages that were 
categorized either into bought, put into cart and not bought 
products or only into bought and not bought products. A range of 
common machine learning algorithms were employed to 
determine these choice categories. Applying leave-one-subject-out 
cross-validation choices could be predicted with an accuracy up 
to 82% in the 3-class classification and 86% in the 
2-class classification.

Differences between different τ durations as investigated with a 
20%/80% 5-fold cross-validation were minimal for all algorithms, 
features, and classification approaches (see Tables 2–5). This suggests 
that the lowest investigated τ-coefficient in the present study, 
1,200 msec, is already sufficient to get the most out of the present 
prediction approach. Leave-one-subject-out cross-validation lead to 
slightly lower prediction accuracies than 5-fold cross-validation. 
However, due to augmentation, only the leave-one subject out, but not 
the 5-fold CV ensures that product page views in the training set are 
not repeated in the test set. Therefore, the former is considered more 
robust and its results are in the following reported as the final 
accuracies reached.

Comparing the performance of different prediction algorithms 
with τ = 1,200 msec and a leave-one-subject out cross-validation 
(see Tables 2–5), it is obvious, that linear algorithms were not 
sufficient to distinguish between the different choice categories. 
The accuracy of the linear algorithms, i.e., linear discriminant 
analysis and logistic regression stayed below 65% for all 
classification conditions. The lack of a clear linear differentiability 
between categories is also apparent in the average mobility and 
complexity values shown in Figure 6. The non-linear k-nearest 
neighbor approach also reached poor mean prediction accuracies 
around 60%. For Hjorth mobility, a random forest model clearly 
showed the best results. With 82% decoding accuracy in the 
3-class and 86% in the 2-class classification respectively, it was 
consistently at least 10 percentage points better than the second-
best algorithm, k-NN. Interestingly, while the support vector 
machine algorithm did not converge for Hjorth mobility, its 
prediction accuracies caught up with the random forest models 
when using Hjorth complexity. With Hjorth complexity both the 
support vector machine and the random forest model reached an 
accuracy of around 80% in the three-class and above 85% in the 
two-class classification.

The present results demonstrate that random forest models 
based on Hjorth mobility or complexity as well as support vector 
machines with RBF kernels based on Hjorth complexity can 
decode buying decisions during the viewing of a product page 
with a remarkable accuracy above 80%. As the present analysis 
was done after the recording, computation time was only of minor 
importance. However, in order to be able to transfer this kind of 

decoding into a real-time application scenario, that is, to make a 
prediction about the decision during the viewing of the page and 
allow for direct interaction between brain activation and product 
presentation, time will become a major concern. Regarding 
features, the time required to calculate Hjorth complexity is much 
greater than the time required to calculate Hjorth mobility. This 
speaks for random forest models, which also performed well with 
Hjorth mobility, to be  the most promising method in future 
applications. Certainly, it will be beneficial to have a large number 
of possible classifiers available for future applications to select the 
most suitable one based on situation-specific constraints regarding 
accuracy-time trade-offs.

It should be  noted that all present results are based on 
augmented samples, that is, making four samples out of each 
product page by means of a 200 msec temporal jitter. Furthermore, 
the choice of the critical time point as the point of highest GFP 
was crucial for achieving the presented decoding accuracies. 
Without augmentation and GFP for time selection, prediction 
performance did not exceed 65% in any of the algorithms. Under 
the given conditions, mobility and complexity have been identified 
as suitable features for the prediction of real-world decisions. In 
comparison, alpha and theta frequency power did not allow for 
prediction accuracies above 65%. While features based on 
complete frequency decomposition may have led to a better 
performance of time-frequency data, their calculation requires far 
more resources in terms of time and computational power 
(Hjorth, 1970; Vidaurre et al., 2009; Rizal et al., 2022). It remains 
to be determined by future research whether additional features 
based on dynamical systems theory may be similarly or even more 
promising both in terms of performance and speed.

As a limitation of the present approach, it must be pointed out, 
that machine learning models based on summarized brain features 
like Hjorth parameters make it difficult to determine, which aspect of 
the brain signal and even more so which cognitive component is the 
basis of the algorithm’s prediction accuracy. This can also be seen in 
the strong variability of feature importance for different random forest 
models. Such variability suggests that situation- and person-specific 
prediction models are necessary for a reliable prediction as no general 
pattern can be extracted. It was ensured that the prediction algorithm 
is based on the brain signal itself rather than artifacts (e.g., movement 
artifacts) related to the buying decision by comparing categories for 
which no different observable behavior is to be expected. That is, for 
the entire product page viewing time span no difference in general 
behavior and movement between buying and no-buying can 
be assumed. Furthermore, Hjorth parameters were calculated around 
the point of highest global field power (GFP), which is most robust 
against artifacts (Damborská et  al., 2019). However, besides the 
algorithm being based on temporal components of the EEG signal, it 
can give little insights into the neural correlates of the cognitive 
processes leading to the decision. The prediction of purchase choices 
should therefore be seen as a practical approach to shine light on 
decision outcomes, enabling the understanding of product preferences 
and respective optimization.

While the present results were calculated after collection and 
storage of the data, the most interesting practical applications to 
decision decoding in realistic scenarios require real-time 
prediction. Only real-time prediction allows to move away from 
long iterations of data collection, analysis, redesign and new data 
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collection toward automated presentation adjustment and 
thereby product- and consumer-specific optimization in a single 
session. In the present example this means that the purchase 
choice should be predicted during the viewing of the product 
page in advance of any decision being made. Such an actual 
prediction of the choice to be made enables an algorithm-driven 
optimization of the presentation toward the highest probability 
of buying. Real-time prediction is therefore the first step to 
develop a brain-computer-interface (BCI) of product 
optimization. Such a device would, on top of a much quicker 
turnaround, have two important qualitative advantages compared 
to decoding buying choices after the recording session and 
making manual adjustments. (1) A brain-computer-interface 
would remove limitations on the number and range of possible 
product presentations to be tested. This is because, finding the 
optimal presentation is no longer being based on human trial and 
error, but constitutes a computational optimization problem. 
While manual adjustment requires the pre-selection of specific 
presentation designs, a BCI algorithm could choose from a 
practically unlimited parameter space of possible designs, with 
the goal of finding the best, that is, most likely to be  bought, 
product presentation. (2) With manual adjustment it is practically 
impossible to test both a large number of potential consumers 
and a large number of different presentation designs within the 
same consumer. As it does not make sense to go through the 
tedious process of manual adjustment for individual consumers, 
manual optimization of the product presentation must be based 
on average consumer preferences, ignoring or at least 
overshadowing differences between consumers. In a 
BCI-scenario, however, optimization takes place on the level of 
the individual consumer – so that each session produces the best 
possible design for the study participant at hand. In combination 
with easily attainable information on the participant, like 
demographics and general buying habits, this allows for detailed 
customer segmentation, targeting different product presentations 
at identified clusters of potential customers.

In order to make real-time prediction possible, several 
adjustments to the present analysis strategy are necessary. Besides 
optimizing the algorithms to require as little computing power and 
time as possible, also the entire pre-processing pipeline needs to 
be integrated into real-time computation. Here, the start and end 
points of product page views were determined by human operators. 
Human error calculated to be  about 200 msec was considered 
within the segmentation process. However, an automatic evaluation 
of the eye-tracking video based on computer vision analysis (see, 
e.g., Voulodimos et al., 2018; Cazzato et al., 2020; Chai et al., 2021) 
could reduce, if not completely eliminate, this error and, of course, 
is the only possible solution for real-time prediction of decisions. 
Algorithms for automatic EEG data cleaning are available and 
show consistent improvement (Rashmi and Shantala, 2022). While 
the present data cleaning was again dependent on human 
operators, future work remains to establish to what extent the same 
decoding accuracies can be  achieved based on automatically 
cleaned signals. In order to allow real-time prediction, it is further 
important to use pre-processing approaches that do not, like for 
example independent component analysis, require the full signal. 
Another option may be to develop algorithms which are suitable 

to work with the EEG raw signal, so data cleaning is not necessary 
for high accuracy prediction.

Furthermore, for fast and efficient real-time prediction, it would 
be  advantageous to reduce the number of channels used by the 
algorithm. In random forest models channel importance (see Figure 7) 
can be employed to determine which channels are the most suitable 
because they most strongly influence the algorithm’s final prediction. 
However, in the present analysis channel importance varied a lot 
depending on the Hjorth parameter, prediction approach and even the 
τ-coefficient being used. This suggests that the optimal algorithm for 
a particular use case first needs to be determined on the basis of all 
channels and then tested for the most promising subsets.

Another practical question for both post-hoc and real-time 
prediction concerns the labels to be classified. We here distinguished 
between a two-class and a three-class classification approach showing 
that both reached reasonable and in the best models even very similar 
absolute decoding accuracies. Still, there will always be  a general 
trade-off between the detail of classification and final classification 
accuracy. In order to determine the necessary level of detail in each 
use case, it should therefore be considered, what the different labels 
mean in terms of the underlying cognitive processing and expected 
action steps to follow. Regarding the example of the two-class versus 
three-class approach, one could speculate, that the two-class 
classification better distinguishes between general interest and no 
interest in the product, while three-class classification is more suitable 
if the immediate action following the viewing of the product is of 
interest. An even more specific labeling based on the exact stage of a 
potential buyer’s decision process is possible and may lead to higher 
ecological validity of the outcome categories. For example, in the 
present study, all views of a product that took place before and after it 
was put into cart were labeled as “cart” in the 3-class classification and 
all views that took place before and after a product was bought were 
labeled as “buy” in both the 2-class and the 3-class classification. 
However, actions that might indicate reconsideration, like removing 
an item from the cart or revisiting a page after the product has been 
bought, were not labeled separately. Therefore, a possible change of 
opinion was not represented in the present class labels. While adding 
such a change of opinion as a classification category would probably 
represent the actual cognitive processing of participants better, the 
increase in categories and decrease in number of cases for each 
category will necessarily decrease decoding accuracies.

For further improvement of the presented algorithms both in 
terms of speed and accuracy additional features in the field of 
dynamical systems theory can be  explored (Rodríguez-Bermúdez 
et  al., 2015; Gao et  al., 2020; Parbat and Chakraborty, 2021). 
Furthermore, person-related features like demographics (e.g., age, 
gender, education), personality traits and general as well as session-
specific data on shopping behavior might lead to additional 
improvements. Different ways of determining the optimal decision 
time for prediction may also increase both speed and accuracy as well 
as shed light on the particularly interesting question, how far in 
advance of the action the decision is predictable with a certain level 
of accuracy.

In conclusion, the present study demonstrates the possibility of 
predicting complex decisions in a real-world scenario based on 
EEG parameters. Interestingly, simple and commonly used 
non-linear machine learning algorithms were sufficient to make 
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reasonable predictions above 80% decoding accuracy. It therefore 
seems feasible to move from the presented prediction approach 
taking place after data collection and storage to real-time prediction 
of complex decision-making and automated adjustment of stimulus 
presentation. In order to do so, future research needs to improve the 
given algorithms in terms of speed and independence from human 
operators, while increasing and stabilizing decoding accuracies. For 
practical applications in different use cases, it must further 
be  investigated which EEG features and algorithms are most 
suitable for different kinds of real-world prediction scenarios.
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