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Neurological disorders a�ect the nervous system. Biochemical, structural, or

electrical abnormalities in the spinal cord, brain, or other nerves lead to di�erent

symptoms, including muscle weakness, paralysis, poor coordination, seizures,

loss of sensation, and pain. There are many recognized neurological diseases,

like epilepsy, Alzheimer’s disease (AD), Parkinson’s disease (PD), multiple sclerosis

(MS), stroke, autosomal recessive cerebellar ataxia 2 (ARCA2), Leber’s hereditary

optic neuropathy (LHON), and spinocerebellar ataxia autosomal recessive 9

(SCAR9). Di�erent agents, such as coenzyme Q10 (CoQ10), exert neuroprotective

e�ects against neuronal damage. Online databases, such as Scopus, Google

Scholar, Web of Science, and PubMed/MEDLINE were systematically searched

until December 2020 using keywords, including review, neurological disorders,

and CoQ10. CoQ10 is endogenously produced in the body and also can be found

in supplements or foods. CoQ10 has antioxidant and anti-inflammatory e�ects

and plays a role in energy production and mitochondria stabilization, which are

mechanisms, by which CoQ10 exerts its neuroprotective e�ects. Thus, in this

review, we discussed the association between CoQ10 and neurological diseases,

including AD, depression, MS, epilepsy, PD, LHON, ARCA2, SCAR9, and stroke. In

addition, new therapeutic targets were introduced for the next drug discoveries.
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Introduction

Neurological diseases endanger human health and lifestyle. Neurological diseases affect
a large number of people all over the world (World Health Organization, 2006). Stroke
accounts for the death of over six million people annually, and more than 80% occur in
low- and middle-income countries (Akinyemi et al., 2021). Over 50 million individuals
in the world suffer from epilepsy (Scott et al., 2001). Also, there are 47.5 million cases
of dementia, including 7.7 million new patients each year (Trandafir, 2016). Alzheimer’s
disease (AD) is the commonest cause of dementia accounting for 60–70% of dementia cases
(Huang et al., 2020). Migraine affects over 10% of the world’s population (Steiner et al., 2014).

Frontiers inNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2023.1188839
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2023.1188839&domain=pdf&date_stamp=2023-06-23
mailto:alirezakomaki@gmail.com
mailto:Komaki@umsha.ac.ir
mailto:Neurophysiology@umsha.ac.ir
https://doi.org/10.3389/fnins.2023.1188839
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2023.1188839/full
https://orcid.org/0000-0003-3865-9583
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Bagheri et al. 10.3389/fnins.2023.1188839

Several causes and mechanisms have been suggested for
neurological disorders (Urdinguio et al., 2009). Lifestyle, genetics,
infections, diet, environmental factors, and physical damage
have been revealed as the causes of neurological disorders
(World Health Organization, 2006). Neurological disorders are
associated with the following physical symptoms: partial or
full paralysis, seizures, muscle weakness, partial or full loss
of sensation, reading and writing disabilities, poor cognitive
functions, unexplainable pain, and reduced alertness (Stone and
Carson, 2011). Accordingly, oxidative stress and imperfective
energy metabolism can be regarded as the pathogenesis of many
neurodegenerative diseases, such as Parkinson’s disease (PD),
AD, multiple sclerosis (MS), epilepsy, depression, and stroke
(Choonara et al., 2009). The prevalence of age-dependent disorders
has recently been increasing (Bigal et al., 2006). Coenzyme Q10
(CoQ10) is a strong neuroprotective agent in neurodegenerative
disorders. The mechanisms of CoQ10 on neurological disorders
are shown in Table 1. The levels of CoQ10 diminish in the brain
and different tissues in animals and humans with age; thus, CoQ10
has an effective therapeutic role in age-related neurodegenerative
disorders (Spindler et al., 2009; Kadian et al., 2022). CoQ10 is also
known as ubiquinone, ubidecarenone, CoQ10, CoQ, or Q10. It is
a 1,4-benzoquinone and Q represents the quinone chemical group
(Figure 1). In this review, the neuroprotective effects of CoQ10 on
neurological diseases, including AD, depression, epilepsy, MS, PD,
stroke, autosomal recessive cerebellar ataxia 2 (ARCA2), Leber’s
hereditary optic neuropathy (LHON), and spinocerebellar ataxia
autosomal recessive 9 (SCAR9) were discussed (Table 2).

Biosynthesis of CoQ10 and its
neuroprotective/antioxidant e�ect on
neurotoxicity

CoQ should reduce itself following oxidization, which is done
using various NAD(P)H oxidoreductases in the plasma membrane,
like NAD(P)H: quinone oxidoreductase 1, NADH-cytochrome
b5 reductase, or NADPH-CoQ reductase (Rashid et al., 2021).
Accordingly, CoQ should be distributed among them, which is
regulated by particular proteins (Hidalgo-Gutiérrez et al., 2021;
Kemmerer et al., 2021). CoQ is a lipid-soluble compound in
the inner mitochondrial membrane (IMM). IMM separates the
mitochondrial matrix from the intermembrane space and is
an environment for electron transport in the respiratory chain
(Sharaf, 2017). In IMM, CoQ can accept electrons from FADH2
through succinate dehydrogenase complex II (CII) and/or NADH
through NADH ubiquinone oxidoreductase complex I (CI). The
electrons are transported to cytochrome c via CoQH2-cytochrome
c reductase complex III (CIII), and cytochrome c can transfer
the electrons to the oxygen via cytochrome c oxidase complex
IV (CIV). Electron transportation among these complexes is
associated with the pumping protons toward the intermembrane
space, producing a proton motive force used by the ATP synthase
complex V (CV) to generate ATP (Lodish et al., 2008). Electron
transportation in the mitochondrial complexes of the respiratory
chain (CI, CII, CIII, CIV, and CV) is done by the generation
of super-complexes, a supramolecular organization joining the

TABLE 1 The e�ect of CoQ10 on neurological disorders.

Function of CoQ10 Neurological
disorder

↓Apoptotic death AD

↓TBARS AD

↑Antioxidant enzymes AD

↓MDA, LPO AD

↓Inflammation AD

↑Cholinergic functioning AD

↑TAC, SOD, GPx BD

↓LPO, MDA BD

↓NF-kB, p38, JNK BD

↑5-HT1A , 5-HT2A receptors, (p)GSK-3β, CREB,
pCREB, BDNF

BD

↓IL-1β, IL-2, IL-6, TNF-α BD

↓Kainate neurotoxicity Epilepsy

↓Apoptosis Epilepsy

↓iNOS and eNOS expression Epilepsy

↓Endothelial NO generations Epilepsy

↓TNF-α, IL-10 MS

↑GPx, SOD, TAC MS

↓MDA MS

↓LPO damage PD

↓α-synuclein accumulation PD

↓TNFα and proinflammatory cytokines Stroke

↓Stress oxidative Stroke

↑, Increasing.
↓, Decreasing.

individual complexes in the mitochondria in a structure, where
CoQ is an important component (Sharaf, 2017). The CoQH2/CoQ
ratio as a sensor for the mitochondria metabolic status modulates
electron flow direction in the mitochondrial respiration as well
as the generation of mitochondrial complexes/super-complexes
(Guaras et al., 2016). CoQH2/CoQ ratio plays a key role in using
the alternative oxidase (AOX) to accept electrons from CoQ and
cause a reduction in the CoQH2/CoQ ratio, leading to a decrease in
rearranged during transfection (RET) and ROS generation (Szibor
et al., 2020).

Mitochondria as dynamic organelles alter their shape,
size, number, and location in response to environmental
changes, in the health state. In the disease state, fission and
fusion, as mitochondrial dynamics, exhibit some alterations. In
mitochondrial fission, the mitochondria face division and two
mitochondria are fused into one for mutual advantage (Chan,
2012). The absence of fission results in mitochondrial dysfunction,
including mitochondria interconnection and elongation and
motility loss toward the cell periphery. The absence of fusion
causes mitochondrial fragmentation as well as ultrastructural
impairments and consequently, dysfunction (Srivastava, 2017).
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FIGURE 1

CoQ10 is a 1,4-benzoquinone and Q represents the quinone

chemical group. Its tail contains 10 isoprenyl chemical subunits

(image from the PubChem database).

Alterations in mitochondrial dynamics are controlled by some
proteins. Dynamin-related protein 1 (Drp1) and fission protein 1
(Fis1) are two important fission protein markers. Drp1 is the main
regulator of mitochondrial fission and Fis1 is a partner protein of
Drp1 (Losón et al., 2013).

Orally administrated water-soluble CoQ10 enhanced
bioavailability compared to lipid-soluble CoQ10 (Cui et al.,
2021). Water-soluble CoQ10 is not natural and can be prepared
artificially. The natural CoQ10 is lipid-soluble (Wear et al., 2021).
CoQ can inhibit mitochondrial fission and improve mitochondrial
dynamics by decreasing Drp1 and Fis1 proteins (Li et al., 2017).
Moreover, treatment with CoQ10 inhibits mitochondrial fission
in hydrogen peroxide-treated astrocytes of the optic nerve
head (ONH) (Noh et al., 2013). Furthermore, CoQ10 prevents
the trauma-induced phosphorylation of Drp1 and blocks the
fission-induced activity of Drp1 (Zhang et al., 2021). CoQ10
partially inhibits the astrocyte mitochondrial structure against
oxidative stress-related mitochondrial fission (Moreira et al., 2010).
Moreover, Some CYP450 isoforms, such as CYP 2D6 or 2E1, may
be involved in the development of neurodegenerative diseases. In
an in vitro model, CYP induction causes neurorepair. The toxic
effect of MPP+ on cell viability in undifferentiated neuroblastoma
SH-SY5Y cells treated with the CYP inducers, β-naphthoflavone
(βNF) and ethanol (EtOH), before and during exposure to the
parkinsonian neurotoxin, was rescued by both βNF and EtOH
treatments. Neuroprotective effect of CYP inducers was due to a
decrease in ROS production, restoration of mitochondrial fusion
kinetics, and mitochondrial membrane potential (Fernandez-
Abascal et al., 2020). Furthermore, the hydroxy analog of CoQ10
can be produced by cytochrome P450 (CYP450) of mitochondria
(Slowik, 2019).

Ultraviolet B irradiation causes the augmentation of ROS,
which is highly toxic to many types of cells and leads to lipid
peroxidation (LPO), protein oxidation, and mutagenesis (Pathak
et al., 2019). ROS-induced damage can be prevented by CoQ10
in the neuronal cells and astrocytes. Therefore, CoQ10 stabilizes
the mitochondrial membrane potential, protects the mitochondria
from oxidative damage, improves mitochondrial respiration,
inhibits the mitochondria-mediated cell death pathway, and
activates mitochondrial biogenesis (Jing et al., 2015). Furthermore,
CoQ10 by scavenging ROS protects neurons against oxidative
stress in several neurodegenerative disorders and protects ONH

structures and astrocyte components (Nakazawa et al., 2019).
Prokaryotes and eukaryotes have similar CoQ10 biosynthesis: a
long polyisoprenoid lipid tail attaches to a benzenoid precursor,
followed by modifying the benzenoid ring through successive
steps to obtain the ultimate product (Pierrel et al., 2022). In
eukaryotes and some prokaryotes, the isoprene carbon units are
obtained from the mevalonate pathway to make the CoQ side
chain (Fernández-del-Río and Clarke, 2021), or the deoxyglucose-
5-phosphate pathway in plants, prokaryotes, and some protozoa
(Wang and Hekimi, 2016). CoQ using a long polyisoprenoid
tail is anchored at the phospholipid bilayer midplane. Mutations
in several CoQ and PDSS genes are linked to primary CoQ10

deficiency, while mitochondrial DNA (mtDNA)mutations result in
secondary CoQ10 deficiency. CoQ5 and CoQ9 proteins are found
in many mitochondrial protein complexes in human 143B cells
and CoQ9 and CoQ5 knockdown inhibits CoQ10 levels (Yen et al.,
2020). There are some antibodies and mitochondrial localizations
of mature proteins for such proteins, except CoQ2 and PDSS1.
There are also some PDSS2 and CoQ3 isoforms. PDSS1, CoQ3,
and PDSS2 are involved in preserving the stability of the other
proteins (Chen et al., 2013). In the mitochondria, some protein
complexes contain CoQ3, CoQ4, CoQ6, CoQ7, or PDSS2 protein.
There are two specific PDSS2-containing protein complexes. Their
transient knockdown, except CoQ8 and CoQ6, reduced CoQ10

levels, but just CoQ7 knockdown could hamper mitochondrial
respiration and elevated ubiquinol to ubiquinone ratios and also
cause the accumulation of a putative biosynthetic intermediate
characterized by reversible redox property, like CoQ10 (Yen et al.,
2016). Also, PDSS2 suppressed the concentrations of different CoQ
proteins (not CoQ3 and CoQ8A) that can be detected in cybrids
consisting of the pathogenic mtDNA A8344G mutation or in 143B
cells treated with carbonyl cyanide p-trifluoro-methoxyphenyl
hydrazone (FCCP), which is consistent with our previous results for
CoQ5 (Yen et al., 2011, 2016). These new findingsmay shed light on
the possible centome of CoQ synthome in human cells as well as the
understanding the role of PDSS and CoQ proteins in pathological
and physiological conditions (Wang et al., 2022). The CoQ10 and
CoQ levels showed a negative correlation with malignancy degree
and a positive correlation with citrate synthase (CS) activity, while
PDSS2 levels showed a positive correlation with malignancy. Also,
lower mitochondrial DNA-encoded cytochrome c oxidase subunit
2 levels showed no association with a higher malignancy degree
and lower CoQ protein levels. Mitochondrial abnormalities are
linked to defected CoQ10 maintenance in the progression of human
astrocytoma (Yen et al., 2020). Homozygous mutations in humans
in both genes caused severe neuromuscular disease, with nephrotic
syndrome observed in PDSS2 deficiency. Presumed autoimmune
kidney disease with the missense Pdss2kd/kd genotype is possibly
because of a mitochondrial CoQ biosynthetic defect in mice (Yen
et al., 2022).

CoQ10 deficiencies are genetically and clinically
heterogeneous. The syndrome has five main clinical phenotypes:
(1) cerebellar ataxia, (2) severe infantile multisystemic disease,
(3) encephalomyopathy, (4) isolated myopathy, and (5) nephrotic
syndrome. In some cases, pathogenic mutations are observed
in genes associated with the CoQ10 biosynthesis (primary
CoQ10 deficiencies) or those not directly associated with CoQ10
biosynthesis (secondary CoQ10 deficiencies). The pathogenesis
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TABLE 2 The doses of CoQ10 and intervention duration.

References Test models Treatment arms Disease

Ishrat et al. (2006) Animal models (male Wistar
rats)

CoQ10 (10 mg/kg b.w., i.p.) for 3 weeks Alzheimer’s disease

Yang et al. (2009) Animal models (male Lewis
rats)

2% creatine+ 1% CoQ10 for 1 week Alzheimer’s disease, Parkinson’s disease
–Huntington

Komaki et al. (2019) Animal models (male Wistar
rats)

CoQ10 (50 mg/kg, i.p.) for 3 weeks Alzheimer’s disease

Forester et al. (2015) Human models (adult) CoQ10 (500 mg/day) for 2 weeks Bipolar disorder

Morris et al. (2013) Human models (adult) CoQ10 (25, 50, 100, and 150 mg/kg/day) for 3
weeks

Depression

Sanoobar et al. (2016) Human models (women and
men)

CoQ10 (500 mg/day) for 12 weeks Depression-multiple sclerosis

Erol et al. (2010) Animal models (male Wistar
rats)

CoQ10 (10 mg/kg, i.p) for 30min Ischemia/reperfusion injury

Oztay et al. (2007) Animal models (male mice) CoQ10 (1.5 mg/kg) daily for 15 days Hyperthyroidism

Guo et al. (2011) Animal models (rat) CoQ10 (25 mg/kg) for 12 weeks Vascular endothelial abnormalities

Sattarinezhad et al. (2014) Animal models (male albino
mice)

CoQ10 (50, 100, 200, and 400 mg/kg, p.o.) for 7
days

Tonic seizures

Lee D.-H. et al. (2012) Human models (adult) CoQ10 (60 and 150mg) for 12 weeks Coronary artery diseases (CAD)

Ibrahim Fouad (2020) Animal models (adult rat) CoQ10 (10 mg/kg b.w) Multiple sclerosis

Somayajulu-Nitu et al. (2009) Animal models (adult rat) CoQ10 (50 mg/kg b.w) for 7 weeks Parkinson’s disease

Muthukumaran et al. (2014) Animal models (C57BL/6
mice)

Ubisol- Q10 (50g/ml and 150 g of PTS/ml) for six
days

Parkinson’s disease

Cleren et al. (2008) Animal models (mice) CoQ10 (1,600 mg/kg) for 3 months Parkinson’s disease

Attia and Maklad (2018) Animal models (mice) CoQ10 (200 mg/kg) for 3 weeks Parkinson’s disease

Belousova et al. (2016) Animal models (rat) CoQ10 (30 mg/kg) for 60min Cerebral ischemia

Obolenskaia et al. (2020) Animal models (rat) CoQ10 (30 mg/kg) for 45min Cerebral ischemia

Nasoohi et al. (2019) Animal models (rat) CoQ10 (200 mg/kg) for 24 h Stroke

Kuo et al. (2001) Human models (adult) (adult) CoQ10 (90, 160, and 200mg) for 4 months Leber’s hereditary optic neuropathy
(LHON)

Chariot et al. (1999) Human models (men) CoQ10 (250mg) tocopherol (500mg), vitamin K3
(10mg), vitamin C (150mg), thiamine (10mg),
and riboflavin (10mg) over 1 year

LHON

Shalata et al. (2019) Human models (adult) CoQ10 (500mg twice a day) for 3 weeks Spinocerebellar ataxia autosomal
recessive 9 (SCAR9) and Autosomal
Recessive Cerebellar Ataxia 2 (ARCA2)

Weyer et al. (1997) Human models (adult) CoQ10 (30 or 90mg) for 6 months Alzheimer’s disease

Gutzmann and Hadler (1998) Human models (women and
men)

CoQ10 (90mg) for another 12 months Alzheimer’s disease

of primary CoQ10 deficiencies has been linked to respiratory
chain defects, ROS generation, and apoptosis variably (Peng
et al., 2008). Primary deficiency due to mutations in genes is
associated with CoQ10 biosynthesis. Secondary deficiency is
possibly associated with hydroxymethylglutaryl coenzyme A
(HMG-CoA) reductase inhibitors (statins), which are used to
treat hypercholesterolemia. CoQ10 dietary contributions are very
small; however, supplementation can increase plasma CoQ10
levels (Quinzii and Hirano, 2011). CoQ10 is highly safe with
limited adverse events. Several clinical trials have been done
using some CoQ10 doses. Adverse gastrointestinal effects, such

as nausea, are not due to the active ingredient because of no
reported dose-response relationship. Daily intakes of 1,200mg
do not cause adverse effects than the dose of 60mg (Potgieter
et al., 2013). According to the “observed safe level” risk assessment
method, CoQ10 is safe at up to 1,200 mg/day (Hathcock and Shao,
2006). CoQ10 plays a role in the reduced International Normalized
Ratio (INR) in patients who use warfarin (Shalansky et al., 2007).
Engelsen et al. (2003) reported alterations in prothrombin time,
and INR levels are not important in patients on stable, long-
term warfarin therapy receiving 100mg of CoQ10 for 4 weeks.
Mitochondrial cells have oxidized (ubiquinone) and reduced

Frontiers inNeuroscience 04 frontiersin.org

https://doi.org/10.3389/fnins.2023.1188839
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Bagheri et al. 10.3389/fnins.2023.1188839

(ubiquinol) species of CoQ10. Ubiquinol is an antioxidant and
is oxidized to ubiquinone in free radical reactions, limiting
LPO. The ubiquinol reverse reduction activates endogenous
regeneration systems (tocopherol and ascorbate) (Gille et al.,
2008). The ratio between oxidized and reduced CoQ10 species is
a biomarker for oxidative stress in vivo (Kalenikova et al., 2018).
The ubiquinone therapeutic effectiveness has been reported in
many diseases affecting this pathogenetic factor (Chan et al.,
2015). Ubiquinol is the reduced form of CoQ10, associated with
antioxidant function. Hence, the tissues and cells should have
molecular mechanisms to recover their active form, including
the dihydroorotate dehydrogenase action in the IMM, causing
pyrimidine biosynthesis and reducing ubiquinone through the
oxidation of dihydroorotate to rotate. In addition, the CoQ10
involvement in the flavoprotein/electron transfer of flavoprotein
to ubiquinone ratio is needed in the oxidoreductase system,
making the ubiquinol able to be recovered by involvement in
the oxidation of the fatty acids (Littarru and Tiano, 2010). The
stepwise one-electron oxidation of the two hydroxyl groups on the
benzoquinone ring leads to three redox states of CoQ: the fully
reduced ubiquinol (UQH2), the half-reduced ubisemiquinone
radical (UQH• in the protonated form), and the fully oxidized
ubiquinone (UQ) (Cedeno, 2010). Also, its tail contains ten
isoprenyl chemical subunits (Matthews et al., 1998; Geromel
et al., 2002). CoQ10 is a crucial cofactor to produce ATP in
the electron transport chain (ETC) (Manzar et al., 2020). This
coenzyme delivers electrons from complexes I and II and transfers
them to complex III (Alcázar-Fabra et al., 2016). Moreover, an
increase in the expression of mitochondrial uncoupling proteins
(UCPs) demonstrates the antioxidant role of CoQ10 (Persson
et al., 2012). CoQ10 as an important endogenous antioxidant is a
crucial component of the mitochondrial respiratory chain (MRC).
CoQ molecules are dynamically divided in a pool attached to and
engulfed by the super-complexes I + III, and another pool related
to complex II or other mitochondrial enzymes using CoQ as a
cofactor. Such a CoQ-free pool can be applied by enzymes linking
the MRC to other pathways, like the fatty acid β-oxidation and
amino acid catabolism, pyrimidine de novo biosynthesis, proline,
arginine, and glyoxylate metabolism, glycine metabolism, and
sulfide oxidation metabolism that some of them are attached to
metabolic pathways in other compartments (Pradhan et al., 2021).
The antioxidant function of CoQ10 is because of its completely
reduced ubiquinol form. Thus, a CoQ10 deficiency can cause some
diseases due to a failure in energy metabolism and compromising
cellular antioxidant capacity. Several diseases are caused by CoQ10
deficiency, such as heterogeneous MRC disorders. Defects in
cellular CoQ10 status are due to its primary or secondary deficiency
(Neergheen et al., 2019; Hargreaves, 2021).

Based on these findings, the antioxidant impact of the CoQ10
declines the function of inflammatory factors evidenced by gene
expression analysis as well as cell culture assessments (Hargreaves,
2021). The robust neuroprotective effects of the CoQ10 on
neurotoxicity have been shown in many in vitro investigations
and also animal models of neurological diseases (Spindler et al.,
2009).

Methods

Online databases, such as Scopus, Google Scholar, Web of
Science, and PubMed/MEDLINE were systematically searched
until December 2020 using keywords, such as review, neurological
disorders, and CoQ10.

E�ect of CoQ10 on AD

In 2017, an estimated 700,000 American people aged ≥ 65
years were foundwith ADwhen they died (Alzheimer’s Association,
2017). AD is also known as the prevalent type of dementia (Wang
et al., 2014). Deficits in memory and learning, defects in thinking,
and behavioral signs are the symptoms of dementia (Alzheimer’s
Association, 2013; Shekarian et al., 2020). Recently, genetic (Picone
et al., 2016a) and environmental (Chen et al., 2009; Picone et al.,
2016b) risk factors were found effective in the pathogenesis of AD.
The accumulation of Aβ senile plaques plays an important role in
AD pathogenesis (Golde et al., 2000; Kowalska, 2004). It Presenilin
1 (PS-1) mutation (L235P: proline by leucine substitution at codon
235) causes the formation of Aβ42 and Aβ40 in the brains of
transgenic mice and cultured cells (Borchelt et al., 1996; Duff et al.,
1996) and leads to AD (Schellenberg et al., 2000; Xia, 2000; Yang
et al., 2008). CoQ10 diminished plaque pathology in an amyloid
precursor protein (APP)/PS1 mouse model of AD. Therefore,
CoQ10 might be a therapeutic candidate for the treatment of AD
(Yang et al., 2010).

According to in vitro investigations, Aβ induces oxidative
stress. For instance, Aβ increases the hydrogen peroxide
(H2O2) and lipid peroxide concentrations in cultured cells,
and antioxidants, like vitamin E with a protective role in neurons
against Aβ-related cytotoxicity (Chan and Shea, 2006). Oxidative
stress can cause aging and results from the imbalance between
oxidants and antioxidants (Wang et al., 2014; Jiang et al., 2016;
Butterfield, 2018; Shekarian et al., 2020). Accordingly, oxidative
stress causes AD (Markesbery, 1997; Santos et al., 2004; Swerdlow,
2012; Bonda et al., 2014). Both mitochondrial dysfunction and
oxidative damage lead to Aβ deposition in AD (Beal, 2004).
CoQ10 is capable of scavenging free radicals (Gazdík et al., 2003;
Gvozdjáková et al., 2022). The synthesis of CoQ10 is diminished in
older people (Borek, 2004). CoQ10 inhibited apoptotic death and
damage caused by ROS (Li et al., 2014) and improved AD (Dumont
et al., 2011). Oral administration of CoQ10 (10 mg/kg b.wt., i.p. in
corn oil) in AD rats reduced thiobarbituric acid reactive substances
(TBARS) and elevated the activity of antioxidant enzymes in
the brain (Ishrat et al., 2006). Vinpocetine (VIN) and CoQ10
(200 mg/kg, suspended in saline) in combination with physical
and mental activities caused a significant attenuation in the
neurodegeneration due to AlCl3 administration by improving AD
markers in brain tissue and inflammatory and oxidant markers (Ali
et al., 2019). Treatment of hypercholesterolemia rats with Co-Q10
alone or in combination with omega-3 (1,000mg) regulated
cholinergic functioning, reduced brain inflammation and oxidative
stress, and increased the functional outcome verified through
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the histopathological evaluation of brain tissues (Ibrahim Fouad,
2020).

The synaptic mechanisms of learning and memory in
vertebrates are studied by long-term potentiation (LTP) of the
hippocampal synaptic transmission (Bliss and Collingridge, 1993).
The long-term synaptic plasticity in the hippocampus (HIP) is
suppressed by Aβ peptides (Chen et al., 2000; Asadbegi et al.,
2016; Ramezani et al., 2020a). Ubisol-Q10 in drinking water (at∼6
mg/kg/day) could decrease circulating Aβ peptide, improve long-
term memory, preserve working spatial memory, and inhibit Aβ

plaque generation in transgenic mice aged 18 months compared to
untreated transgenic mice (Muthukumaran et al., 2018). The effects
of oral administration of CoQ10 (50 mg/kg/oral gavage/daily) on
the hippocampal synaptic plasticity in animals subjected to Aβ

injection were examined by field potential recording methods and
the results showed an improvement in memory and neuroplasticity
of neurons following CoQ10 administration (Komaki et al., 2019)
(Figure 2).

The administration of CoQ10 alone or in combination with
other antioxidants improved learning and memory and prevented
oxidative stress, inflammation, and cellular death in various models
of AD and frontotemporal dementia, including aged rodents with
aluminum-induced AD, rats with forebrain lesions, rats receiving
ICV infusion of Aβ-42 or STZ, transgenic mice with different
mutations inducing AD or frontotemporal dementia, and cell
cultures using different human or rodent cells (Jiménez-Jiménez
et al., 2023). Initial short-term randomized clinical trials have
shown an improvement in several neuropsychological tests in AD
patients treated with CoQ10 in comparison with those receiving
the placebo due to the potential effectiveness of CoQ10 (Weyer
et al., 1997; Gutzmann and Hadler, 1998). A systematic review was
conducted to examine the possible therapeutic effects of CoQ10
in experimental models of AD and other dementias, as well as in
humans with AD and mild cognitive impairment. The potential
role of CoQ10 treatment in AD and improving memory in aged
rodents in experimental models deserves future studies on patients
with AD through the assessment of other causes of dementia and
mild cognitive impairment (Jiménez-Jiménez et al., 2023).

E�ect of CoQ10 on depression

Depression as a neurological disorder is caused by the lack
of serotonin (Anderson and Maes, 2014). Lower serotonin levels
can be a major outcome of tryptophan metabolism shift to
kynurenine formation (Caspi et al., 2003; Oxenkrug, 2010). The
kynurenine pathway degrades more than 95% of tryptophan (a
precursor to serotonin). In tryptophan oxidation, indoleamine 2,
3-dioxygenase 1 (IDO 1) is a rate-limiting enzyme. The tryptophan-
to-kynurenine conversion plays a role in the development of
depression (Dantzer et al., 2008). Most people experience repeated
episodes of mood disorders, psychosocial morbidity, and high use
of healthcare services, which persist into later life (Bartels et al.,
2000). Bipolar depression is the significant and least effectively
treated stage of bipolar disorder (BD). BD is an aging-associated
disease and longer periods of BD are spent depressed instead
of having manic/hypomanic and cycling/mixed symptoms (Kalin,

1996; Judd et al., 2002, 2003). In BD, the proportion of the
time spent in depressive episodes is more than the time spent
in manic episodes (Forester et al., 2015). Treatment of BD has
not been widely considered and also treating depressive symptoms
is not easily achievable in the manic stage (Konradi et al.,
2004).

Lower plasma CoQ10 concentrations in depressed patients
were compared with healthy controls (Maes et al., 2009; Lesser
et al., 2013). Treatment with CoQ10 (400 mg/d titrated up
by 400 mg/d every 2 weeks up to 1,200 mg/d) diminished
depression severity in patients with BD (Forester et al., 2012).
Also, CoQ10 is effective in the pathophysiology of many disorders
linked to depressive symptoms, like fibromyalgia (FM), major
depression, and myalgic encephalomyelitis (Forester et al., 2012;
Aboul-Fotouh, 2013). CoQ10 [25, 50, 100, and 150 mg/kg/day,
i.p dissolved in 1% dimethyl sulfoxide (DMSO)] was injected
into the HIP for 40 days, and its effect was assessed on
serotonin levels in platelets of cases with FM. The results showed
improved depressive symptoms compared to cases treated with
the placebo (Alcocer-Gómez et al., 2014). CoQ10 (50, 100,
and 200 mg/kg/day, dissolved in 1 % DMSO) received for 6
weeks exhibited significant antidepressant effects indicated by a
significant decrease in stress-induced alterations in the forced
swim test (FST) and open field test, and also a decrease in
corticosterone levels and the weight of adrenal glands (Abuelezz
et al., 2017). A high dose of CoQ10 (500 mg/day) caused an
improvement in depression in older adults with BD (Forester et al.,
2012).

Mitochondrial dysfunction, oxidative stress, and inflammation
are involved in the BD pathophysiology. Inflammatory responses,
such as elevated leucocyte and neutrophil counts and plasma
concentrations of proinflammatory cytokines and their receptors
are found in cases of severe depression. On the other hand, major
depression is linked to reduced antioxidant levels as well as induced
nitrosative and oxidative pathways (Maes et al., 2011). ROS, like
hydroxyl radical, superoxide, H2O2, and peroxynitrite, are effective
in the pathogenesis of major depression (Lucca et al., 2009a,b)
(Figure 3). It CoQ10 plays a role in depression pathophysiology
through the anti-inflammatory and neuroprotective properties
and suppresses the generation of pro-inflammatory cytokines
(Schmelzer et al., 2008; Mohamed and Said, 2021). Furthermore,
the anti-inflammatory, antioxidant, andmitochondrial modulatory
effects of CoQ10 (200 mg/d) administrated for 8 weeks are
involved in its effectiveness in the treatment of BD patients
(Mehrpooya et al., 2018). Reduced levels of CoQ10 are associated
with an elevated level of tumor necrosis factor-alpha (TNF-α)
and oxidants, such as ROS (Schmelzer et al., 2008; Leonard
and Maes, 2012). In another study, treatment with CoQ10

(500 mg/kg/day, gavage) reduced LPO and elevated GSH levels
and total antioxidant capacity (TAC) values, and SOD and
glutathione peroxidase (GPx) activities in both brain areas of mice.
The suppressed neuro-inflammatory response in the prefrontal
cortex (PFC) and HIP was observed, evidenced by reduced
NF-kB, p38, and JNK concentrations in the CoQ10 groups
(Salehpour et al., 2019). Moreover, the CoQ10 antioxidant effect
was exhibited by its capability to significantly decrease elevated
hippocampal 4-hydroxynonenal and MDA levels and increase the
decreased catalase and glutathione levels. Furthermore, CoQ10
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FIGURE 2

Oxidative stress and mitochondrial dysfunction lead to the formation of β-amyloid (Aβ) senile plaques. Deposition of Aβ increases the activity of

acetylcholinesterase (AChE). Also, oxidative stress leads to apoptosis and memory impairment by activating glial cells. The antioxidant and

anti-apoptotic e�ects of CoQ10 improve memory. AIF, apoptosis-inducing factor; AchE, acetylcholinesterase.
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FIGURE 3

The e�ects of CoQ10 on depression by inhibiting inflammation and

stress oxidative pathways.

caused a significant reduction in the levels of different pro-
inflammatory cytokines, such as interleukin-1β (IL-1β), IL-2, IL-
6, and TNF-α (Abuelezz et al., 2017). Therefore, CoQ10 due to
its anti-inflammatory and anti-oxidative effects can be used to
treat depression.

Effect of CoQ10 (100 mg/kg/day) or/and fluoxetine (10
mg/kg/day) was assessed on mRNA expression, 5-HT1A and
5-HT2A receptors, GSK-3β, phosphorylated (p)GSK-3β, CREB,
pCREB, and BDNF protein expression in rats receiving chronic
unpredictable mild stress (CUMS) for 6 weeks (Abuelezz et al.,
2018). Recently, we assessed the effects of CoQ10 (10 mg/kg,
dissolved in corn oil) on behavioral dysfunction and CoQ10

levels in the rat brain. A significant difference was found
between the depression induced by streptozotocin (STZ) and
control groups tested by the splash test and FST 24 h after STZ
treatment. In addition, according to the validated and accurate
high-performance liquid chromatography (HPLC), reduced CoQ10

levels were found in the brain of the STZ group (Andalib et al.,
2019). Supplementation with CoQ10 (500 mg/day) could improve
depression in bipolar patients (Forester et al., 2012).

The e�ects of CoQ10 on epilepsy and
seizures

Epilepsy is the commonest neurological disease worldwide,
in which spontaneous unusual electrical discharges of neurons
are observed throughout the brain (Patel, 2002). Temporal lobe

epilepsy (TLE) is the commonest form of epilepsy in adults that
is commonly linked to hippocampal sclerosis, neurodegeneration,
and hippocampal circuit reorganization (Jokeit and Schacher,
2004). An animal model of TLE was designed by unilateral
intrahippocampal kainic acid injection in rodents. It was a “post-
status” model where epilepsy can spread following the agent-
induced status epilepticus (SE) (Löscher, 2002). These models
are used to study the effects of possible antiepileptic agents
because in the time interval between the status and the first
spontaneous seizures, we can examine the effect of neuroprotective
and prophylactic agents on epilepsy (Sharma et al., 2007). Epilepsy
approximately affects 0.5–1% of the general population (Hauser
et al., 1991). Contrary to the prevalence of recent effective
antiepileptic agents in cases with epilepsy, novel antiepileptic agents
are used with stronger anticonvulsant activity (Sattarinezhad et al.,
2014). Therefore, new therapeutic strategies have been established
to prevent or even reverse the molecular and cellular mechanisms
of epileptogenesis (Löscher and Schmidt, 2006).

CoQ10 caused a reduction in the kainate-related model of
epilepsy (Yalcin et al., 2004). CoQ10 has anti-apoptotic and
antioxidant effects (Papucci et al., 2003). Moreover, CoQ10 (0.01,
0.1, and 1mM) received for 3 weeks exerted a neuroprotective effect
on the HIP against kainate neurotoxicity in vitro (Won et al., 2011;
Kumar et al., 2022), and blunts cell death and cellular apoptosis
in the hippocampal CA3 area after SE (Chuang et al., 2009).
The neuroprotective properties of CoQ10 (i.p. at 10 mg/kg/day)
dissolved in normal saline in the intrahippocampal kainate model
of TLE have not yet been identified and are under investigation
(Baluchnejadmojarad and Roghani, 2013).

Nitric oxide (NO) is a regulator of seizure activity because of its
various anticonvulsant (Starr and Starr, 1993; Theard et al., 1995;
Tsuda et al., 1997) and proconvulsant (Osonoe et al., 1994; Van
Leeuwen et al., 1995; Nidhi et al., 1999) effects depending on the
seizure type, the source of NO, and other neurotransmitter system
contentions. Treatment with CoQ10 (10 mg/kg i.p) decreased
inducible and endothelial NO generations in a rat with testicular
ischemia/reperfusion injury (Erol et al., 2010). Also, CoQ10 (1.5
mg/kg, dissolved in serum physiologic administrated daily for 15
days by gavage) showed a decreasing effect on increasing induced-
and endothelial nitric oxide synthase (iNOS and eNOS) expression
levels in the hyperthyroid heart (Oztay et al., 2007). However,
the oxidized low-density lipoprotein-associated down-regulation of
eNOS is declined by CoQ10 (Tsai et al., 2012). In addition, this
coenzyme, dissolved in corn oil, increases the aortal eNOS activity
in acrylonitrile-related vascular endothelial abnormalities in rats
(Guo et al., 2011).

In another study, CoQ10 (50mg/kg) increased the total number
of spike-wave discharges (SWDs) but did not change the mean
duration of SWDs. CoQ10 (100 and 200 mg/kg) increased both
the total number and the mean duration of SWDs abolished
by coadministration of 7-nitroimidazole (7-NI, NOS inhibitor).
Coadministration of l-arginine (l-Arg, an essential substrate for
the synthesis of NO) (500 and 1,000 mg/kg) enhanced the CoQ10
effect on the total number of SWDs but not on its mean duration.
Therefore, the effect of CoQ10 on seizure was attenuated by the
NOS inhibitor. Furthermore, based on the electrophysiological
evidence, CoQ10 administration increased the absence seizures
through the stimulation of the neuronal NOS (Gunes et al., 2019).
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Therefore, the inhibition of NOS decreased the seizure activity
of CoQ10.

In contrast, subchronic oral application of CoQ10 (100 mg/kg
or more) enhanced time latencies to the onset of myoclonic jerks
and clonic seizures induced by intraperitoneal pentylenetetrazole
(PTZ) and at the doses of 25 mg/kg or more augmented the
seizure threshold provoked by intravenous injection of PTZ.
Subchronic doses of CoQ10 (50 mg/kg or more) reduced the
tonic seizures induced by PTZ or electroshock. This antiseizure
effect of subchronic CoQ10 was attenuated by the NOS inhibitor
(Sattarinezhad et al., 2014). Therefore, the interaction between
NO and subchronic CoQ10 in antiseizure activity is possibly
accomplished by the induction of NOS.

The e�ects of CoQ10 on MS

Basically, non-inflammatory mechanisms, such as
mitochondrial dysfunction cause MS (Kalman et al., 2007).
Free radicals play a role in MS pathogenesis and enhance
the transendothelial migration of leukocytes resulting in
oligodendrocyte injury and axonal degeneration (Van Horssen
et al., 2011). Macrophages produce free radicals, including NO,
ROS, reactive nitrogen species, microglia, and astrocytes, which
all damage the neurons, axons, myelin, and oligodendrocyte (Lee
et al., 2012b) (Figure 4).

Also, inflammation, multifocal demyelination, loss of
oligodendrocytes, breakdown of the blood-brain barrier (BBB),
neural and axonal injury, and oxidative stress are the causes
of MS (Van der Walt et al., 2010; Riccio, 2011). Inflammatory
markers, ROS, and matrix metalloproteinases (MMPs), as the
factors to enhance BBB permeability, can be released by the
infiltrated activated leukocytes in MS cases (Larochelle et al.,
2011). Pro-inflammatory factors, like TNF-α, IL-1, IL-6, and
interferon (IFN)-γ, increase the cerebrospinal fluid, serum, and
brain lesions in MS cases. They have relatively low concentrations
of transforming growth factor-β and IL-4 (Miller et al., 1998;
Spooren et al., 2011).

Relapsing-remitting MS (RRMS), progressive-relapsing MS,
primary progressive MS, and secondary progressive MS are
different MS types (Adamczyk-Sowa et al., 2012). RRMS is linked
to immune-mediated reactions, like white matter inflammation,
microglial activation, and cell infiltration in the CNS (Van Horssen
et al., 2011; da Silva Fernandes et al., 2012). T cells of the T-helper
type 1 (Th1) macrophages play a role in the immunopathogenesis
of the CD4+ demyelination, whereas remission of the disease is
induced by T cells of the Th2 and Th3 phenotypes (Miller et al.,
1998). The immune system plays a role in the development of
depression associated with MS.

Pro-inflammatory cytokines, like TNF-α, induce weight loss,
anorexia, anxiety, locomotor retardation, and reduced social
exploration (Kidd, 2003). CoQ10 supplementation (60–150 mg/d)
reduced inflammatory cytokines in the serum of human models
(Lee et al., 2012a). Schmelzer et al. (2009) reported that the
lipopolysaccharide (LPS)-related pro-inflammatory markers and
chemokines decreased following preincubation of human THP-
1 cells using ubiquinol-10 (QH2). Fouad and Jresat prepared

CoQ10 (i.p. injections, 10 mg/kg) supplementation in a 1%
aqueous solution of Tween 80. This antioxidant could reduce
NF-κB and iNOS expression levels in the rats’ livers (Fouad
and Jresat, 2012). Treatment with CoQ10 (150 mg/kg/day) via
gavage once a day for 12 weeks, could alleviate stress oxidative
status caused by Cuprizone (CPZ) and significantly inhibit
inflammatory biomarkers. CoQ10 enhances remyelination in the
CPZ model (Khalilian et al., 2021). CoQ10 treatment (500
mg/day) improved depression and fatigue inMS patients (Sanoobar
et al., 2016). Clinical symptoms in animals with experimental
autoimmune encephalomyelitis (EAE) were markedly reduced (P
< 0.05) by CoQ10 compared to controls. Also, the TNF-α level
showed a significant decrease following CoQ10 administration (10
mg/kg/three weeks) vs. IL-10. The TH1/TH2 ratio in CoQ10-
treated animals showed a significant decrease than in non-treated
animals (P < 0.01) (Soleimani et al., 2014). In a randomized,
double-blinded, placebo-controlled trial, patients treated with
CoQ10 showed a significant elevation in SOD activity (p = 0.013)
and a reduction in MDA concentrations (P = 0.003) than controls.
Although CoQ10 supplementation significantly affected plasma
TAC values (p = 0.010), no significant difference was found
between both groups. CoQ10 supplementation had no effect on
GPx activity (Sanoobar et al., 2013).

The e�ects of CoQ10 on PD

PD is caused by the degradation of dopamine (DA) neurons
in the SNpc. Over 95% of PD patients are sporadic and PD
is developed in cases older than 60 years (Steece-Collier et al.,
2002; Corti et al., 2005). The symptoms of this disorder include
resting tremors, postural instability, rigidity, and bradykinesia
(Colnat-Coulbois et al., 2005). Although the causes of sporadic
have not yet been discovered, different environmental risk factors,
like neurotoxins can be involved (Di Monte, 2003). PD-like
symptoms in experimental animals are induced by environmental
toxins, including paraquat (N, N

′
-dimethyl-4,4

′
-bipyridinium

dichloride), rotenone, and maneb (Betarbet et al., 2002). Such
neurotoxins inhibit complex I in the mitochondrial ETC. In normal
circumstances, DA neurons also face a high level of oxidative stress
because of ROS generation during DA metabolism (Dexter et al.,
1994).

ATP depletion and oxidative stress production cause
neuronal death. Oxidative stress, activation of the microglia,
neuroinflammation, mitochondrial damage, protein aggregation
due to defective clearance, and autophagic stress are the major
events in the pathophysiology of PD (Kones, 2010). The disparity
in mitochondrial dynamics causes augmentation of neuronal
loss observed in PD patients (Srivastava, 2017). One of the main
non-motor symptoms of the disease is PD with mild cognitive
impairment (PDMCI). The early identification of PDMCI and
treatment of this disease are of critical importance to improve the
quality of life and prognosis in PD patients (Kwon et al., 2022).

The levodopa-3,4-dihydroxyphenylalanine (L-DOPA)
administration is the initial treatment for PD (Nutt, 1990).
Diminution of movement owing to delayed movement initiation
(akinesia) is an important reason for disability in PD (Lundblad
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FIGURE 4

Inflammation, neuronal demyelination, mitochondrial dysfunction, destruction of axons and oligodendrocytes, and oxidative stress are the main

pathological causes of multiple sclerosis (MS). CoQ10 improves the disease by reducing the activity of microglia and macrophages and the

production of reactive oxygen species (ROS).

et al., 2002). L-DOPA pharmacotherapy can alleviate such
symptoms. Moreover, prolonged treatments in the majority of
patients lead to drug-induced abnormal involuntary movements
(dyskinesia) (Cenci, 2007).

Currently, PD cannot be cured; however, neuroprotectants
reduce the rate of neurodegeneration and improve the quality of life
(Koller and Cersosimo, 2004). CoQ10 has shown neuroprotective
activity in some neurodegenerative diseases, like PD (Mancuso
et al., 2010; Wear et al., 2021). Screening for oxidative stress
markers in patients with neurodegenerative disease, such as
PD showed lower CoQ10 concentrations and higher lipoprotein
oxidation levels in the cerebrospinal fluid, plasma, and brain
cortex than in non-affected cases. Affected patients showed an
increase in the levels of mitochondrial oxidative stress due to
low CoQ10 levels because CoQ10 administration could improve
the clinical symptoms of some patients (Jing et al., 2015). Thus,
antioxidants, like CoQ10 and vitamin E, are used in both preclinical
investigations and clinical trials using animal models (Shults et al.,
2002; Beal, 2003; Mcdonald et al., 2005; Cleren et al., 2008; Kadian
et al., 2022). In a model of PQ-related neurodegeneration in male
Long-Evans rats, the water-soluble CoQ10 [WS-CoQ10; 50mg in
PBS (phosphate-buffered saline)] in drinking water was used to
counteract the toxic effect of PQ. PQ induction resulted in oxidative
stress and the lack of DA neurons in SNpc, which can affect the
motor skill of the animals during the rotarod test. Such PD-like
behavioral symptoms showed an improvement in rats treated with

WS-CoQ10 added to the drinking water (Somayajulu-Nitu et al.,
2009). WS-CoQ10 is not natural but can be artificially prepared.
The natural CoQ10 is lipid-soluble (Parmar et al., 2015).

In another study, the neuroprotective effect of Ubisol Q10
(including 50 g/ml of CoQ10 and 150 g of PTS/ml) was
assessed in the DJ-1/1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP) model of PD through histochemical and behavioral
approaches. Application of Ubisol-Q10 could remarkably offset
the neurotoxicity and ameliorate motor impairment by MPTP
(Muthukumaran et al., 2014). The combination of creatine and
CoQ10 treated theMPTP-associated PDmodel in mice, suppressed
the loss of neurons containing tyrosine hydroxylase in the SNpc,
and also significantly decreased LPO damage and α-synuclein
accumulation in the neurons of this area but did not improve
the loss of the dopaminergic neurons (Yang et al., 2009). CoQ10
(200 mg/kg/day) provided through the addition of peanut oil
(glycerol could not be well-tolerated by mice during preliminary
assessments) showed more effectiveness in a mouse model of
PD caused by MPTP compared to oxidized CoQ10 at a similar
dose. Accordingly, the elevated plasma level of CoQ10 following
ingestion of the reduced form can be absorbed more effectively
(Cleren et al., 2008) in comparison to the oxidized form. Treatment
with CoQ10 (200mg) for 26 weeks showed a considerable
improvement in oligoasthenoteratozoospermia outcomes, which
was associated with mitochondrial dysfunction in male subjects
(Safarinejad et al., 2012) (Figure 5). In a clinical study, patients
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FIGURE 5

CoQ10 has a neuroprotective e�ect against Parkinson’s disease by inhibiting inflammation, oxidative stress, activation of microglia, protein

accumulation, and mitochondrial damage.

with PD consumed CoQ10 at three doses of 300, 600, and 1,200
mg/d for 60 days. The results showed that the first two doses
were ineffective and the dose of 1,200 mg/d had healing effects
(Shults et al., 2002). Furthermore, in a double-blind study, about
609 patients used CoQ10 at 400mg daily for 6 months. CoQ10
had few toxic effects on HD, but its long-term treatment and
high dose did not reduce the symptoms of the disease (McGarry
et al., 2017). To gain neuroprotection, the prophylactic treatment
was designed using CoQ10 (200 mg/kg (intraperitoneal) dissolved
in saline) two times a week for three consecutive weeks and
30min prior to paraquat (PQ) exposure. Furthermore, therapeutic
interventions using CoQ10 in mice subjected to PQ (24 h following
exposure), two times per week through 3 weeks, halted behavioral
deterioration and ongoing neurodegeneration. The outcomes of
the sustained treatment with CoQ10 for 3 weeks were compared
to L-DOPA as the standard drug of choice. CoQ10 caused a
notable improvement in most of the behavioral tests and reduced
protein carbonyl content in the brain, principally when it was
started before rather than after PQ induction of PD. In addition,
water-soluble CoQ10 restored mitochondrial morphology and
decreased fragmentation and consequently, mitochondrial fusion
and improved mitochondrial dynamics, confirming the protective
effect of CoQ10 against rotenone (PD-mimicking toxin) toxicity.
Modulation of the fission/fusion index is therapeutically useful for
the treatment of PD. Thus, water-soluble CoQ10 can be used to
treat PD and is effective in other diseases due to mitochondrial
dysfunction (Li et al., 2017). Therefore, CoQ10, which defends

against mitochondrial damage, makes the progression of PD slow,
mostly when started as prophylactic treatment (Attia and Maklad,
2018).

Intrastriatal delivery of CoQ10 at a mean rate of 1.8 and 2.6 µg
daily, particularly in combination with implantable devices for deep
brain stimulation or convection-enhanced delivery, can be effective
to prevent neurodegeneration in PD (Park et al., 2020). Dietary
CoQ10 supplementation (at 60 and 120 mg/kg of feed; i.p. along
with oral saline) showed significant effectiveness in chlorpromazine
-induced Parkinsonism-like alterations in mice (Onaolapo et al.,
2021). A systematic review study showed decreased CoQ10 levels
in the cerebellar cortex, platelets, and lymphocytes, increased total
and oxidized CoQ10 levels in the cerebrospinal fluid, and a non-
significant trend toward decreased serum/plasma CoQ10 levels in
PD patients. Patients with multiple system atrophy (MSA) showed
decreased CoQ10 levels in the cerebellar cortex, serum/plasma,
cerebrospinal fluid, and skin fibroblasts. Patients with Lewy body
dementia (LBD) showed decreased cerebellar cortex CoQ10 and
those with progressive supranuclear palsy (PSP) had decreased
CoQ10 levels in the cerebrospinal fluid (Jiménez-Jiménez et al.,
2022).

Neurodegenerative disorders, including PD (Shults et al.,
2002), amyotrophic lateral sclerosis (Ferrante et al., 2005),
and HD can be treated with CoQ10 (Flint Beal and Shults,
2003). According to Yang et al. (2009), coadministration of 1%
CoQ10 and the control diet, including Purina rodent chow
and creatine, reduced MDA concentration (an indicator of
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LPO and oxidative damage) in substantia nigra pars compacta
(SNpc) and showed a therapeutic effect on HD and PD
(Prajapati et al., 2017).

The e�ects of CoQ10 on stroke

Stroke is the third leading cause of mortality after heart
disease and cancer. Three-quarters of stroke patients report an
ischemic stroke, which can be due to blood vessel obstruction
caused by a clot. Considerable advances have been made in
neuropharmacology, but the only clinically effective treatments
are acetylsalicylic acid and tissue plasminogen activator (Longa
et al., 1989). Nonetheless, stroke-related mortality and morbidity
rates are still high, and there is a need for the development of
new treatments. Inflammation, excitotoxicity, oxidative stress, and
apoptosis necrosis, are the main factors associated with lesion
progression after ischemia (Ord et al., 2013). The efficacy of
recanalization 3 h after limiting the onset of stroke symptoms has
been approved in many patients.

Oxidative stress is the pathological mechanism of
cerebral ischemia (Rodrigo et al., 2013) (Figure 6). In the
ischemic/reperfusion injury, excessive reactive oxygen formation
is unique. Inhibition of antioxidants damages the structure and
function of cells (Simani et al., 2018). Therefore, nerve cells should
be protected against oxidative stress (Flint Beal and Shults, 2003;
McCarthy et al., 2004). MDA is the latest product of LPO that
is increased in ischemic stroke patients depending on the infarct
size, the stroke severity, and the patient’s outcome (Allen and
Bayraktutan, 2009). Therefore, elevated concentrations of MDA
in ischemic stroke patients have been reported in many studies
(Simani et al., 2018). The decreased superoxide dismutase (SOD)
activity in acute ischemic stroke has been observed in previous
studies (Cherubini et al., 2000; Demirkaya et al., 2001; Milanlioglu
et al., 2016). This antioxidant enzyme, SOD, can reduce ROS levels
(Gupta et al., 2009). CoQ10 scavenges superoxide radicals for the
production of oxygen and H2O2 (Lee et al., 2012a).

Different cerebral ischemia models have shown promising
therapeutic effectiveness for the constant administration of CoQ10
(Obolenskaia et al., 2020). However, the treatment of such urgent
conditions, such as ischemic stroke should be performed with
drugs through intravenous injections. The neuroprotective effect
of the solubilized CoQ10 (30 mg/kg) dissolved in saline and
injected intravenously into animals with cerebral ischemia has been
assessed in several studies (Belousova et al., 2016; Obolenskaia
et al., 2020). The expression of genes associated with metabolism
and intracellular signaling, embryogenesis, cell differentiation, and
production of cholesterol and proinflammatory factors, including
TNFα is affected by CoQ10 (Groneberg et al., 2005; Schmelzer
et al., 2008). UbiA prenyltransferase domain-containing protein 1
(UbiAd1) is involved in CoQ10 generation and can catalyze the
conversion of vitamin K1 into vitamin K2 (Mugoni et al., 2013;
Povarova et al., 2018). Recently, the neuroprotective impact of
vitamin K2 (menaquinone isoform) has been considered (Shearer
and Newman, 2014).

Some treatments, including statin use, have been suggested
for transient ischemic attack (TIA) (Gargano et al., 2011; Kernan

FIGURE 6

The neuroprotective e�ects of CoQ10 on ischemic stroke.

et al., 2014). Several experimental (García-Bonilla et al., 2012) and
clinical (Ní Chróinín et al., 2013) examinations have supported
the effectiveness of statins in the secondary prevention of stroke
outbreaks (Nasoohi et al., 2019). In other studies, the levels of
blood CoQ10 in patients were reduced after the administration of
atorvastatin (Rundek et al., 2004; Mabuchi et al., 2007), whereas
CoQ10 levels showed no reduction in tissues (Rundek et al.,
2004). However, CoQ10 in the blood may disturb BBB following
an ischemic insult. Atorvastatin exerts its degenerative effects
through a decrease in CoQ10 and these effects are associated
with the antioxidant-oxidant defensemechanism. Furthermore, co-
administration of CoQ10 (200 mg/kg/day; PO/30 days dissolved
in almond oil) and atorvastatin could improve stroke outcomes
(Nasoohi et al., 2019). In an interventional study, serum CoQ10
levels significantly increased in the supplement-treated acute
ischemic stroke (AIS) patients compared to the placebo group.
Moreover, CoQ10 (300 mg/day) supplementation significantly
improved Mini-Mental State Examination (MMSE) and National
Institute of Health Stroke Scale (NIHSS) scores. Nonetheless, no
significant difference was found in the Modified Ranking Scale
score and MDA, SOD, and glial fibrillary acidic protein (GFAP)
levels between the two groups (Ramezani et al., 2020b).

The e�ects of CoQ10 on LHON and SCAR9

LHON is an acute/subacute painless loss of central vision
(Nikoskelainen, 1984; Novotny et al., 1986; Riordan-Eva et al.,
1995). Molecular analysis has shown that primary mutations for
this disease are point mutations in mitochondrial DNA (mtDNA)
at positions 3,460, 11,778, and 14,484 (Wallace et al., 1988; Harding
et al., 1995; Puomila et al., 2007). LHON can be associated
with movement disorders, spastic paraparesis, cardiac arrhythmia,

Frontiers inNeuroscience 12 frontiersin.org

https://doi.org/10.3389/fnins.2023.1188839
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Bagheri et al. 10.3389/fnins.2023.1188839

FIGURE 7

The PRISMA flow diagram of the screening and selection of the study.

peripheral neuropathy, and skeletal abnormalities (Shoffner et al.,
1995). Progressive visual loss with permanent centrocecal scotoma
has been reported in most affected patients (Lessell et al., 1983;
Stone et al., 1992; Tanaka et al., 1998). Some patients have
symptoms, including ataxia, tremor, posterior column dysfunction,
corticospinal tract dysfunction, dystonia, and extrapyramidal
rigidity. LHON is associated with numerous neurologic disorders
(Chariot et al., 1999).

CoQ10 is effective in the treatment of patients with
mitochondrial diseases, such as chronic progressive external
ophthalmoplegia (CPEO), Kearns-Sayre syndrome (KSS),
and other mitochondrial encephalomyopathies (Ogasahara
et al., 1986; Zierz et al., 1989; Chen et al., 1997; Sobreira
et al., 1997). In a study, patients received CoQ10 orally
for 4 months, and its dose increased from 90 and 160 to
200 mg/day. CoQ10 caused a rapid improvement in visual
acuity in these patients (Kuo et al., 2001). In another study,
treatment was initiated with 250mg CoQ10 per day and
multiple vitamins, including tocopherol (500mg), vitamin C
(150mg), vitamin K3 (10mg), thiamine (10mg), and riboflavin
(10mg). Gradual improvement in movement disorders occurred
within a year. The lactate/pyruvate ratio was normalized at
nine, and there were no changes in visual function. Moreover,
lesions of the subthalamic nuclei almost entirely disappeared
(Chariot et al., 1999).

ARCA2 and SCAR9 is a kind of hereditary CoQ deficiency.
This rare ataxia is due to mutations in the aarF-domain-containing
kinase 3 (ADCK3) gene as an ortholog of yeast coq8 (Lagier-
Tourenne et al., 2008; Mollet et al., 2008). ARCA2 is known for
slow progressive gait impairment, exercise intolerance, cerebellar
atrophy, epilepsy, and intellectual disability (Mignot et al., 2013).
The deficiency of CoQ10 causes MRC disorder (Hargreaves, 2021).
A decrease in CoQ10 concentrations in tissues or cultured cells
due to biallelic mutations in each of COQ2, COQ4, COQ6, COQ7,
COQ8A, COQ8B, COQ9, PDSS1, and PDSS2 genes (COQ genes)
involved in the CoQ10 biosynthesis can be observed in this kind
of ataxia (Emmanuele et al., 2012; Laredj et al., 2014; Quinzii
et al., 2014). Patients with ADCK3 mutations experience a marked
improvement following 3 weeks of oral supplementation with
CoQ10 (500mg two times a day) (Shalata et al., 2019).

Controversial e�ects of CoQ10 on
diseases

The purpose of this article was to review the studies using
experimental and clinical treatments (Figure 7). Experimental
treatments have often been studied in animal models with
remarkable results. In addition, clinical studies using a specific
dose and duration of treatment have been effective. However,
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CoQ10 has no effect on some of the symptoms of the disease.
The antidepressant effect of this neuroprotective agent has not
yet been studied in patients with MS (Sanoobar et al., 2016).
Also, in an animal study, contrary to the antioxidant effects
of CoQ10, it led to an increase in the aortal eNOS activity in
vascular endothelial abnormalities caused by acrylonitrile in rats
(Guo et al., 2011). The neuroprotective properties of CoQ10 in
the intrahippocampal kainate model of TLE have not yet been
identified and more research is needed (Baluchnejadmojarad and
Roghani, 2013). In a clinical study, patients with PD were treated
with CoQ10 at three doses of 300, 600, and 1,200 mg/d, and only
the dose of 1,200 showed a healing effect (Shults et al., 2002). In
addition, long-term, high-dose CoQ10 therapy did improve the
symptoms of HD (McGarry et al., 2017). In an intervention study
on AIS patients, there were no statistically significant differences
in the Modified Ranking Scale score, and MDA, SOD, and GFAP
levels between the two placebo and supplement-treated groups
(Ramezani et al., 2020b). A recent study on patients with LHON
showed no changes in visual function after the administration of
CoQ10 (250mg) and other vitamins in the bilateral pallor of the
optic disks (Chariot et al., 1999). According to the mentioned
studies and their results, more relevant studies are needed in
the future.

Conclusions

CoQ10 as an antioxidant and neuroprotective agent can
play a role in the treatment of neurological disorders. Although
neurological diseases cannot be treated effectively, CoQ10
deficiency is involved in the pathogenesis of epilepsy, stroke, MS,
depression, PD, AD, LHON, ARCA2, and SCAR9. More clinical

and experimental studies are needed using electrophysiological and
behavioral evaluation, genetic targeting, and molecular imaging.
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Glossary

AD, Alzheimer’s Diseases; ARCA2, Autosomal Recessive
Cerebellar Ataxia 2; ATP, Adenosine triphosphate; Aβ, β-amyloid;
AChE, Acetylcholinesterase; ADCK3, AarF-domain-containing
kinase 3; BD, Bipolar disorder; BBB, Blood-brain barrie; βNF,
β-naphthoflavone; CYP, Cytochrome P450; CoQ10, Coenzyme
Q10; CPEO, Ophthalmoplegia; CUMS, Chronic unpredictable
mid stress; CPZ, Cuprizone; DA, Dopamine; DMSO, Dimethyl
sulfoxide; Drp1, Dynamin-related protein 1; ETC, Electron
transport chain; EtOH, Ethanol; EAE, Experimental autoimmune
encephalomyelitis; eNOS, Endothelial nitric oxide synthase;
FCCP, Carbonyl cyanide p-trifluoro-methoxyphenyl; Fis1, Fission
protein 1; FM, Fibromyalgia; FST, Forced swim test; GFAP,
Glial fibrillary acidic protein; GPx, Glutathione peroxidase;
H2O2, Hydrogen peroxide; HD, Huntington disease; HIP,
Hippocampus; HMG-CoA, Hydroxymethylglutaryl coenzyme
A; HPLC, high-performance liquid chromatography; IDO-1,
Indoleamine 2, 3-dioxygenase 1; IL-1β, Interleukin-1β; (IFN)-
γ, Interferon; IMM, Inner mitochondrial membrane; iNOS,
Induced nitric oxide synthase; ICV, Intracerebroventricular;
KSS, Kearns-Sayre syndrome; LHON, Leber’s hereditary
optic neuropathy; LPO, Lipid peroxidation; LTP, Long-term

potentiation; LPS, Lipopolysaccharide; L-DOPA, Levodopa-
3,4-dihydroxyphenylalanine; LBD, Lewy body dementia; MDA,
Malondialdehyde; MMPs, Matrix metalloproteinases; MPTP,
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; MSA, Multiple
system atrophy; MRC, Mitochondrial respiratory chain; MtDNA,
Mitochondrial DNA; MS, Multiple sclerosis; NO, Nitric oxide;
ONH, Optic nerve head; PD, Parkinson’s Diseases; PSP, Progressive
supranuclear palsy; PS-1, Presenilin 1; PTZ, Pentylenetetrazole;
PDMCI, PD mild cognitive impairment; PQ, Paraquat; PH&M,
Physical and mental activities (PH&M); PFC, Prefrontal cortex;
QH2, Ubiquinol-10; ROS, Reactive oxygen species; RET,
Rearranged during transfection; RRMS, Relapsing-remitting
MS; SCAR9, Spinocerebellar ataxia autosomal recessive 9; SE,
Status epilepticus; SNpc, Substantia nigra pars compacta; SOD,
Superoxide dismutase; STZ, Streptozotocin; SWDs, Spike-wave
discharges; TBARS, Thiobarbituric acid reactive substances;
TNF-α, Tumor necrosis factor-alpha; TLE, Temporal lobe epilepsy;
Th1, T-helper type 1; TIA, Transient ischemic attack; TAC,
Total antioxidant capacity; UCPs, Uncoupling proteins; UQ,
Oxidized ubiquinone; UbiAd1, UbiA prenyltransferase domain-
containing protein 1; UQH2, Reduced ubiquinol; VIN, Vinpocetin;
WS-CoQ10, Water-Soluble CoQ10; l-Arg, l-arginine; 7-NI, 7-
nitroimidazole.
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