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Introduction: Emotion plays a vital role in understanding activities and

associations. Due to being non-invasive, many experts have employed EEG signals

as a reliable technique for emotion recognition. Identifying emotions from multi-

channel EEG signals is evolving into a crucial task for diagnosing emotional

disorders in neuroscience. One challenge with automated emotion recognition in

EEG signals is to extract and select the discriminating features to classify di�erent

emotions accurately.

Methods: In this study, we proposed a novel Transformer model for identifying

emotions from multi-channel EEG signals. Note that we directly fed the raw EEG

signal into the proposed Transformer, which aims at eliminating the issues caused

by the local receptive fields in the convolutional neural networks. The presented

deep learning model consists of two separate channels to address the spatial and

temporal information in the EEG signals, respectively.

Results: In the experiments, we first collected the EEG recordings from 20

subjects during listening to music. Experimental results of the proposed approach

for binary emotion classification (positive and negative) and ternary emotion

classification (positive, negative, and neutral) indicated the accuracy of 97.3

and 97.1%, respectively. We conducted comparison experiments on the same

dataset using the proposed method and state-of-the-art techniques. Moreover,

we achieved a promising outcome in comparison with these approaches.

Discussion: Due to the performance of the proposed approach, it can be a

potentially valuable instrument for human-computer interface system.

KEYWORDS

human computer interface, emotion classification, deep learning,

electroencephalographic, machine learning

1. Introduction

Emotion plays an essential role in the enjoyment of music, which consists of a

large variety of affective states consistently reported by people while listening to music

(Vuilleumier and Trost, 2015). Music is one of the crucial ways to express emotions.

Different music can evoke various emotional responses from listeners. Listening to music

is also an easy and effective way to change moods or reduce stress (Cui et al., 2022). In

recent decades, music emotion recognition has become one hotspot in neuroscience. Plenty

of music emotion recognition applications have achieved promising outcomes in different

areas, including automatedmusic composition, psychotherapy, and dancing generation with

music (Eerola and Vuoskoski, 2012; Cui et al., 2022).
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Electroencephalography (EEG) has received considerable

attention in emotion state identification due to its simplicity,

inexpensiveness, and portability (Alarcao and Fonseca, 2017).

Specifically, EEG has been extensively employed in evaluating the

impact of music on human brain activity, e.g., human emotion (Lin

et al., 2006). For instance, Sammler et al. (2007) explored whether

the valence of emotions would affect EEG power spectra and heart

rate differently. The experiments collected pleasant and unpleasant

emotions induced by a consonant and dissonant music using EEG

signals. This study showed that pleasant music is significantly

related to increased EEG theta power, while unpleasant music could

significantly decrease heart rate. In the work of Balasubramanian

et al. (2018), the authors analyzed the emotional responses of

human beings to music in EEG. Ten healthy subjects (average

age is 20) participated in this study. The self-assessment manikin

(SAM) test assessed the subjects’ perceived emotions when listening

to music. The outcome from their experiments demonstrated an

increase in the theta band of the frontal midline for liked music,

and an increase in the beta band was found for disliked music.

The publicly available dataset DEAP was presented in the work

of Koelstra et al. (2011) for analyzing the human affective states.

EEG and other physiological signals from 32 participants were

recorded as each watched 40 1-min excerpts of music videos.

Moreover, the participants must rate the videos regarding arousal,

valence, like/dislike, dominance, and familiarity. In addition, Ozel

et al. (2019) presented an approach for emotion recognition

using time-frequency analysis of multivariate synchrosqueezing

transform in multi-channel EEG signals. The evaluation of this

study employed the DEAP, and a total of eight emotional states

were considered by combining arousal, valence, and dominance.

Lin et al. (2010) leveraged machine learning-based methods to

classify EEG dynamics based on self-assessed emotional states when

subjects listen to music. A framework was presented to optimize

emotion recognition in EEG signals by extracting emotion-specific

features from EEG recordings and enhancing the effectiveness

of the classifiers. Zheng et al. (2017) aimed to identify EEG

stability in the process of emotion recognition by comparing the

performance of various feature extraction, feature selection, feature

smoothing, and classification methods on the DEAP dataset and

the SEED (Zheng and Lu, 2015) dataset. Generally, a regularized

robust learning algorithm with differential entropy features yields

the optimal outcome on the DEAP and SEED datasets. Using

both a private dataset and the public dataset DEAP, Thammasan

et al. (2017) investigated the influence of familiarity on brain

activity in EEG signals. In the experiments, the subjects were

asked to determine an equal number of familiar and unfamiliar

songs; the datasets’ outcomes both demonstrated the significance

of self-emotion assessment according to the assumption that the

emotional state is subjective when listening to music. Hou and

Chen (2019) conducted experiments to extract the optimal EEG

features induced by music evoking various emotions, including

calm, joy, sadness, and anger. The 27-dimensional features were

generated from EEG signals during the feature extraction process.

Abbreviations: EEG, electroencephalographic; CNN, convolutional neural

network; GPU, graphical processing unit; TP, true positive; FN, false negative;

TN, true negative; FP, false positive.

A feature selection method was exploited to identify the features

significantly related to the emotions evoked by music. Since

music emotion recognition has attracted widespread attention

with the enhancement of deep learning-based artificial intelligence

applications, Han et al. (2022) surveyedmusic emotion recognition.

The evaluation metrics, emotion recognition algorithms, datasets,

and features involved were provided in detail. Recently, there have

been numerous applications of deep learning methods in music

classification and recognition (McIntosh, 2021; Eskine, 2022; Nag

et al., 2022; Daly, 2023).

Several limitations still need to be resolved in the current

automatic music emotion classification algorithms in EEG signals.

On the one hand, for the machine learning-based methods, a

set of optimal features is required to be extracted and selected

from the EEG recordings. On the other hand, deep learning-based

approaches, especially convolutional neural networks (CNNs),

are prone to a need for global associations between long-range

sampling signals due to the local receptive field issue of CNN-

based models. Bearing the analysis mentioned above in mind,

we proposed a spatial-temporal transformer-based pipeline for

music emotion identification. The presented approach extracts the

spatial features from EEG signals from different subjects listening

to the same music. The temporal features are extracted from

EEG signals from the same subject listening to the same type of

music. Experimental results demonstrate that the performance of

the proposed approach outperforms the state-of-the-art techniques

in binary and ternary music emotion classification. The proposed

approach could be a valuable instrument for various applications

built upon music emotion recognition.

The remaining of this following content is organized as follows:

First, the data samples used in this study and the details of the

proposed transformer model are described in Section 2; Section

3 gives the experimental results of the proposed approach on the

collected EEG recordings and the comparison between the state-of-

the-art techniques and our proposed method; the discussion of the

experimental results and the proposed method are given in Section

4; Finally, the conclusion of this study is given in Section 5.

2. Materials and methods

In this section, the process of collecting the EEG recordings

used in this study is introduced first. Then, the content of the

proposed deep learning model is given in detail.

2.1. Dataset

A dataset was established by capturing three types of emotions,

including positive, negative, and neural, from the EEG recordings.

The entire workflow is illustrated in Figure 1.

Before the EEG collection process, the following preparations

were performed:

• Ensure that the participants participated in this experiment on

an entirely voluntary basis;
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FIGURE 1

The workflow of the music emotion EEG signals collection.

• Participants must read the experimental precautions and

execution process, including the errors that could be caused

by physical shaking and emotional tension;

• Participants need to fill in the personal information form and

check whether the electrode is in good contact and whether

the electrode cap is placed correctly;

• The participants put on the electrode cap, adjusted the best

physical and psychological state, and pressed the button to

start the test when ready.

During the EEG collection process, 32 participants (16 females

and 16 males) aged 18–31 (mean age is 24.7) were enrolled, all

working or studying at the sameUniversity. These 32 subjects are in

good physical andmental condition, withoutmental illness or brain

damage. In addition, two specialists (two females) at the elicitation

of emotion majoring in psychology contributed to determine the

adopted music clips.

During the data collection process, each subject needs to listen

to 12 pieces of music excerpts (four pieces of positive music

excerpts, four pieces of negative music excerpts, and four pieces of

neutral music excerpts, as shown in Table 1), which are different

kinds of music clips with a uniform duration of 1 min. To note

that the sequence of playing the music clips is randomized for

the participants to neutralize the retention effect of the emotion

evoked by the previous music clip on the next one. The EEG

acquisition equipment used is the Biosemi ActiveTwo system,

with 32 EEG signal channels, using 512 Hz sampling, 128 Hz

complex sampling (pre-processing), and using the 10-20 system

EEG signals.

The positions of 32 EEG channels are selected according

to the international 10-20 system, namely Fp1, AF3, F3,

F7, FC5, FC1, C3, T7, CP5, CP1, P3, P7, PO3, O1, Oz,

Pz, Fp2, AF4, Fz, F4, F8, FC6, FC, Cz, C4, T8, Cp6,

Cp2, P4, P8, PO4, O2. The position distribution of electrode

placement covers the four primary areas of the brain, with

moderate spacing, which can effectively collect the required EEG

raw data.

The specific process of EEG acquisition is shown in the

following figure, mainly including the following steps:

TABLE 1 The types and descriptions of the music excerpts used in this

study.

ID Type Title Singer

1 Positive A man should strengthen himself Zixiang Lin

2 Negative A dream of misery Wei Dou

3 Neutral Reiki meditation Not applicable

4 Positive I really love you Beyond

5 Negative In case SHIN

6 Neutral Calm tech Not applicable

7 Positive Flying higher Feng Wang

8 Negative Collapse Catcher in the Rye

9 Neutral Let the sun shine Not applicable

10 Positive Friend Huajian Zhou

11 Negative Negative Bill Do

12 Neutral Make it rain Not applicable

• The Serial number of the progress of the experiment. Give the

serial number through the prompt sound to let participants

know what music is currently in progress;

• Collection of benchmark records. This process will last for 5 s.

At this time, participants try to keep calm and record the mark

of the beginning of the EEG signal;

• Music playback. This process will last for 75 s. The 15 s is the

time for each music switch, and the 60 s is the time for the

music to play. During this process, participants need to keep

their body balance and reduce movement as much as possible;

• Self-assessment scoring. After listening to each music excerpt,

the participants must evaluate themselves in time (−1 denotes

negative, 0 denotes neutral, and +1 denotes positive). This

process will last<15 s, equal to the period for themusic switch.

In addition, the participants need to take a short rest after self-

assessment according to their real emotional experience after

listening to music;
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FIGURE 2

The input of the proposed spatial-temporal transformer.

• Start playing the next piece of music. Repeat the above two

steps until all 12 music materials have been played.

The experiment uses the software provided by the company to

play music. The CPU of the computer playing video is Core i3; the

memory is 4 GB, and the Windows 10 operating system. Notably,

the EEG signals were recorded while listening to music. All EEG

signals were recorded between 9 and 11 a.m., and 2 and 5 p.m.

to ensure the participants were not tired. Also, to avoid the noise

from different sources, including Electro-Oculogram (EOG) and

Electrocardiograph (ECG), all the subjects were instructed to keep

their eyes closed during the EEG recording process.

For the binary classification task (positive and negative), 8

min (positive = 240 s and negative = 240 s) of sampled EEG

signals were used for two types of emotions. Furthermore, the

EEG samples from each electrode were divided into overlapped

240 epochs, each lasting 4 s. On the other hand, for the ternary

classification task (positive, negative, and neutral), 12 min (positive

= 240 seconds, negative = 240 s, and neutral = 240 s) of sampled

EEG signals were used for three types of emotions. The EEG signals

from each electrode were divided into overlapped 360 epochs, each

lasting 4 s. Considering the balance of classification, the number of

samples for each type of emotion used in both binary and ternary

classification equals each other. In addition, the overlapped epochs

were leveraged to decrease the possibility of over-fitting during the

classification processes. Note that the complex sampling is 128 Hz

for the EEG signals in this study. Thus each epoch of 4 s contains

512 sampling points in total.

2.2. Spatial-temporal transformer

In this section, details about the proposed spatial-temporal

transformer model are provided. Note that this transformer is

constructed using a self-attention mechanism, which has been

extensively employed in many previous works (Fan et al., 2021;

Liu et al., 2021; Wang et al., 2021). In addition, we conceived that

the transformer-based deep learning architecture could produce

competitive outcomes over the CNN-based algorithms, which are

constrained by the issues caused by the local receptive field. The

pipeline of the presented spatial-temporal transformer is shown in

Figure 2, inspired by themodel of ViT (Dosovitskiy et al., 2020) that

leverages both the image patches and the corresponding sequence

of these image patches as the input for the model.

In general, the input for the presented spatial-temporal

transformer is composed of both the spatial and temporal epochs

of the EEG signals captured from the same subject. Furthermore,

to integrate the spatial and temporal associations between a batch

of EEG signals (each group has eight epochs), the corresponding

position embedding was fed into the proposed transformer (as

shown in Figure 2). It is notable that each input batch of EEG

epochs belongs to the same type of emotion.

Suppose that H and W denote the height and width of the

input of each channel in the proposed model for the EEG epochs

divided from the original EEG signals, H = 5 and W = 512; Let C

represent the number of channels, and the epochs were flattened

and mapped into the vector in a length of D. Inspired by the

embedding used in ViT (Dosovitskiy et al., 2020), we also added
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FIGURE 3

Architecture of the presented spatial-temporal transformer.

a learnable embedding along with the epoch embedding sequence.

The output corresponding to the input epochs from the spatial

channel is Yspatial, the output corresponding to the input epochs

from the temporal channel is Ytemporal, and the composite output

is denoted as Y (as shown in Figure 3).

As shown in Figure 3, the proposed spatial-temporal

transformer model consists of two channels designed for the

spatial and temporal EEG epochs without sharing weighting

parameters between the channels. According to the upper and

bottom components on the right side of Figure 3, the upper

and bottom channels are supposed to address the spatial and

temporal information within the input EEG samples, respectively.

Furthermore, inspired by the structure of ViT (Dosovitskiy et al.,

2020) and the original transformer model (Vaswani et al., 2017),

the proposed model adopts a sequence of token embedding

and the component of the transformer Encoder (as shown

in Figure 4).

The Encoder in each channel of the proposed transformer

consists of L layers. Furthermore, each layer contains multiple self-

attention units and a multi-layer perception unit. Along with the

attention unit, the layer Normalization mechanism is exploited

before both units. The multiple attention unit with H heads in the

proposed model is constructed using the self-attention mechanism,

which can be used to measure the similarity between each query

and the keys by allocating a weight for each value (Vaswani et al.,

2017). Thus, the output of the proposed approach can be obtained

from a weighted sum of the outputs from the two channels.

Moreover, a linear operator is leveraged to integrate the outputs

from two channels, which can be mathematically formulated as

(Equation 1):

Y = Linear(layernNormalization(Yspatial,Ytemporal), (1)

To be specific, besides the composite output Y , the outcomes of

Yspatial and Ytemporal can also be used to implement the classification

of input EEG samples, respectively.

3. Results

In this section, the experimental results of the proposedmethod

was provided for automated music emotion classification.

3.1. Implementation details

The proposed algorithm was realized using the PyTorch

(Paszke et al., 2019) framework and two NVidia Telsa V100

Graphical Processing Units (GPUs) with 32GB RAM. The hyper-

parameters for the proposed network were determined by using

a trial-and-error fashion. To be specific, the model training was

performed by adopting GELU (Hendrycks and Gimpel, 2016)

activation function and AMSGrad optimizer (Reddi et al., 2019)

with the learning rate of 0.001.

To evaluate the performance of the proposed approach, a set

of experiments were carried out in sequence. To determine the
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FIGURE 4

The Encoder Unit used in the proposed spatial-temporal

transformer.

optimal combination of the spatial and temporal channels in the

proposed approach, we adopted the loss hyperparameter α and

found the optimal value of α by training on half of the training

samples before starting the following experiments (as shown in

Figure 5). As shown in Figure 5, the optimal value of α is set to

0.3 in the experiments. Firstly, we carried out the ablation study by

comparing the outcomes of the separate spatial channel, separate

temporal channel, and the composite channels with each other. In

addition, we evaluated the impact of number of heads and layers (L)

of the proposed transformer model in the ablation study. We then

conducted the experiments on all subjects in the manually collected

dataset to build the baseline for the remaining experiments. In

addition, the comparison experiments were conducted between the

state-of-the-art deep learning methods and ours on the manually

collected dataset. Finally, we provided the comparison between

the state-of-the-art algorithms and ours on the publicly available

DEAP dataset (Koelstra et al., 2011). To be specific, sensitivity,

specificity, and accuracy were leveraged as the evaluation metrics

in the experiments.

Meanwhile, to improve the performance of the proposed

method, an integrated loss function was used by integrating both

the spatial and temporal components, as shown in Equation (2).

Loss = αLossspatial + (1− α)Losstemporal, (2)

where α denotes the weighting parameter for determining the

combination of spatial and t temporal channels of the proposed

model, Lossspatial and Losstemporal represent the cross entropy loss

of the separate channels in the proposed transformer, respectively.

In addition, the following metrics were used to evaluate the

performance of the techniques in the experiments, including

sensitivity, specificity, and accuracy, which are provided in

Equations (3)–(5).

Sensitivity =
TP

TP + FN
, (3)

Specificity =
TN

TN + FP
, (4)

Accuracy =
TP + TN

TP + FN + TN + FP
, (5)

where TP, FN, TN, FP denote true positive, false negative, true

negative, and false positive, respectively.

Furthermore, a 10-fold cross-validation mechanism was

employed in the experimental process. First, all the input EEG

samples were divided into ten subsets with the same number of

samples. In each round of ten rounds, one subgroup was taken as

the testing set, and the remaining groups were used as the training

set. At last, the average of 10-folds was leveraged as the outcome for

the methods used in the experiments.

3.2. Ablation study

3.2.1. Hybrid model and individual transformers
The proposed approach could be treated as a hybrid model

due to the spatial and temporal channels employed. Therefore, we

first compared the proposed model with individual channels and

the model with both channels. Due to the difference in sensitivity,

specificity, and accuracy values of the three different models,

including spatial, temporal, and combined models in the binary

classification task, it can be observed that the integration of the two

channels is superior in various performances over the individual

channels (as shown in Figure 6).

3.2.2. Impact of number of heads and layers of
the proposed transformer

In addition, with the proposed hybrid model with both spatial

and temporal channels, we further evaluated the impact of number

of heads and layers on the binary-classification performance of the

proposed the transformer model. As shown in Table 2, the optimal

combination of the number of heads and layers is 4 and 8.

To ensure that the number of weighting parameters of the

proposed model remains at a low level, we did not take more

combinations of the number of heads and layers (e.g., 12 or 24) in

the ablation study.
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FIGURE 5

The optimal value of the hyperparameter α used in the experiments.

FIGURE 6

The binary classification comparison between the combined, spatial, and temporal versions of the proposed method.

3.3. Binary and ternary classification
outcomes of the proposed approach

As shown in Figure 7, the sensitivity, specificity, and accuracy

of the proposed approach in the binary classification task are

95.3, 94.8, and 97.3%. Meanwhile, the sensitivity, specificity, and

accuracy of the proposed approach in the ternary classification task

are 94.1, 93.2, and 97.1%. Note that both the evaluation metrics

generated from the binary classification are more significant than

the ternary classification by using the proposed algorithm since

there are more samples and more types of samples in the ternary

classification process.

3.4. Comparison experiments between the
state-of-the-arts and the proposed
approach

Furthermore, the following algorithms were incorporated

into the comparison experiments between the state-of-the-

art techniques and the presented approach, including U-Net

(Ronneberger et al., 2015), Mask R-CNN (He et al., 2017),

ExtremeNet (Zhou et al., 2019), TensorMask (Chen et al., 2019),

Visual Transformer (Wu et al., 2020), ViT (Dosovitskiy et al.,

2020), MViT (Fan et al., 2021), PVT (Wang et al., 2021), PiT

(Heo et al., 2021), and Swin Transformer (Liu et al., 2021). As
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shown in Tables 3, 4, the proposed approach has achieved superior

performance over the state-of-the-art algorithms.

To note that the specificity of the algorithm (Rudakov, 2021) is

superior over the proposed approach.

To evaluate the performance of the proposed approach in a

fair fashion, we further evaluated the performance of the proposed

approach and the state-of-the-art algorithms (Shawky et al., 2018;

Yang et al., 2018, 2019; Xing et al., 2019; Shen et al., 2020; Pan and

Zheng, 2021; Rudakov, 2021; Kan et al., 2022; Zhang et al., 2022) on

the DEAP dataset (as shown in Table 5). Accordingly, we used the

DEAP dataset during the training phase of the proposed approach

in this stage.

4. Discussion

In this study, a dual-channel transformer for music emotion

classification was presented. The proposed model consists of two

channels designed to extract spatial and temporal information

TABLE 2 The influence of number of heads and number of layers on the

binary-classification outcome of the proposed model.

Model Number of
heads (H)

Number of
layers (L)

Accuracy
(%)

STT_1_4 1 4 96.1

STT_1_8 1 8 96.7

STT_1_12 1 12 96.6

STT_2_4 2 4 95.8

STT_2_8 2 8 96.7

STT_2_12 2 12 97.1

STT_4_4 4 4 96.8

STT_4_8 4 8 97.3

STT_4_12 4 12 97.1

The bold values denote the best performance.

from the EEG signals. To our best knowledge, this is an early

work of transformer architecture in this type of machine-learning

task. From the experimental results, it can be observed that our

method has achieved superior performance (Binary classification:

sensitivity 94.3%, specificity 93.8%, and accuracy 96.8%; Ternary

classification: sensitivity 93.6%, specificity 92.2%, and accuracy

TABLE 3 Binary classification comparison between the state-of-the-arts

and the proposed approach.

Method Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

U-Net (Ronneberger

et al., 2015)

82.3 83.1 84.8

Mask R-CNN (He et al.,

2017)

82.5 82.9 83.6

ExtremeNet (Zhou et al.,

2019)

81.9 84.7 85.1

TensorMask (Chen et al.,

2019)

82.9 83.8 84.7

Visual Transformer (Wu

et al., 2020)

85.5 84.1 86.2

ViT (Dosovitskiy et al.,

2020)

86.7 87.1 88.5

MViT (Fan et al., 2021) 89.4 87.9 90.3

PVT (Wang et al., 2021) 89.7 86.5 90.1

PiT (Heo et al., 2021) 92.4 90.5 93.8

Swin Transformer (Liu

et al., 2021)

91.7 92.5 94.4

Pan and Zheng (2021) 91.2 90.8 90.4

Shen et al. (2020) 93.6 93.2 93.9

Kan et al. (2022) 94.2 93.9 94.3

Rudakov (2021) 95.2 94.5 95.8

The proposed approach 95.3 94.8 97.3

The bold values denote the best performance.

FIGURE 7

The binary and ternary classification outcome of the proposed transformer.
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TABLE 4 Ternary classification comparison between the state-of-the-arts

and the proposed approach.

Method Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

U-Net (Ronneberger

et al., 2015)

80.5 81.6 82.2

Mask R-CNN (He et al.,

2017)

81.7 82.1 82.8

ExtremeNet (Zhou et al.,

2019)

81.2 83.1 84.3

TensorMask (Chen et al.,

2019)

82.3 83.1 85.2

Visual transformer (Wu

et al., 2020)

83.4 84.2 85.9

ViT (Dosovitskiy et al.,

2020)

85.6 86.9 88.7

MViT (Fan et al., 2021) 88.6 86.7 88.1

PVT (Wang et al., 2021) 88.2 87.2 89.5

PiT (Heo et al., 2021) 90.2 89.4 91.1

Swin transformer (Liu

et al., 2021)

91.2 91.9 92.5

Pan and Zheng (2021) 90.7 91.0 90.2

Shen et al. (2020) 92.8 92.3 92.9

Kan et al. (2022) 93.5 93.8 93.9

Rudakov (2021) 93.8 93.5 95.3

The proposed approach 94.1 93.2 97.1

The bold values denote the best performance.

TABLE 5 Comparison between the state-of-the-arts and the proposed

approach on DEAP dataset.

Method Detail
Accuracy

Valence Arousal

Xing et al. (2019) LSTM* 81.10 74.38

Shawky et al. (2018) CNN 87.44 88.49

Yang et al. (2019) CNN 90.01 90.65

Pan and Zheng (2021) CNN 90.26 88.90

Yang et al. (2018) LSTM 90.82 86.13

Shen et al. (2020) CRNN** 94.22 94.58

Zhang et al. (2022) GAN*** 93.52 94.21

Kan et al. (2022) Contrastive

Learning

94.72 92.65

Rudakov (2021) CNN 96.28 96.62

Ours Transformer 96.36 96.91

*LSTM denotes long short term memory.

**CRNN denotes convolutional recurrent neural network.

***GAN denotes generative adversarial network.

The bold values denote the best performance.

95.3%) over the state-of-the-art algorithms in both the binary

and ternary classification tasks. To note that the neutral emotions

evoked by the music clips get more misclassified than both

the positive and negative emotions in the experiments. The

competing methods used in the comparison experiments include

the CNN-based and transformer-based deep learning models,

which focus on local receptive and global receptive fields during

the classification tasks, respectively. Since the spatial and temporal

information can be extracted from the input EEG signals, the

proposed approach has achieved superior performance over both

CNNs and transformers. Notably, the input of a batch of EEG

signals could be treated the same as an image for the CNNs and

vision transformers mentioned in the comparison experiments.

Furthermore, according to the results of the ablation study, the

combination of the spatial and temporal channels in the proposed

transformer network is superior to the individual spatial channel or

temporal channel. Meanwhile, the outcome of the proposed model

in the ablation study has also proved that a hybrid model could be

a valuable mechanism for enhancing the performance of individual

deep-learning models. In addition, the impact of number of heads

and layers of the proposed transformer was evaluated in another

ablation study. The corresponding results demonstrate that the

optimal number of heads and layers of are 12 and 6 for the proposed

model.

Notably, the proposed music emotion classification framework

is inspired by the ViT (Dosovitskiy et al., 2020) architecture.

Different from the original transformer (Vaswani et al., 2017) used

for natural language processing and the vision transformers (He

et al., 2017; Chen et al., 2019; Zhou et al., 2019; Dosovitskiy et al.,

2020; Wu et al., 2020; Fan et al., 2021; Heo et al., 2021; Liu et al.,

2021; Wang et al., 2021) designed for image analysis, our method

is primarily exploited to classify the EEG recordings. Moreover,

the proposed approach needs to adapt to the requirements of

EEG classification by using both the spatial and temporal modules.

Moreover, the self-attention mechanism first presented in the

work of Vaswani et al. (2017), the association between the global

associations between the EEG fragments could be fully exploited

and unveiled. Moreover, this is a primary strategy to enhance the

discriminating ability of the proposed transformer.

In addition, this study has some limitations despite its

contributions. First, we leveraged a private dataset in the

experiments, and the publicly available dataset should be

considered in the following steps. Secondly, the weighting

parameters used in the proposed approach were selected using

a trial-and-error strategy, which might not be the optimal

choice. Moreover, a strategy with more interpretability should

be exploited instead. Furthermore, the training process of the

proposed approach was time-consuming, which could be resolved

using more powerful GPU platforms. However, to implement

the proposed approach in practical applications, the computation

resources and the execution time should be decreased through

lightweight parameter configuration. In the future, more types of

emotions in music will be incorporated into our study to satisfy the

requirements of different categories of the practical applications.

5. Conclusion

In this study, the transformer-based deep learning model

generally enhances the performance ofmusic emotion classification

in EEG recordings compared with traditional deep learning

techniques. Specifically, the ability of the global receptive field
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provided by the transformer is conceived as beneficial for unveiling

the long-range associations between different components in EEG

signals. Both the binary classification and ternary classification

of emotions evoked by music of the proposed approach are

promising. In addition, the proposed approach has achieved

superior performance over the state-of-the-art deep learning

techniques.

In the future, we will incorporate more participants and more

music clips from various countries and cultures to improve the

robustness of the proposed approach. In addition, more types of

emotions evoked by music will also be taken into consideration in

our future work.
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