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The study aims to develop a magnetic resonance imaging (MRI)-based radiomics

model for the diagnosis of classic trigeminal neuralgia (cTN). This study involved

350 patients with cTN and 100 control participants. MRI data were collected

retrospectively for all the enrolled subjects. The symptomatic side trigeminal

nerve regions of patients and both sides of the trigeminal nerve regions of

control participants were manually labeled on MRI images. Radiomics features of

the areas labeled were extracted. Principle component analysis (PCA) and least

absolute shrinkage and selection operator (LASSO) regression were utilized as

the preliminary feature reduction methods to decrease the high dimensionality

of radiomics features. Machine learning methods were established, including

LASSO logistic regression, support vector machine (SVM), and Adaboost methods,

evaluating each model’s diagnostic abilities using 10-fold cross-validation. All the

models showed excellent diagnostic ability in predicting trigeminal neuralgia.

A prospective study was conducted, 20 cTN patients and 20 control subjects

were enrolled to validate the clinical utility of all models. Results showed that

the radiomics models based on MRI can predict trigeminal neuralgia with high

accuracy, which could be used as a diagnostic tool for this disorder.
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1. Introduction

Trigeminal neuralgia (TN) is characterized by unilateral brief shock-like paroxysmal
pain in one or more branches of the trigeminal nerve of the suffering patient (Maarbjerg
et al., 2017). Trigeminal Neurovascular Compression is considered the cause of most TN
by the International Headache Society (IHS). TN is diagnosed based on three main clinical
symptoms: pain limited to one or more areas of the trigeminal nerve distribution; sudden and
severe pain of very short duration, described as “shock” or “electrical conductivity”; and pain
can be caused by innocuous stimulation of the trigeminal nerve distribution area in the face
or mouth (Cruccu et al., 2020). TN is classified into three types according to their etiology:
classic, secondary, and idiopathic. The most common classic trigeminal neuralgia (cTN) is
caused by intracranial vascular compression of the trigeminal nerve root. Secondary TN
accounts for approximately 15% of all cases and can be attributed to a neurological disease
that can be clearly diagnosed, such as multiple sclerosis or a tumor in the pontocerebellar
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horn region compressing the trigeminal nerve. Idiopathic
trigeminal neuralgia (ITN) is a neuropathic pain along the
distribution of the trigeminal nerve with unknown pathogenesis
and a part of ITN may be caused by NVC (ITN-NVC) (Ge et al.,
2022).

Despite a known etiology of cTN and clear clinical symptoms,
cTN is sometimes misdiagnosed due to its low incidence (Slettebo,
2021). Cranial nerve magnetic resonance imaging (MRI) is
commonly used to exclude secondary TN and to aid in the
diagnosis of cTN because it can show the contact between
the trigeminal nerve and blood vessels. However, it has some
limitations. However, many studies have shown that brain MRI
cannot always accurately detect neurovascular contact (NVC) on
the symptomatic side. In other words, the presence of neurological
symptoms (negative likelihood ratio = 0.5) is not necessarily ruled
out by the lack of MRI evidence of NVC (Antonini et al., 2014).
This study showed poor performance of this diagnostic test for
determining NVC’s presence, location, and type.

By enhancement of vascular inflow, the three-dimensional
time-of-flight magnetic resonance angiography sequence
technology (3D-TOF-MRA) brings out the high signal intensity
of arteries and the average signal intensity of brain parenchyma
and trigeminal nerve and the low signal intensity of cerebrospinal
fluid (CSF). This can lead to better comparison and relationship
assessment between arteries and nerves. However, its primary
disadvantage is that as a result of the enhanced inflow effect,
slow blood flow vessels are not displayed, which significantly
reduces the diagnostic efficacy of MRI in patients with cTN having
neurovascular compression (Zeng et al., 2021). Patel et al. analyzed
the preoperative MRI scans of 92 TN patients prior to surgery.
In nine patients, vascular compression was not detected by MRI
findings but was found during surgery. It is clear thus that not all
neurovascular compression is reflected on MRI (Lorenzoni et al.,
2012). Consequently, although MRI is necessary for ruling out
symptomatic TN, it cannot be utilized to diagnose cTN.

The term radiomics has been attracting much attention
during the past several years. It converts medical images
into high-dimensional recoverable data through high-throughput
extraction of quantitative features and subsequent data analysis to
provide decision support (Huang et al., 2016). More specifically,
radiomics analysis is a process used to extract quantitative
features from medical images using advanced feature extraction
procedures based on machine learning algorithms, such as the
least absolute shrinkage and selection operator (LASSO) or
logistic regression methods. These methods are now used to
build disease detection, classification models, prognosis prediction,
and therapeutic response evaluation. Moreover, these methods
have been widely used in assessing tumor stages, diagnosis, and
metastasis.

Different MRI scan sequences have been evaluated to diagnose
and predict the prognosis of cranial nerve disorders. Three-
dimensional time-of-flight (3D-TOF) and three-dimensional
constructive interaction in steady state (3D-CISS) sequences
were studied by Jia et al. and analyzed for 95 patients with facial
spasms. They found that 3D-TOF and 3D-CISS imaging had a
98.95% positive rate and a 100% overall accuracy in depicting the
relationship between the facial nerve and surrounding vessels (Jia
et al., 2016). Despite the radiomics model and machine learning

techniques showing promising results in diagnosing cranial nerve-
related disorders, there are few relevant studies establishing them
as a full-fledged diagnosis model.

In this study, the MRI images of 350 cTN patients and
100 control subjects were collected retrospectively. Based on the
dataset, the trigeminal nerve regions of interest (ROIs) were
manually labeled and radiomics features were extracted. Radiomics
models using machine learning methods were established and the
diagnostic performance of all the models was evaluated. Principle
component analysis (PCA) and LASSO regression methods were
employed to perform dimension reduction of high dimensional
radiomics features with exploring the impact on performance
when building the radiomics models. A prospective study was
conducted to validate the clinical utility of the established radiomics
models with 20 cTN patients and 20 control subjects enrolled. The
research can aid the current literature on imaging diagnosis of
cTN to help patients and clinicians make informed decisions before
any intervention.

2. Materials and methods

2.1. Participants

The present study protocol received ethical approval from the
Ethics Committee of the Affiliated Hospital of Qingdao University.
All participants agreed to provide their written informed consent
for participation in the study.

The patient inclusion criteria were as follows: (1) patients
showing typical symptoms of TN; (2) patients diagnosed with cTN
via microvascular decompression of the trigeminal nerve; and (3)
patients with complete imaging data before surgery.

For control participants, the inclusion criteria were as follows:
(1) patients coming for treatment with benign paroxysmal
positional vertigo (BPPV); (2) individuals without a history of
facial pain; (3) cranial nerve MRI was performed and the original
image completely preserved; and (4) individuals without TN
disorders as determined by experienced radiologists using cranial
nerve MRI images.

The exclusion criteria for the study were as follows: (1) typical
TN symptoms, but not confirmed by surgery; (2) diagnosed as
secondary TN; (3) incomplete preservation of image and clinical
data. The exclusion criteria for the control group were as follows:
(1) patients who had undergone trigeminal nerve surgery and (2)
patients with incomplete preservation of the general data.

2.2. Clinical data evaluation and grouping

Retrospective analyses were conducted by using the clinical
data of all patients, including the age, gender, symptoms, and
duration of disease. The enrolled patients all met the diagnostic
criteria in accordance with the International Classification
of Headache Disorders (3rd edition; ICHD-3) (Headache
Classification Committee of the International Headache
Society [IHS], 2013). The diagnostic criteria for cTN from
The International Classification of Headache Disorders comprise
the following:
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FIGURE 1

(A) Labeled symptomatic side regions of nerve magnetic resonance sequence. (B) Labeled symptomatic side regions of vascular magnetic
resonance sequence. (C) Labeled both the left and right sides regions of nerve magnetic resonance sequence. (D) Labeled both the left and right
sides regions of vascular.

A. At least 3 attacks of unilateral facial pain fulfilling
criteria B and C.

B. Occurring in one or more divisions of the trigeminal nerve,
with no radiation beyond the trigeminal distribution.

C. Pain presenting with at least 3 of the following 4
characteristics:

1. recurrence in paroxysmal attacks lasting from a fraction of
a second to 2 min;

2. severe intensity;
3. electric shock-like, shooting, stabbing, or sharp quality;
4. precipitated by innocuous stimuli to the affected side of the

face.

D. No clinically evident neurological deficit.
E. Not better accounted for based on another ICHD-3 diagnosis.

All patients selected in this study received trigeminal
microvascular decompression. They showed symptoms of TN
before the operation and were confirmed to be cTN during the

operation. The pain symptoms of 315 patients disappeared at the
time of the operation, while the pain symptoms of 2 patients did
not change after the operation.

In the prospective study, 20 cTN patients and 20 control
subjects were enrolled. For all the cTN patients, the pain symptoms
disappeared at the time of the operation.

2.3. MRI acquisition

Magnetic resonance images of all subjects were collected
retrospectively. MRI images performed within 48 h prior to
microvascular decompression were collected for TN patients. For
control subjects, their previous MRI images at the first outpatient
visit were collected. The subjects who met this criterion (which
included 350 cTN patients and 100 control participants) were
selected for routine MRI scans to obtain their nerve magnetic
resonance sequence and vascular magnetic resonance sequence
using the GE (General Electric Healthcare, Milwaukee, WI, USA)
Signa 1.5T/3.0T scanners and Siemens (Siemense Healthcare,
Henkestr, Erlangen, Germany) Aera 1.5T/3.0T scanner. The nerve
magnetic resonance sequence with the GE Signa scanners was the
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FIGURE 2

The workflow chart depicting the process of radiomics feature extraction and analysis.

Fiesta-C sequence. The nerve magnetic resonance sequence using
the Siemense Aera scanners was the t2-spc-tra-iso sequence. The
vascular magnetic resonance sequence with the GE Signa scanners
was 3D-TOF. The vascular magnetic resonance sequence with the
Siemense Aera scanners was TOF-multi-slab.

For the retrospective study, in the control group, there were 25
subjects with 1.5-T GE scanners, 30 with 3.0-T GE scanners, 20 with
1.5-T Siemens scanners, and 25 with 3.0-T Siemense scanners. In
the cTN group, with GE scanners, 81 MRI images were obtained
with a 1.5-T field strength and 104 with a 3.0-T field strength, while,
with the Siemense scanners, 75 images were obtained with a 1.5-T
field strength, and 90 with a 3.0-T field strength.

For the prospective validation study, in the control group, there
were 4 subjects with 1.5-T GE scanners, 8 with 3.0-T GE scanners, 3
with 1.5-T Siemens scanners, and 5 with 3.0-T Siemense scanners.
In the cTN group, with GE scanners, 5 MRI images were obtained
with a 1.5-T field strength and 8 with a 3.0-T field strength, while,
with the Siemense scanners, 2 images were obtained with a 1.5-T
field strength, and 5 with a 3.0-T field strength.

The parameters of the Fiesta-C sequence were as follows: TR-
3.5 ms, TE-1.5 ms, FA-60◦, FOV-22–24 cm, and 0.7-mm slice
thickness. The parameters of a 3D-TOF sequence included the
following: TR-23 ms, TE-3.6M ms, FA-15◦, FOV-22–24 cm, and
0.7-mm slice thickness.

The parameters of the t2-spc-tra-iso sequence were as follows:
TR-1,000 ms, TE-266 ms, FA-150◦, FOV-20–22 cm, and 0.6–
0.8-mm slice thickness. The parameters of the TOF-multi-slab
sequence scan were as follows: TR-9 ms, TE-2.39 ms, FA-25◦,
FOV-20–22 cm, and 0.6–0.8-mm slice thickness.

2.4. Neuroimage processing

2.4.1. Manual segmentation of the region of
interest

For the retrospective study, the nerve magnetic resonance
sequence and the vascular magnetic resonance sequencing images

were manually labeled with ITK-SNAP1 by three experienced
radiologists. The labeled masks were finally examined by an
experienced neurosurgeon. The labeled ROI in the nerve magnetic
resonance sequence and the vascular magnetic resonance sequence
included the symptomatic side nerve ROI for the cTN group and
both the left and right sides nerve ROI for the control group
(Figure 1, for example, images). Therefore, we achieved 350 ROIs
for cTN and 200 ROIs for the control group to establish the
retrospective training dataset.

For the prospective study, the MRI images were still manually
labeled with ITK-SNAP software by two experienced radiologists.
The labeled masks were finally checked by another experienced
neurosurgeon. The symptomatic side nerve ROIs of the cTN
patients and random side nerve ROIs of the control subjects
from both nerve and vascular magnetic resonance sequences were
labeled to form a prospective validation dataset.

2.4.2. Radiomics feature extraction and analysis
The workflow of radiomics feature extraction and prediction

modeling is depicted in Figure 2. In the feature extraction
procedure, all Digital Imaging and Communications in Medicine
(DICOM) formatted images were resampled with the same pixel
spacing (0.5 × 0.5 × 0.5 mm). The quantile normalization method
was utilized to realize pixel-intensity normalization for both nerve
and vascular MRI sequences. The procedures followed for intensity
normalization were as follows:

min_value = quantile(image, 0.001)

max_value = quantile(image, 0.999)

if Pixelsrc > max_value :Pixelsrc = max_value

1 http://itksnap.org/
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TABLE 1 Clinical characteristics of the cTN and control group participants of retrospective training dataset.

Total cTN patients (350) Healthy participants (100) P

Age (mean± SD) 56.65± 10.65 57.27± 9.05 54.48± 14.80 0.076

Sex, no. (%) 0.162

Male 189 (42.0) 141 (40.2) 48 (48)

Female 261 (58) 209 (59.7) 52 (52)

Image sequence (nerve) (%) 0.705

Fiesta-C* 240 (53.3) 185 (52.9) 55 (55)

t2_spc_tra_iso* 210 (46.7) 165 (47.1) 45 (45)

Image sequence (vessel) (%) 0.705

3D-TOF* 240 (53.3) 185 (52.9) 55 (55)

TOF_3D_multi-slab* 210 (46.7) 165 (47.1) 45 (45)

MRI type (%) 0.976

1.5T GE scanners 106 (23.6) 81 (23.1) 25 (25)

3.0T GE scanners 134 (29.8) 104 (29.7) 30 (30)

1.5T Siemense scanners 95 (21.1) 75 (21.4) 20 (20)

3.0T Siemense scanners 115 (25.6) 90 (25.7) 25 (25)

*The Fiesta-C and 3D-TOF sequences correspond to GE’s magnetic resonance. The t2_spc_tra_iso and TOF_3D_multi-slab sequences correspond to Siemens’ magnetic resonance.

TABLE 2 Clinical characteristics of the cTN and group participants of prospective validation dataset.

Total cTN patients (20) Control participants (20) P

Age (mean± SD) 57.4± 12.95 59.03± 12.81 55.78± 13.06 0.135

Sex, no. (%) 0.525

Male 18 (45.0) 10 (50.0) 8 (40.0)

Female 22 (55.0) 10 (50.0) 12 (60.0)

Image sequence (nerve) (%) 0.744

Fiesta-C* 25 (62.5) 13 (65.0) 12 (60.0)

t2_spc_tra_iso* 15 (37.5) 7 (35.0) 8 (40.0)

Image sequence (vessel) (%) 0.744

3D-TOF* 25 (62.5) 13 (65.0) 12 (60.0)

TOF_3D_multi-slab* 15 (37.5) 7 (35.0) 8 (40.0)

MRI type (%) 0.989

1.5T GE scanners 9 (22.5) 5 (25.0) 4 (20.0)

3.0T GE scanners 16 (40.0) 8 (40.0) 8 (40.0)

1.5T Siemense scanners 5 (12.5) 2 (10.0) 3 (15.0)

3.0T Siemense scanners 10 (25.0) 5 (25.0) 5 (25.0)

*The Fiesta-C and 3D-TOF sequences correspond to GE’s magnetic resonance. The t2_spc_tra_iso and TOF_3D_multi-slab sequences correspond to Siemens’ magnetic resonance.

if Pixelsrc < min_value :Pixelsrc = min_value

Pixeldst = round(
(
Pixelsrc −min_value

)
/

(max_value −min_value) ∗ 512)

Where the image is the input-source MRI image, the quantile
function was used to get min_value (corresponding to 0.001 probs),
and max_value (corresponding to 0.999 probs). Then, for each pixel
of the input source MRI images, min_value, and max_value were
used to normalize the pixel intensity from 0 to 512.

Pyradiomics toolkit2 was used to extract 200 radiomics
features for each ROI, including 14 shape and size features
related to the 3D size and shape of the ROI, 36 first-
order features based on the distribution of voxel intensities
calculated from nerve and vascular MRI sequences, 150 texture-
based features of both nerve and vascular MRI sequences
that were calculated from the gray-level co-occurrence matrix
(GLCM), gray-level run-length matrix (GLRLM), gray-level

2 http://PyRadiomics.readthedocs.io/en/latest/

Frontiers in Neuroscience 05 frontiersin.org

https://doi.org/10.3389/fnins.2023.1188590
http://PyRadiomics.readthedocs.io/en/latest/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1188590 October 3, 2023 Time: 19:4 # 6

Wang et al. 10.3389/fnins.2023.1188590

FIGURE 3

The weights of radiomics features.

TABLE 3 The AUC, accuracy, sensitivity, specificity, precision, and F1-score of all models.

Model AUC (95% CI) Accuracy Sensitivity Specificity Precision F1-score

LASSO logistic regression 0.969 (0.956–0.980) 0.9182 0.9257 0.905 0.9446 0.9351

SVM 0.974 (0.963–0.985) 0.94 0.9429 0.935 0.9621 0.9524

Adaboost 0.978 (0.961–0.99) 0.9363 0.9314 0.945 0.9674 0.9491

PCA-SVM 0.967 (0.955–0.982) 0.9182 0.943 0.875 0.9296 0.9362

PCA-Adaboost 0.966 (0.953–0.981) 0.9091 0.92 0.89 0.936 0.928

LASSO-SVM 0.977 (0.959–0.99) 0.9273 0.9229 0.935 0.9613 0.9417

LASSO-Adaboost 0.956 (0.939–0.972) 0.8854 0.8686 0.915 0.947 0.9061

size-zone matrix (GLSZM), gray-level dependence matrix (GLDM),
and neighborhood gray-tone difference matrix (NGTDM). The
abovementioned features have been confirmed to potentially reflect
changes in the image structure. In the feature selection and feature
dimension reduction procedure, Pearson’s correlational analysis
and Spearman correlation coefficient analysis were employed
to eliminate poorly correlated and repeated radiomics features.
Finally, 104 robust predictive radiomics features were selected to
build the imaging diagnosis model of cTN.

For the prospective validation dataset, the image normalization
process and radiomics feature extraction method were consistent
with the training dataset. However, feature selection and feature
dimension reduction procedures were not employed for the
prospective validation. The 104 corresponding predictive radiomics
features were manually remained to validate the performance of the
imaging diagnosis model of cTN, instead.

2.5. cTN imaging diagnosis model

For a large set of high-dimensional potential predictors, there
are many conventional methods applied for variable selection,
such as stepwise selection. However, they have the disadvantage
of overfitting (McNeish, 2015). LASSO (Tibshirani, 1996) is a
variable selection method that can handle a large dataset with high-
dimensional features, extracting the variables most associated with

the disease (Algamal and Lee, 2015; Chong et al., 2021; Ouyang
et al., 2022). The logistic regression with the adaptive LASSO is
a frequently used method to establish the disease prediction or
diagnostic model (Algamal and Lee, 2015), especially in radiomics-
related research (She et al., 2018; Ji et al., 2019; Wu et al., 2019).
Support vector machine (SVM) and Adaboost methods were also
employed to build the cTN imaging diagnosis model. However,
the high-dimensional data are composed of a large number of
features while some of them are still redundant and increase the
size and complexity of the feature space (Salimi et al., 2018). The
high dimensionality could lead to the curse of dimensionality which
will decrease the performance of the SVM and Adaboost methods
(Gheyas and Smith, 2010). High accuracy does not imply that the
features used are better than random (Ho et al., 2020). Thus, we
applied principal component analysis (PCA) and LASSO regression
as the preliminary feature reduction methods and explored the
impact on the performance of the SVM and Adaboost methods.
There were seven modeling methods in total (LASSO logistic
regression, SVM, Adaboost, PCA-SVM, PCA-Adaboost, LASSO-
SVM, and LASSO-Adaboost). Then, 10-fold cross-validation was
conducted to test the performance of all models after the calculation
of the ROC curve and AUC value. Confusion matrix of all models
were utilized to calculate the accuracy, sensitivity, specificity, and
F1-score to evaluate the performance. The decision curve analysis
(DCA) was employed to quantify the clinical utility values of the
models by calculating the greatest net benefit.
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FIGURE 4

ROC curve of all models.

FIGURE 5

Confusion matrix of LASSO logistic regression model (A), SVM model (B), Adaboost model (C), PCA-SVM model (D), PCA-Adaboost model (E),
LASSO-SVM model (F), and LASSO-Adaboost model (G).
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FIGURE 6

Decision curve analysis of the LASSO logistic regression model (A), SVM model (B), Adaboost model (C), PCA-SVM model (D), PCA-Adaboost model
(E), LASSO-SVM model (F), and LASSO-Adaboost model (G).
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TABLE 4 The AUC, accuracy, sensitivity, specificity, precision, and F1-score of all models based on prospective validation dataset.

Model AUC (95% CI) Accuracy Sensitivity Specificity Precision F1-score

LASSO logistic regression 0.94 (0.857–0.99) 0.875 0.85 0.9 0.8947 0.8718

SVM 0.925 (0.832–0.997) 0.9 0.9 0.9 0.9 0.9

Adaboost 0.903 (0.810–0.974) 0.825 0.75 0.9 0.8823 0.8109

PCA-SVM 0.925 (0.845–0.987) 0.85 0.9 0.8 0.8182 0.8571

PCA-Adaboost 0.9 (0.799–0.982) 0.775 0.85 0.7 0.7391 0.7907

LASSO-SVM 0.945 (0.975–0.998) 0.9 0.9 0.9 0.9 0.9

LASSO-Adaboost 0.925 (0.949–0.985) 0.875 0.9 0.85 0.8571 0.878

2.6. Statistical analyses

Statistical analyses were performed by using SPSS software
(version 26.0). The gender distribution and MRI sequences-type
distribution of the two groups were compared by Chi-squared test.
Student’s t-tests or Mann–Whitney U-tests were performed for
continuous variables of the two groups. A two-sided P < 0.05 was
considered to indicate statistical significance. ROC curve analysis
was performed to evaluate the diagnostic performances of the
models. The DCA was applied to quantify the clinical utility value.

3. Results

3.1. Patient characteristics

For both the retrospective training dataset and the prospective
validation dataset, cTN patients and control participants were
similar in terms of gender, age distribution, and use of MRI
scanners. The cTN imaging diagnosis model was developed using
the symptomatic side nerve ROI of cTN patients and the left and
right sides nerve ROI of control participants from the retrospective
training dataset. The cTN imaging diagnosis model was externally
validated using the symptomatic side nerve ROI of cTN patients
and random side nerve ROI of control participants from the
prospective validation dataset.

The patient characteristics of the retrospective training dataset
and prospective validation dataset were shown in Tables 1, 2.
There was no statistical correlation between the two groups as for
as the gender (P = 0.162) and age (P = 0.076) of patients were
concerned for both datasets. As can be seen from the results shown
in Tables 1, 2, which detail baseline data for all participants, no data
are statistically significant (P = 0.05).

3.2. Diagnostic efficacy of
radiomics-based models for diagnosis of
cTN

In the training procedure, a total of 200 radiomics features were
obtained from nerve and vascular images. From the original set
of 200 radiomics features, 104 were selected by eliminating those
with poor response-correlations and that were repetitions. The
imaging-based cTN diagnosis model was developed using LASSO

logistic regression, SVM, Adaboost, PCA-SVM, PCA-Adaboost,
LASSO-SVM, and LASSO-Adaboost.

Principal component analysis and LASSO regression as the
preliminary feature reduction methods were employed to decrease
the dimension of radiomics features while exploring the impact
on the performance of the SVM and Adaboost methods. For PCA
analysis, 95% of the variance in the data was preserved and the
selected number of components was 24. 26 radiomics features
were selected and retained after LASSO regression with assigning
weights to each feature. The feature weights were ranked from
largest to smallest in Figure 3.

The PCA-SVM and PCA-Adaboost were built based on the
PCA-dataset with a feature dimensionality of 24. The LASSO-SVM
and LASSO-Adaboost were built based on the LASSO-dataset with
a feature dimensionality of 26.

The effectiveness of the model’s performance was evaluated
using a 10-fold cross-validation procedure. The accuracy,
sensitivity, specificity, precision, F1-score, and AUC of all models
are shown in Table 3. Moreover, the SVM model and Adaboost
model outperformed the LASSO logistic regression model in the
assessment (Figure 4). However, the preliminary feature reduction
methods did not impact the performance of SVM and Adaboost
significantly.

The confusion matrices of all classifiers were plotted in
Figure 5.

In the decision curve plot, all models showed high values of
clinical utility (Figure 6).

3.3. External validation of
radiomics-based models for diagnosis of
cTN

In the external validation procedure, a total of 200 radiomics
features were obtained from nerve and vascular images of
the validation dataset. A total of 104 corresponding predictive
radiomics features were manually remained to validate the
performance of the models. The effectiveness of the model’s
performance was evaluated using the scores of accuracies,
sensitivity, specificity, precision, F1-score, and AUC. The scores are
listed in Table 4. The diagnostic power of all models in predicting
cTN is shown in Table 4 and Figures 7–9. The preliminary feature
reduction methods did not impact the performance of SVM and
Adaboost significantly in the external validation.
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FIGURE 7

ROC curves of LASSO logistic regression (A), SVM, PCA-SVM, and
LASSO-SVM (B), Adaboost, PCA-Adaboost, and LASSO-Adaboost (C)
models based on prospective validation dataset.

The external validation confusion matrices of all classifiers were
plotted in Figure 8. In the decision curve plot, all models showed
high values of clinical utility (Figure 9) with the external validation
dataset.

4. Discussion

This research confirms that trigeminal nerve MRI radiomics
feature extraction and the resulting radiomics model strongly
correlate with cTN diagnosis. In this study, we retrospectively
gathered trigeminal nerve imaging data from 350 patients
with cTN and 100 control participants, extracted the imaging
features, and built three advanced binary classification models:
the LASSO logistic regression, SVM, and Adaboost models.
The accuracies were 91.78% (AUC = 0.969, 95% CI = 0.956–
0.980), 94% (AUC = 0.974, 95% CI = 0.963–0.985), and 93.63%
(AUC = 0.978, 95% CI = 0.961–0.99), respectively. PCA and
LASSO regression were employed as the preliminary feature
reduction methods to reduce the dimension of radiomics features
to 24 and 26, respectively. The SVM and Adaboost models
were established based on the feature reduction datasets. The
accuracies of the models were 91.82% (AUC = 0.967, 95%
CI = 0.955–0.982), 90.91% (AUC = 0.966, 95% CI = 0.953–
0.981), 92.73% (AUC = 0.977, 95% CI = 0.959–0.99), and 88.54%
(AUC = 0.956, 95% CI = 0.939–0.972) for PCA-SVM, PCA-
Adaboost, LASSO-SVM, and LASSO-Adaboost, respectively. Our
finding demonstrates the efficacy of the radiomics-based predictive
models that can accurately diagnose cTN.

To validate the clinical utility, a prospective study was
conducted with 20 cTN patients and 20 control participants
enrolled. Image radiomics features were extracted and applied to
validate the cTN predictive models. The accuracies were 87.5%
(AUC = 0.94, 95% CI = 0.857–0.99), 90.0% (AUC = 0.925, 95%
CI = 0.832–0.997), 82.5% (AUC = 0.903, 95% CI = 0.810–0.974),
85.0% (AUC = 0.925, 95% CI = 0.845–0.987), 77.5% (AUC = 0.9,
95% CI = 0.799–0.982), 90.0% (AUC = 0.945, 95% CI = 0.975–
0.998), and 87.5% (AUC = 0.925, 95% CI = 0.949–0.985) for LASSO
logistic regression, SVM, Adaboost, PCA-SVM, PCA-Adaboost,
LASSO-SVM, and LASSO-Adaboost, respectively. The external
validation proved the accuracy and clinical value of the radiomics-
based predictive models. However, we found that the accuracy of
the external validation set was lower than that of the training set,
which may be caused by the fact that the model constructed in this
study was slightly biased compared to the actual situation due to
the small number of subjects.

Facial TN is a form of chronic neuropathic pain. The
International Association for the Study of Pain defines typical
idiopathic TN as “sudden, usually unilateral, severe, transient,
stabbing and recurrent pain in one or more branches of the
fifth cranial nerve.” Only 12.6 new cases per 100,000 persons per
year indicate a low incidence rate (Koopman et al., 2009). It has
been reported that nerve demyelination caused by NVC produces
ectopic impulses traveling as brain waves is the basis for triggering
cTN attacks (Cao et al., 2021). Neurovascular compression has been
proven to be the main cause of cTN (Cruccu et al., 2016). Although
the clinical symptoms of cTN are obvious and the diagnosis of cTN
is mainly based on clinical symptoms, it is subjective in nature and
has more differential diagnoses. These include: glossopharyngeal
neuralgia, painful posttraumatic trigeminal neuropathy, persistent
idiopathic facial pain, painful trigeminal neuropathy attributed
to acute herpes zoster, short-lasting unilateral neuralgiform
headache attacks with autonomic symptoms (SUNA), short-
lasting unilateral neuralgiform headache attacks with conjunctival
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FIGURE 8

Confusion matrix of LASSO logistic regression model (A), SVM model (B), Adaboost model (C), PCA-SVM model (D), PCA-Adaboost model (E),
LASSO-SVM model (F), and LASSO-Adaboost model (G) based on prospective validation dataset.

injection and tearing (SUNCT) or paroxysmal hemicrania, cluster
headache, primary stabbing headache, cracked tooth, caries or
pulpitis (Maarbjerg et al., 2017). So a cTN diagnosis may be
misdiagnosed due to performance changes that are not easy to
diagnose.

Cranial nerve MRI is currently the gold standard for
determining the degree of neurovascular compression, but it
has drawbacks. The studies conducted by Hitchon et al. (2019)
demonstrated that the specificity of MRI in determining the extent
of neurovascular compression is only 50%. Although NVC is the
most common cause of TN, patients may still show negative
images, ruling out trigeminal microvascular decompression and
the possibility of a complete recovery. Although Maarbjerg et al.
(2015) had shown that severe NVC was more common on the
symptomatic side, they also found that NVC was common on both
sides of symptomatic and asymptomatic sides of healthy people
and most patients. The final diagnosis in traditional imaging is
subjective and based on the opinions of the imaging experts who
perform the procedure. The next course of treatment for a patient

with cTN may be affected by the clinician’s diagnosis, which may
differ from those of other clinicians who have examined the patient.
Therefore, developing a model based on feature information
(radiomics) through imaging to diagnose cTN is crucial (Barker
et al., 1996).

The majority of previous research has concentrated on the use
of imaging to assess which vessels are at fault. To better demonstrate
the position of compression in the facial nerve root exit zone
(fREZ), Teton et al. (2019) performed a 3D reconstruction of MR
and MRA images from 35 patients. Similarly, Satoh et al. (2007)
also conducted a 3D reconstruction of nerves and blood vessels
in patients with TN, demonstrating the relationship between the
trigeminal nerve and blood vessels in some representative cases.
Zhao et al. (2022) analyzed the MRI data from 67 patients with
unilateral TN to identify such vessels and established a prediction
model based on this data. Hughes reported a case study in which the
superior cerebellar artery (SCA) was in contact with the trigeminal
nerve at the position close to the trigeminal foramen. However,
the presence of the protective peripheral myelin sheath around
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FIGURE 9

Decision curve analysis of the LASSO logistic regression model (A), SVM model (B), Adaboost model (C), PCA-SVM model (D), PCA-Adaboost model
(E), LASSO-SVM model (F), and LASSO-Adaboost model (G) based on prospective validation dataset.
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the nerve meant that it could resist the influence of vascular
compression on the nerve. Thus, it was still a remote possibility
making TN less likely to occur (Hughes et al., 2016). Hitchon
et al. (2015) found that of 51 patients, 8 had MRI results that
contradicted or otherwise did not match the vessels thought to be
at fault after surgery. As such, the prediction diagnosis of cTN was
not included in any prior research and instead only focused on its
etiology.

Radiomics and machine learning studies at present mainly
focus on the differential diagnosis, genotype, or survival rate
of tumors (Xu et al., 2021). Using diffusion-weighted imaging
(DWI) and 18F fluorodeoxyglucose positron emission tomography
(18F FDG PET), Zhang et al. have developed an integrated
radiomics model. To achieve a 98% (AUC = 0.98) accuracy
rate in differentiating glioblastoma (GBM) from solitary brain
metastases (SBM), he has built seven radiomics models and
five non-radiomics techniques (Zhang et al., 2021). Shin et al.
used radiomics to predict the prognosis of gastric cancer.
The retrospective study used a training cohort (349 patients)
and an external validation cohort (61 patients). Using 10-fold
cross-validation and penalized Cox regression with the least
absolute shrinkage and a selection operator, a radiomics model
was developed. Results showed that its prediction efficiency
was significantly higher than the clinical model (P < 0.01)
(Shin et al., 2021). In general, current radiomics and machine
learning research focus on predicting tumors’ differential diagnosis,
genotype, or survival rate. There have been several radiomics
studies on cTN. Mulford et al. used a convolutional U-net
deep learning network to segment the trigeminal nerve from
the pons to the ganglion. A radiomics approach was used to
identify symptomatic trigeminal nerves from the MRIs of a
group of TN patients, and the validation AUC of this model
was 0.83, with sensitivities and specificities of 0.82 and 0.76,
respectively (Mulford et al., 2022). Ge et al. (2022) explored
risk factors for unilateral cTN or ITK-NCV with bilateral NVC
using machine learning (ML), pointing out that textural features
of trigeminal cisternal segments such as SALGLE, Coarseness,
MAL, DV, Maximum, and Correlation, and the type of the
offending vessel may be risk factors for cTN or ITK-NCV.
Our study can provide an important addition to the existing
literature.

This study proposes a new method for diagnosing cTN using an
accurate predictive model based on MRI radiomics and machine
learning tools. Radiomics can glean more detailed information
than the conventional method of visually assessing images. Out
of the 200 radiologic characteristics examined, 104 were found
to be related to the diagnosis of cTN. Most of these features
are not visible to the naked eye but are essential for a thorough
assessment of a patient’s condition. We developed three advanced
binary classification machine-learning algorithms and tested and
verified their accuracy, performance, and clinical utility value.
PCA and LASSO regression were employed as the preliminary
feature reduction methods to reduce the dimension of radiomics
features to 24 and 26, respectively. The SVM and Adaboost models
were also established based on the feature reduction datasets. All
the models demonstrated outstanding diagnostic ability, which
means MRI radiomics is helpful in diagnosing cTN in clinical.
The preliminary dimensional reduction methods did not impact

the performance of SVM and Adaboost significantly. Even the
AUC of the LASSO-SVM model is higher than that of the SVM
model. The LASSO regression assigns weights to each feature
when processing the step of feature selection. The different
weights of features imply that certain features contribute more
to the classification model than other features among the 104
radiomics features. By analyzing the weights of the remaining
features, it could be found that first-order features extracted
from vascular magnetic resonance images are the most distinctive
ones. First-order statistics features describe the distribution of
voxel intensities within the ROI regions. Intuitively, voxels with
high intensity refer to cranial vessels in vascular magnetic
resonance. Nevertheless, the small vessels cannot be identified
by the naked eye due to low image resolution. The first-order
statistics features are sensible to the changes in intensities, which
indicates the possibility of small vessels. Thus, first-order statistics
features might be the most significant features related to the
diagnosis of cTN.

The conducted prospective study further validates the
performance and clinical utility of all models. It can be
seen that LASSO-SVM and LASSO-Adaboost demonstrated
better performance than SVM and Adaboost. The high
dimensionality led to the curse of dimensionality, which
makes the SVM and Adaboost models unstable and less
robust. Fewer features with higher weights assigned by LASSO
regression will make the SVM and Adaboost models better
generalization performance.

Although our study depicted ideal results, it still has some
limitations. First, larger data sets are required to evaluate and adjust
our model because the total number of samples for this radiomics
study is very few. Finally, a larger, prospective, multicenter study on
more patients is warranted to verify our findings.

5. Conclusion

In conclusion, this work points to the importance of the
construction of the imaging omics model, and its essential role
in diagnosing cranial nerve disorders. When clinical diagnosis
is challenging, the radiomics model built by extracting features
from MRI images might serve as a valuable adjunct due to its
superior diagnostic efficiency compared to conventional diagnostic
approaches for cTN.
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