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Background and purpose: Deep learning algorithms for segmentation of multiple 
sclerosis (MS) plaques generally require training on large datasets. This manuscript 
evaluates the effect of transfer learning from segmentation of another pathology 
to facilitate use of smaller MS-specific training datasets. That is, a model trained 
for detection of one type of pathology was re-trained to identify MS lesions and 
active demyelination.

Materials and methods: In this retrospective study using MRI exams from 149 
patients spanning 4/18/2014 to 7/8/2021, 3D convolutional neural networks were 
trained with a variable number of manually-segmented MS studies. Models were 
trained for FLAIR lesion segmentation at a single timepoint, new FLAIR lesion 
segmentation comparing two timepoints, and enhancing (actively demyelinating) 
lesion segmentation on T1 post-contrast imaging. Models were trained either de-
novo or fine-tuned with transfer learning applied to a pre-existing model initially 
trained on non-MS data. Performance was evaluated with lesionwise sensitivity 
and positive predictive value (PPV).

Results: For single timepoint FLAIR lesion segmentation with 10 training studies, 
a fine-tuned model demonstrated improved performance [lesionwise sensitivity 
0.55  ±  0.02 (mean  ±  standard error), PPV 0.66  ±  0.02] compared to a de-novo 
model (sensitivity 0.49  ±  0.02, p  =  0.001; PPV 0.32  ±  0.02, p  <  0.001). For new 
lesion segmentation with 30 training studies and their prior comparisons, a 
fine-tuned model demonstrated similar sensitivity (0.49  ±  0.05) and significantly 
improved PPV (0.60  ±  0.05) compared to a de-novo model (sensitivity 0.51  ±  0.04, 
p  =  0.437; PPV 0.43  ±  0.04, p  =  0.002). For enhancement segmentation with 20 
training studies, a fine-tuned model demonstrated significantly improved overall 
performance (sensitivity 0.74  ±  0.06, PPV 0.69  ±  0.05) compared to a de-novo 
model (sensitivity 0.44  ±  0.09, p  =  0.001; PPV 0.37  ±  0.05, p  =  0.001).

Conclusion: By fine-tuning models trained for other disease pathologies with 
MS-specific data, competitive models identifying existing MS plaques, new MS 
plaques, and active demyelination can be built with substantially smaller datasets 
than would otherwise be required to train new models.
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1. Introduction

Multiple sclerosis (MS) is a progressive neurodegenerative disease 
characterized by demyelinating lesions in the central nervous system and 
the leading cause of non-traumatic neurologic disability among young 
adults (Koch-Henriksen and Sørensen, 2010). It has an estimated global 
prevalence of 44 per 100,000 in 2020, increased from 29 per 100,000 in 
2013 (Walton et al., 2020). Magnetic resonance imaging (MR) plays a key 
role in monitoring disease progression by identifying new lesions on 
T2-weighted or fluid-attenuated inversion recovery (FLAIR) sequences. 
Active demyelination is characterized by lesion enhancement on 
T1-weighted images following gadolinium-based contrast agent 
administration. Identification of new or actively demyelinating lesions 
can prompt clinicians to alter a patient’s treatment strategy.

MRIs of patients with MS often contain numerous lesions making 
the identification of new FLAIR lesions or tiny foci of enhancement a 
tedious and error-prone task that is ideally suited for computer-aided 
detection. Early MS segmentation algorithms used techniques such as 
region-growing algorithms (Heinonen et al., 1998; Wu et al., 2006), 
support vector machines (Lao et al., 2008; HosseiniPanah et al., 2019), 
random forest methods (Maier and Handels, 2015), and intensity-
based outlier detection (Van Leemput et al., 2001). More recently the 
development of convolutional neural net (CNN) based algorithms has 
resulted in improved segmentation accuracy (Brosch et  al., 2016; 
Aslani et al., 2019a,b; Coronado et al., 2020; Gabr et al., 2020; Krüger 
et al., 2020; McKinley et al., 2020, 2021; Narayana et al., 2020a,b; 
Fenneteau et al., 2021). In particular, networks based on the U-Net 
architecture with an encoder-decoder structure have yielded excellent 
results for segmentation of FLAIR lesions (Duong et al., 2019; La Rosa 
et al., 2020; Narayana et al., 2020a,b; Fenneteau et al., 2021; McKinley 
et al., 2021) and lesion enhancement (Coronado et al., 2020; Durso-
Finley et al., 2020).

The identification of new or actively demyelinating MS plaques, 
rather than simply quantifying overall disease burden, is particularly 
important in guiding clinical management. As such, several groups 
have developed dedicated algorithms for segmentation of new FLAIR 
lesions on follow-up studies compared to an initial MR (Fartaria et al., 
2019; Köhler et al., 2019; Schmidt et al., 2019; Krüger et al., 2020; 
McKinley et al., 2020; Salem et al., 2020). Some of these algorithms 
use a dedicated U-Net which incorporates both follow-up and baseline 
studies as inputs (Krüger et al., 2020; Salem et al., 2020), while others 
segment the follow-up and baseline studies individually and 
manipulate the resulting segmentation maps to generate a new lesion 
map (Köhler et al., 2019; Schmidt et al., 2019; McKinley et al., 2020).

One limitation of the above methods is that they used large 
amounts of manually segmented data to train their models, ranging 
from 50 to >1,000 MS studies (Coronado et al., 2020; Gabr et al., 2020; 
Narayana et  al., 2020a; McKinley et  al., 2021). Moreover, due to 
differences in scan parameters, technique, and patient populations, 
deep-learning models trained on one institution’s data are often not 
well suited to process another institution’s data (AlBadawy et  al., 
2018), limiting clinical utility. Prior work has demonstrated that 
re-training/fine-tuning these default models with even a small amount 
of institutional-specific data (i.e., transfer learning) can improve 
performance (Weeda et al., 2019; Rauschecker et al., 2022). However, 
it is currently unclear if transfer learning is effective when the default 
model is trained on non-MS imaging abnormalities from the same 
institution, given the different imaging appearance of small 

demyelinating plaques compared to other white matter pathologies 
such as leukodystrophy or gliomas.

In this work we  evaluate the effect of transfer learning from 
models initially trained on other pathologies on MS segmentation 
efficacy. Since identification of new and actively demyelinating lesions 
are equally important goals in assessing lesion burden, we  assess 
efficacy of new FLAIR lesion segmentation from paired initial and 
follow-up studies in addition to accuracy of single timepoint FLAIR 
and enhancement segmentation.

Each model is evaluated on its lesionwise sensitivity and positive 
predictive value (PPV), as these are the metrics most relevant to the 
interpreting radiologist. The value of sensitivity is easily apparent, as 
a high sensitivity model facilitates detection of patients with 
progressive disease. A high PPV is also necessary, as excessive false 
positives increase the radiologist’s interpretation time, which is a 
critical factor influencing utilization of deep learning tools in clinical 
practice. An increase in one of these metrics does not necessarily 
imply an increase in the other; in fact, a highly sensitive model may 
demonstrate a low PPV due to a large number of both true- and false-
positive segmented lesions. As such, we also compare how sensitivity 
and PPV are differentially influenced by transfer learning.

2. Materials and methods

2.1. Patients and data

This retrospective study was approved by the institutional review 
board of the University of California, San Francisco, with a waiver for 
consent due to minimal risk. Deidentified studies were obtained from 
our institution’s picture archiving and communication system (PACS) 
according to the procedure detailed in Figure 1. Inclusion criteria 
consisted of MRI studies ordered for follow-up or initial investigation 
of suspected multiple sclerosis, while exclusion criteria consisted of 
the presence of non-demyelinating enhancing intra-axial lesions or 
excessive motion artifact that impaired interpretation as specified in 
the diagnostic report. Additionally, for patients with multiple MS 
studies, only a single study or study pair was included in each analysis 
dataset. Of the 4,269 studies in the evaluated timeframe, 192 
demonstrated both enhancing lesions and new lesions compared to a 
prior study while 297 demonstrated new lesions without enhancing 
lesions and 64 demonstrated enhancing lesions without new lesions 
(Figure 1). There was no minimum size of lesions. For single timepoint 
lesion analysis, one FLAIR sequence was used from each of 60 
patients. For new lesion analysis, one FLAIR sequence was used from 
both an initial and follow-up timepoint from each of 60 patients. For 
enhancement segmentation, pre- and post-gadolinium 3D gradient 
recall echo (GRE) T1-weighted sequences were used from each of 40 
patients. All studies were manually segmented by a radiologist referred 
to as Grader 1 (SGW, 3rd year radiology resident with 5+ years of 
image segmentation experience). A subset of 10 studies for single 
timepoint FLAIR lesion analysis were also jointly segmented by two 
additional radiologists (JDR and AMR, attending neuroradiologists 
with 2 and 3 years of post-residency experience, respectively) for 
comparison purposes; each individual study was segmented by only 
one of JDR or AMR. This segmentation set is referred to as Grader 2. 
Grader 1 was used as the ground truth for statistical analysis, including 
evaluation of Grader 2.
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2.2. Default models

The default single timepoint FLAIR U-Net (Duong et al., 2019) 
was trained on 34 MR studies from the University of California, 
San Francisco and 293 MR studies from the University of 
Pennsylvania, including various underlying pathologies previously 
described, all demonstrating lesions of varying shape and size with 
hyperintense FLAIR signal abnormality. Pathologies ranged from 
tumors to leukoencephalopathy to chronic small vessel ischemia. 
The default FLAIR U-Net to detect new lesions was trained on 198 
patients with brain tumors with consecutive imaging and manual 
segmentations delineating areas of change on FLAIR imaging 
(Rudie et al., 2022). The default enhancement U-Net was trained 
on 463 MR studies demonstrating abnormally enhancing 
metastatic tumors (“metastases”) from the University of California, 
San Francisco (Rudie et  al., 2021). All studies were obtained 
with approval from the institutional review board from the 
respective institute.

2.3. Deep learning segmentation

The same 3D U-Net architecture was used for all models unless 
otherwise specified, both de-novo and fine-tuned. All images were 
pre-processed as described elsewhere (Duong et al., 2019; Rauschecker 

et al., 2020; Rudie et al., 2021). In brief, images were normalized by the 
mean and standard deviation (SD) signal intensity to zero mean and 
unit SDs and resampled to 1 mm3 isotropic resolution via linear 
interpolation. A variety of elastic transformations (Simard et al., 2003) 
were applied for data augmentation. Each augmented imaging volume 
was subsequently split into 96-mm3 3D patches for input to the 
network. During training, the patches were randomly sampled across 
the full-brain volume. A total of 60 patches, split into 30 lesion-
inclusive and 30 lesion-exclusive patches, were obtained from each 
training MRI and subject to 3 augmentations, resulting in 180 patches 
per MRI.

Following image pre-processing, both FLAIR and enhancing 
lesions were detected with our previously developed CNN networks 
with three-dimensional U-Net architecture (3D U-Net, Figure 2A) 
using FLAIR and T1 pre/post-gadolinium images as inputs, 
respectively. The U-Net consists of 4 down-sampled blocks followed 
by 4 up-sampled blocks. Training was performed for 30 epochs with 
a standard cross-entropy loss, Adam optimizer, and learning rate of 
10−5; further details on architecture and training process are described 
in Duong et al. (2019). To develop MS-specific models, we used MS 
training data to fine-tune our default disease-invariant FLAIR model 
(Duong et al., 2019), glioma-specific new FLAIR signal model (Rudie 
et al., 2022), and metastases-specific enhancement model (Rudie et al., 
2021). We compared these fine-tuned models with de-novo models 
trained with the same data.

FIGURE 1

Flowchart shows study selection according to inclusion/exclusion criteria from initial search to the subset designated for analysis on each 
segmentation task (single timepoint FLAIR lesions, new lesions, and enhancement). n, number of studies; MS, multiple sclerosis; FLAIR, fluid attenuation 
inversion recovery.
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As an additional comparison, the single timepoint FLAIR 
segmentation experiment was repeated with two alternate U-Net 
architectures. One alternate architecture was shallower than the original 
and contained only 3 down-sampled blocks (Supplementary Figure S1A), 
while the other alternate architecture was deeper and contained 5 down-
sampled blocks (Supplementary Figure S2A). All other components of 
these alternate architectures were unchanged from the original 
described above.

2.4. New lesion analysis

Our algorithm for new lesion segmentation relies upon generation 
of a single subtraction volume (Figure 2B) generated from the input 
of an initial/follow-up study pair. First, the follow-up FLAIR study is 
registered to the initial study using a symmetric normalization 
transformation with Advanced Normalization Tools (ANTs;1 
RRID:SCR_004757), followed by signal intensity normalization and 
re-sampling as described above. Subsequently the initial study image 
is subtracted from the follow-up study image to create a subtraction 
volume, which highlights the intensity differences between each study 
pair. This subtraction volume is then used as input to our 3D U-Net 

1 http://neuro.debian.net/pkgs/ants.html

for both training and prediction of new lesions. Of note, our glioma-
specific default model was trained using subtraction volume inputs, 
while the original model described in Rudie et al. used a multi-channel 
architecture with both timepoint FLAIR volumes as separate inputs 
(Rudie et al., 2022).

2.5. Outside institution test set

Our single timepoint FLAIR lesion models were used to segment 
lesions in MRI studies from the publicly-available ISBI 2015 dataset 
(Carass et al., 2017). Since human reference segmentations were only 
available for the training dataset (21 studies from 5 patients), the 
official test set was excluded from analysis. Segmentation performance 
was evaluated both without training on any ISBI data and after fine-
tuning on a subset of ISBI studies. A leave-one-out cross validation 
was performed in which the models were trained on four patients’ 
studies and tested on the remaining patient.

2.6. Statistical analysis

For each segmentation task, the total dataset was split into 4 (for 
enhancement segmentation) or 6 (for single timepoint and new lesion 
FLAIR segmentation) subsets of 10 studies each. The first subset of 10 
studies was used to test the default model, which facilitated 

FIGURE 2

Graphical overview of multiple sclerosis analysis algorithm. (A) Schematic of three-dimensional U-Net architecture used for both FLAIR and 
enhancement segmentation. (B) Illustration of new lesion analysis of FLAIR images for a single patient. Each pair of co-registered initial and follow-up 
studies are used to generate a subtraction volume, which is then processed through a 3D U-Net to segment new lesions. FLAIR, fluid attenuation 
inversion recovery.
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comparison with the independent human segmentation (Grader 2). 
All other models were assessed on the entire dataset via a 4 or 6-fold 
cross-validation approach. For example, when evaluating models that 
use 10 training studies, one fine-tuned model was trained on the first 
subset of 10 studies and tested on the second subset of 10 studies, 
while another fine-tuned model was trained on the second subset and 
tested on the third subset. This pattern was repeated until all subsets 
had been used as the test set. This algorithm is depicted in graphical 
form in Supplementary Figure S3.

All analyses were performed in study native space. Lesion 
detection performance was compared using lesionwise sensitivity 
[mean ± standard error (SE)] and positive predictive value (PPV; 
mean ± SE). Data was averaged across all folds of the cross validation. 
Evaluation of performance across methods was accomplished with 
one-way ANOVA with repeated measures followed by paired 2-tailed 
t-tests to compare the de-novo and fine-tuned training approaches. 
Unpaired 2-tailed t-tests were used for comparison with the default 
models and Grader 2 segmentation. All statistical operations were 
corrected for multiple comparisons with the Bonferroni correction.

3. Results

3.1. Patient demographics

A total of 149 patients (110 women, age range, 15–70 years, 
median age, 40 years) were included (Tables 1, 2). For single timepoint 
FLAIR lesion analysis the training set had a range of 2–216 lesions per 
patient (median 26) compared to 15–58 (median 34.5) for the test set. 
For new lesion analysis the training set had a range of 1–64 new 
lesions per patient (median 3) compared to 1–14 (median 3) for the 
test set. For post-contrast enhancement analysis the training set had a 
range of 1–18 enhancing lesions per patient (median 2) compared to 
1–6 (median 3) for the test set.

3.2. Single timepoint FLAIR lesion analysis

The first model was trained to generate segmentations of all MS 
lesions at a single timepoint on FLAIR imaging (Table 3). The default 
model trained on non-MS pathology suffered from low lesion 
sensitivity (0.38 ± 0.04 [mean ± SE]) compared to independent human 
segmentations (Grader 2, sensitivity 0.63 ± 0.06, p = 0.003). However, 
as few as 20 MS studies used to fine-tune this default model allowed 
improvement in sensitivity (0.59 ± 0.02, p = 0.515 [compared to Grader 
2]) and PPV (0.68 ± 0.03, p = 0.272) to human performance levels, with 
only marginal gain from additional training studies (Figure 3A). With 
50 training studies both the fine-tuned (0.63 ± 0.03) and de-novo 
models (0.62 ± 0.02) demonstrated similar sensitivity compared to 
independent human segmentation (Grader 2; 0.63 ± 0.06), although 
this de-novo model still yields a lower PPV (0.57 ± 0.03) than either 
the fine-tuned (0.70 ± 0.03, p < 0.001) or independent human 
(0.74 ± 0.05, p = 0.008) segmentations.

Representative slices from test studies with accompanying 
segmentations (Figure 3B) demonstrate that nearly all models perform 
well on the classic ovoid periventricular demyelinating lesions without 
a marked difference between the fine-tuned and de-novo models. 

However, the MS-trained models more consistently segment smaller 
juxtacortical lesions than the default model; performance on these 
lesions also improves with increasing training dataset size.

Performance on the external 2015 ISBI dataset demonstrated 
comparable results to previously published segmentation algorithms 
(Table  4). The fine-tuned models are again seen to outperform 
de-novo models when using small training datasets, particularly with 
respect to lesionwise PPV. Additional fine-tuning with a portion (4 
patients) of the ISBI dataset further increased performance on the 
remainder of the ISBI dataset, as would be expected from prior results 
(Rauschecker et al., 2022; Table 4). However it should be acknowledged 
that even fine-tuned model performance falls short of the best 
algorithms tested on the ISBI dataset (Aslani et al., 2019a); this may 
reflect limitations related to use of a default model trained on non-MS 
data, small training datasets, and/or differences in neural 
net architecture.

This single timepoint FLAIR segmentation experiment yielded 
similar results when repeated using alternate shallower 
(Supplementary Figure S1B; Supplementary Table S1) and deeper U-Net 
architectures (Supplementary Figure S2B; Supplementary Table S2), with 
fine-tuned models demonstrating significantly greater PPV than the 
de-novo model comparisons across all training dataset sizes. These results 
suggest that the value of transfer learning is not specific to a single neural 
network architecture.

3.3. New FLAIR lesion analysis

The second model was trained to identify new demyelinating 
lesions from FLAIR MRI at one timepoint compared to a prior 
timepoint (Table  5). The default new FLAIR lesion model was 
originally trained on serial post-treatment gliomas studies for the 
purpose of identifying new geographic regions of signal abnormality 
(Rudie et al., 2022). While this is a very different task than identifying 
discrete new demyelinating lesions, we were interested in evaluating 
the merit of transfer learning from one pathology to another on this 
subtraction-based longitudinal assessment model. This default model 
suffered from poor lesionwise sensitivity (0.13 ± 0.07) and PPV 
(0.18 ± 0.11). However, PPV in particular benefited from fine-tuning 
on MS-specific data, even with only 10 training studies (fine-tuned 
0.54 ± 0.04, p = 0.005 [compared to default model]; de-novo 0.29 ± 0.03, 
p = 0.360) but further increasing with more training data (Figure 4A). 
The de-novo trained model had higher sensitivity for lesions overall 
than the fine-tuned model (although this difference was only 
statistically significant with 20 (fine-tuned 0.41 ± 0.05, de-novo 
0.50 ± 0.04, p = 0.003) and 40 training studies (fine-tuned 0.48 ± 0.06, 
de-novo 0.57 ± 0.04, p = 0.010)), and both the fine-tuned and de-novo 
models demonstrated higher sensitivity than the default model.

Representative slices from test studies with accompanying 
segmentations (Figure 4B) further illustrates that the effect of transfer 
learning and increasing training dataset size is reflected in fewer false 
positive segmentations. In particular, the de-novo models were more 
likely to include false positive segmentations along the boundaries of 
unchanged lesions and cortex. Conversely, the fine-tuned models were 
more likely to miss lesions in these areas; we suspect this is related to 
increased registration-related noise associated with sharp boundaries 
between low and high FLAIR signal (Table 6).
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3.4. Enhancing (actively demyelinating) 
lesion analysis

Gadolinium contrast agents are used in most studies of MS in 
order to highlight lesions with active demyelination. The third model 
was trained to identify these enhancing lesions on T1 post-contrast 
imaging. The default enhancement model was trained to detect 
enhancing brain lesions in the context of intracranial metastases 
(Rudie et al., 2021). This task is computationally similar to enhancing 
MS lesion detection because both of these pathologies demonstrate 
abnormal enhancement and are typically focal lesions of a similarly 
small size. This default model demonstrated high sensitivity 
(0.73 ± 0.09) but relatively low PPV (0.39 ± 0.08) (Table 6). The PPV 
was again greatly improved when fine-tuning the model on even a 
small number of MS-specific cases, as few as 10 studies (fine-tuned 
0.67 ± 0.04, p = 0.003 [compared to default model]; de-novo 0.27 ± 0.04, 

p = 0.122), without a significant decrease in lesionwise sensitivity [fine-
tuned 0.68 ± 0.06, p = 0.649 (compared to default model); de-novo 
0.39 ± 0.05, p = 0.004; Figure 5A].

Representative slices from test studies with accompanying 
segmentations (Figure 5B) illustrate the fine-tuned models’ higher 
performance, particularly with regard to fewer false positive 
segmentations. For example, the de-novo models were more likely to 
include false positive segmentations adjacent to normally enhancing 
structures such as the falx or dural venous sinuses.

4. Discussion

Despite the proven efficacy of deep learning algorithms in 
segmenting MS lesions, these techniques have yet to become widely 
used in clinical practice. There are multiple reasons for this delay in 

TABLE 1 Patient demographics.

FLAIR 
single 

timepoint 
training

FLAIR 
single 

timepoint 
testing

FLAIR 
serial 

timepoint 
training

FLAIR 
serial 

timepoint 
testing

Enhancement 
training

Enhancement 
testing

Patient 

number

50 10 50 10 30 10

Sex Female 35 (70%) 8 (80%) 37 (74%) 8 (80%) 23 (77%) 8 (80%)

Male 15 (30%) 2 (20%) 13 (26%) 2 (20%) 7 (23%) 2 (20%)

Age (years) Initial 45 ± 12 49 ± 12 37 ± 11 42 ± 12 35 ± 11 39 ± 12

Follow-up 38 ± 11 44 ± 13

Field 

strength*

3 T Initial 44 (88%) 7 (70%) 35 (70%) 6 (60%) 26 (87%) 10 (100%)

Follow-up 37 (74%) 7 (70%)

1.5 T Initial 6 (12%) 3 (30%) 15 (30%) 4 (40%) 4 (13%) 0

Follow-up 13 (26%) 3 (30%)

TE (msec)# Maximum Initial 388 495 394 388 16 3

Follow-up 455 143

Median Initial 130 148 127 131 3 3

Follow-up 116 116

Minimum Initial 99 95 127 116 2 2

Follow-up 116 98

TR (msec)# Maximum Initial 7,202 10,000 10,000 10,000 2,451 2,450

Follow-up 7,202 6,952

Median Initial 6,000 5,650 5,952 5,959 626 2,300

Follow-up 6,002 6,252

Minimum Initial 5,000 4,002 4,600 5,000 4 5

Follow-up 4,000 5,800

FLAIR 

acquisition
3D Initial 46 (92%) 10 (100%) 42 (84%) 9 (90%)

Follow-up 50 (100%) 10 (100%)

2D Initial 4 (8%) 0 8 (16%) 1 (10%)

Follow-up 0 0

Unless otherwise specified, data are the number of patients in each category, with percentages in parentheses. Age is listed as mean ± standard deviation. TE and TR values are listed for FLAIR 
sequences and post-gadolinium 3D GRE T1-weighted sequences. FLAIR, fluid attenuation inversion recovery; TE, echo time; TR, repetition time; GRE, gradient recall echo.

https://doi.org/10.3389/fnins.2023.1188336
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Wahlig et al. 10.3389/fnins.2023.1188336

Frontiers in Neuroscience 07 frontiersin.org

clinical implementation, but one challenge is that many of these 
published algorithms require a large amount of manually segmented 
training data (Coronado et al., 2020; Gabr et al., 2020; Narayana et al., 
2020a), only to suffer in performance when applied to a new 
institution’s dataset. Transfer learning is a well-described technique 
used to mitigate the need for such large training datasets when a 
pre-trained default model is available (Weeda et al., 2019). However, 
it is unclear whether this benefit still applies when the default model 
is initially trained on non-MS pathology. Additionally, in clinical 

practice the detection of new or actively demyelinating lesions is often 
more important than cataloging each individual FLAIR lesion. As 
such, we  describe the application of transfer learning to multiple 
non-MS default models for segmentation of existing MS lesions on 
single timepoint FLAIR imaging, new MS plaques on serial FLAIR 
imaging, and actively demyelinating lesions on T1 post-
contrast imaging.

For segmentation of FLAIR lesions at a single timepoint, our 
results show that a model initially trained to segment a variety of 

TABLE 2 Scanner models.

Scanner 
manufacturer

Model FLAIR 
single 

timepoint 
training

FLAIR 
single 

timepoint 
testing

FLAIR serial 
timepoint 
training 
(initial/

follow-up)

FLAIR serial 
timepoint 

testing 
(initial/

follow-up)

Enhancement 
training

Enhancement 
testing

GE Signa Premier 8 (16%) 1 (10%) 4 (8%)/12 (24%) 1 (10%)/2 (20%) 7 (23%) 3 (30%)

Signa HDxt 6 (12%) 3 (30%) 13 (26%)/13 

(26%)

2 (20%)/3 (30%) 3 (10%) 0

Signa Architect 0 0 0/1 (2%) 0/0 0 0

Signa Artist 0 0 1 (2%)/0 0/0 0 0

Signa PET/MR 0 0 1 (2%)/0 1 (10%)/3 (30%) 0 1 (10%)

Discovery 

MR750

3 (6%) 0 14 (28%)/12 

(24%)

1 (10%)/0 4 (13%) 2 (20%)

Discovery 

MR750w

6 (12%) 3 (30%) 1 (2%)/6 (12%) 2 (20%)/2 (20%) 3 (10%) 0

Optima MR450w 0 0 1 (2%)/0 0/0 0 0

Siemens Skyra 25 (50%) 3 (30%) 11 (22%)/6 (12%) 1 (10%)/0 12 (40%) 4 (40%)

Verio 1 (2%) 0 0/0 1 (10%)/0 1 (3%) 0

Philips Intera 0 0 0/0 1 (10%)/0 0 0

Ingenia 1 (2%) 0 2 (4%)/0 0/0 0 0

Achieva 0 0 2 (4%)/0 0/0 0 0

Data are the number of studies in each category, with percentages in parentheses. FLAIR, fluid attenuation inversion recovery.

TABLE 3 Single timepoint FLAIR segmentation model performance.

Model Training 
method

Lesionwise 
sensitivity

pDefault pGrader2 pMethod Lesionwise 
PPV

pDefault pGrader2 pMethod

Default 0.38 ± 0.04 0.95 ± 0.02

Grader 2 0.63 ± 0.06 0.003* 0.74 ± 0.05 0.001*

10 FT 0.55 ± 0.02 0.001* 0.260 0.001* 0.66 ± 0.02 <0.001* 0.143 <0.001*

DN 0.49 ± 0.02 0.023 0.044 0.32 ± 0.02 <0.001* <0.001*

20 FT 0.59 ± 0.02 <0.001* 0.515 <0.001* 0.68 ± 0.03 <0.001* 0.272 <0.001*

DN 0.49 ± 0.02 0.031 0.040 0.49 ± 0.03 <0.001* <0.001*

30 FT 0.60 ± 0.02 <0.001* 0.700 0.002* 0.71 ± 0.02 <0.001* 0.569 <0.001*

DN 0.53 ± 0.02 0.003* 0.153 0.50 ± 0.03 <0.001* 0.001*

40 FT 0.62 ± 0.02 <0.001* 0.892 0.003* 0.70 ± 0.02 <0.001* 0.499 0.001*

DN 0.56 ± 0.02 0.001* 0.311 0.55 ± 0.03 <0.001* 0.004*

50 FT 0.63 ± 0.03 <0.001* 0.978 0.614 0.70 ± 0.03 <0.001* 0.434 <0.001*

DN 0.62 ± 0.02 <0.001* 0.884 0.57 ± 0.03 <0.001* 0.008

All sensitivity and PPV values are displayed as mean ± standard error. FT, fine-tuned; DN, de-novo; PPV, positive predictive value; pDefault, p value from comparison with the default model; 
pGrader2, p value from comparison with the Grader 2 segmentation; pMethod, p value from comparison between fine-tuned and de-novo training methods with the same training dataset size. 
*Indicates statistical significance (p < 0.05 after accounting for Bonferroni correction).
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TABLE 4 Model performance on International Symposium on Biomedical Imaging (ISBI) 2015 dataset.

Model Dice score Lesionwise sensitivity Lesionwise PPV

No ISBI-specific training

De-novo 10 0.53 0.65 0.13

Fine-tuned 10 0.60 0.61 0.29

De-novo 30 0.62 0.57 0.39

Fine-tuned 30 0.63 0.53 0.66

De-novo 50 0.63 0.59 0.46

Fine-tuned 50 0.62 0.56 0.61

Cross validation with ISBI data (train 4/test 1)

De-novo 10 0.65 0.62 0.34

Fine-tuned 10 0.66 0.57 0.75

De-novo 30 0.66 0.58 0.57

Fine-tuned 30 0.66 0.56 0.72

De-novo 50 0.66 0.53 0.64

Fine-tuned 50 0.65 0.54 0.75

Comparison models

(Maier and Handels, 2015) 0.70 0.53 0.52

(Brosch et al., 2016) 0.68 0.75 0.45

(Aslani et al., 2019b) 0.70 0.75 0.52

(Aslani et al., 2019a) 0.76 0.67 0.88

Models under “No ISBI-Specific Training” were evaluated directly on the test data. The cross-validation model was further fine-tuned with four patients’ studies from the ISBI dataset prior to 
evaluation. PPV, positive predictive value.

FIGURE 3

Performance of single timepoint FLAIR lesion prediction models. (A) Model performance assessed by lesionwise sensitivity and PPV statistics across the 
test set, compared to a second human observer (Grader 2, orange) and compared to the default disease-invariant model (green). (B) Images showing 
representative FLAIR slices with predicted new lesion maps. Error bars in each bar graph represent ±  1 standard error of the mean across patients. 
*p  <  0.05 in comparison with the default FLAIR model after multiple comparison correction. &p  <  0.05 in comparison with the Grader 2 segmentation 
after multiple comparison correction. #p  <  0.05 in comparison with alternative training paradigm (fine-tune vs. de-novo model) using the same training 
dataset size, after multiple comparison correction. FLAIR, fluid attenuation inversion recovery; PPV, positive predictive value.
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FLAIR hyperintense pathologies and then fine-tuned with 10–30 MS 
studies demonstrates performance superior to a de-novo model and 
comparable to a human observer. While there was a potential benefit 
in segmentation performance with larger training datasets, this study 
did not include sufficient data to draw firm conclusions regarding 
optimal training dataset sizes. Instead, the primary take-away is that 
if only small amounts of institution-specific manually-labeled MS data 
are available, then the transfer learning approach is superior to 

building a de-novo model, saving valuable time and resources in 
manually labeling data.

For segmentation of new FLAIR lesions across two timepoints, the 
models trained on longitudinal glioma analysis and fine-tuned on MS 
lesions demonstrated higher PPV across all training dataset sizes 
while the de-novo models demonstrated higher sensitivity. This 
difference likely reflects the underlying characteristics of the default 
model for detecting new lesions, which was trained to detect changes 

TABLE 5 New FLAIR lesion segmentation model performance.

Model Training 
method

Lesionwise 
sensitivity

pDefault pMethod Lesionwise PPV pDefault pMethod

Default 0.13 ± 0.07 0.18 ± 0.11

10 FT 0.38 ± 0.05 0.007 0.033 0.54 ± 0.04 0.005* 0.002*

DN 0.46 ± 0.04 0.001* 0.29 ± 0.03 0.360

20 FT 0.41 ± 0.05 0.003* 0.003* 0.55 ± 0.05 0.006 0.002*

DN 0.50 ± 0.04 <0.001* 0.37 ± 0.03 0.103

30 FT 0.49 ± 0.05 <0.001* 0.437 0.60 ± 0.05 0.002* 0.002*

DN 0.51 ± 0.04 <0.001* 0.43 ± 0.04 0.046

40 FT 0.48 ± 0.06 0.001* 0.010* 0.56 ± 0.05 0.005* 0.014

DN 0.57 ± 0.04 <0.001* 0.42 ± 0.05 0.063

50 FT 0.49 ± 0.06 0.001* 0.161 0.59 ± 0.05 0.003* 0.157

DN 0.55 ± 0.05 <0.001* 0.53 ± 0.04 0.007

All sensitivity and PPV values are displayed as mean ± standard error. FT, fine-tuned; DN, de-novo; PPV, positive predictive value; pDefault, p value from comparison with the default model; 
pMethod, p value from comparison between fine-tuned and de-novo training methods with the same training dataset size. *Indicates statistical significance (p < 0.05 after accounting for 
Bonferroni correction).

FIGURE 4

Performance of models detecting new lesions on FLAIR images across two timepoints. (A) Model performance for detection of new lesions assessed 
by lesionwise sensitivity and PPV. (B) Images showing representative FLAIR slices with predicted new lesion maps. Error bars in each bar graph 
represents ±  1 standard error of the mean across cases. *p  <  0.05 in comparison with the default FLAIR model after multiple comparison correction. 
#p  <  0.05 in comparison with alternative training paradigm (fine-tune vs. de-novo model) using the same training dataset size, after multiple 
comparison correction. FLAIR, fluid attenuation inversion recovery, PPV, positive predictive value.
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FIGURE 5

Performance of prediction models for MS lesion enhancement. (A) Model performance for detection of enhancing lesions assessed by lesionwise 
sensitivity and PPV. (B) Images showing representative slices from T1 post-gadolinium images with segmentations from each prediction model. Blue 
arrow highlights a small false positive segmentation along the falx. Error bars in each bar graph represent ±  1 standard error of the mean across cases. 
*p  <  0.05 in comparison with the default enhancement model after multiple comparison correction. #p  <  0.05 in comparison with alternative training 
paradigm (fine-tuned vs. de-novo model) using the same training dataset size, after multiple comparison correction. MS, multiple sclerosis; PPV, 
positive predictive value.

in geographic areas of FLAIR signal abnormality associated with 
gliomas. New demyelinating lesions are far smaller than regions of 
glioma-associated FLAIR abnormality and as such it is understandable 
that a model trained exclusively on MS-lesions would demonstrate 
superior sensitivity. Yet even though lesionwise sensitivity is a critical 
performance metric for clinical applications, the significant 
improvement in PPV demonstrated by the fine-tuned models suggests 
that transfer learning may still have value despite the absence of an 
ideal default model.

The favorable impact of transfer learning was most apparent in 
segmentation of enhancing lesions; with 10 training studies the model 

trained on metastatic tumors and fine-tuned on enhancing MS lesions 
demonstrated a > 70% relative increase in sensitivity and PPV 
compared to the corresponding de-novo model. We suspect these 
substantial gains are related to the statistical image similarities 
between enhancing MS lesions and the enhancing metastases used to 
train this default model, despite their profoundly differing underlying 
pathologies. More specifically, brain MRIs demonstrating metastases 
often contain numerous small enhancing lesions, which exposes the 
deep learning model to a high number of training lesions. Since 
enhancing multiple sclerosis lesions are similar to enhancing 
metastases in size and appearance, this robust initial training yields a 

TABLE 6 Enhancing lesion segmentation model performance.

Model Training 
method

Lesionwise 
sensitivity

pDefault pMethod Lesionwise PPV pDefault pMethod

Default 0.73 ± 0.09 0.39 ± 0.07

10 FT 0.68 ± 0.06 0.649 0.001* 0.67 ± 0.04 0.003* <0.001*

DN 0.39 ± 0.05 0.004* 0.27 ± 0.04 0.122

20 FT 0.74 ± 0.06 0.948 0.001* 0.69 ± 0.05 0.003* 0.001*

DN 0.44 ± 0.09 0.028 0.37 ± 0.05 0.767

30 FT 0.72 ± 0.05 0.881 0.001* 0.58 ± 0.03 0.018 0.078

DN 0.46 ± 0.06 0.020 0.45 ± 0.07 0.564

All sensitivity and PPV values are displayed as mean ± standard error. FT, fine-tuned; DN, de-novo; PPV, positive predictive value; pDefault, p value from comparison with the default model; 
pMethod, p value from comparison between fine-tuned and de-novo training methods with the same training dataset size. *Indicates statistical significance (p < 0.05 after accounting for 
Bonferroni correction).
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very sensitive default model. In contrast, however, most multiple 
sclerosis studies with active disease contain 1–3 enhancing lesions. 
The use of this MS-specific training data results in a significantly 
increased PPV compared to the default model. Conversely, the single 
timepoint and new lesion default models were trained on pathologies 
with few large areas of signal abnormality such as gliomas, 
leukodystrophy, or lymphoma and correspondingly demonstrated 
higher PPV than the de-novo models with small training datasets. For 
these single timepoint and new lesion tasks, use of MS-specific data 
with numerous small lesions results in significantly increased 
sensitivity compared to the default models.

Our study has limitations. For both FLAIR and enhancing lesion 
segmentation, it is likely that use of larger training datasets would 
further improve performance. Our goal was to demonstrate the 
relative impact of transfer learning on segmentation performance, 
which is most apparent with relatively few training studies. However, 
due to this limitation our models would likely underperform in direct 
comparison to models with more training data (Coronado et al., 2020; 
Gabr et  al., 2020; Narayana et  al., 2020a,b) or a more advanced 
underlying network architecture (Krüger et al., 2020; McKinley et al., 
2020; Salem et al., 2020). Additionally, our glioma-specific default 
model used for new lesion detection is poorly suited to this task as 
described above. In this case, the fine-tuned model with 50 training 
studies demonstrated a lesionwise sensitivity of 0.49 and lesionwise 
PPV of 0.59; such performance is likely insufficient for clinical utility 
at this stage of development, demonstrating that the choice of default 
model is very important. For reference, Krüger et  al. reported a 
sensitivity of 0.60 and a lesionwise false-positive rate of 0.41 (PPV 
could not be calculated from the published data). While this glioma-
specific model was chosen based on availability, a model pre-trained 
on pathology more similar to MS would likely demonstrate superior 
performance. In balancing sensitivity and specificity, in our practice, 
we envision that a high sensitivity model would be preferred, but this 
could easily vary based on the priorities and reading style of the 
interpreting radiologist.
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