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We propose that in order to harness our understanding of neuroscience toward

machine learning, we must first have powerful tools for training brain-like models

of learning. Although substantial progress has been made toward understanding

the dynamics of learning in the brain, neuroscience-derived models of learning

have yet to demonstrate the same performance capabilities as methods in deep

learning such as gradient descent. Inspired by the successes of machine learning

using gradient descent, we introduce a bi-level optimization framework that seeks

to both solve online learning tasks and improve the ability to learn online using

models of plasticity from neuroscience. We demonstrate that models of three-

factor learning with synaptic plasticity taken from the neuroscience literature

can be trained in Spiking Neural Networks (SNNs) with gradient descent via a

framework of learning-to-learn to address challenging online learning problems.

This framework opens a newpath toward developing neuroscience inspired online

learning algorithms.
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Introduction

The ability to learn continually across vast time spans is a hallmark of the brain which

is unrivaled by modern machine learning algorithms. Extensive research on learning in the

brain has provided detailed models of synaptic plasticity–however, these models of learning

have yet to produce the impressive capabilities demonstrated by deep neural networks

trained with backpropagation. Despite our increasing understanding of biological learning,

themost powerfulmethods for optimizing neural networks have remained backpropagation-

based. However, backpropagation is not perfect. For example, when backpropagation is

applied to a continuous stream of data, memory-stability issues arise since gradient descent

approaches do not address the ability to update synapses continually without forgetting

previously learned information (French, 1999). This is because backpropagation methods

modify the weight of every synapse at every update, which causes task-specific information

from previous updates to rapidly deteriorate. The tendency for backpropagation to overwrite

previously learned tasks has made its use as an online learning algorithm impractical

(Kirkpatrick et al., 2017; Parisi et al., 2019). The brain solves this problem by determining

its own modification as a function of information that is locally available to neurons and

synapses. This ability for self-modification is a process that has been fine-tuned through a

long course of evolution, and is the basis of learning and memory in the brain (Hrvoj-Mihic

et al., 2013). Can the success of gradient descent be combined with neuroscience models of

learning in the brain?
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Recent experimental evidence from neuroscience has provided

valuable insight into the dynamics of learning in the brain

(Frémaux and Gerstner, 2016; Gerstner et al., 2018). Two

fundamental findings have led to recent successes in the

development of online neuro-inspired learning algorithms (Lukasz

Kusmierz et al., 2017; Kaiser et al., 2019; Bellec et al., 2020; Liu et al.,

2021; Schmidgall et al., 2021). First, neurons and synapses in the

brain maintain historical traces of activity. These traces, referred to

as eligibility traces, are thought to accumulate the joint interaction

between pre- and post-synaptic neuron factors. Eligibility traces

do not automatically produce a synaptic change, but have been

demonstrated to induce synaptic plasticity in the presence of top-

down learning signal. Second, the brain has a significant quantity of

top-down learning signals which are broadly projected by neurons

from higher centers in the brain to plastic synapses to convey

information such as novelty, reward, and surprise. These top-down

signals often represent neuromodulator activity such as dopamine

(Schultz et al., 1993; Seamans, 2007; Zhang et al., 2009; Steinberg

et al., 2013; Speranza et al., 2021) or acetylcholine (Ranganath and

Rainer, 2003; Hasselmo, 2006; Teles-Grilo Ruivo and Mellor, 2013;

Brzosko et al., 2015; Zannone et al., 2018). The interaction between

eligibility traces and top-down learning signals enables learning

rules to connect interactions between long and short time scales

(Frémaux and Gerstner, 2016; Gerstner et al., 2018).

Here, we demonstrate on two challenging online learning

problems that models of neuromodulated synaptic plasticity from

neuroscience can be trained in SNNs with the paradigm of learning

to learn through gradient descent. These results demonstrate that

neuromodulated synaptic plasticity rules can be optimized to

solve temporal learning problems from a continuous stream of

data, leading to dynamics that are optimized to address several

fundamental online learning challenges. This new paradigm allows

models of neuromodulated synaptic plasticity to realize the benefits

from the success of gradient descent in machine learning while

staying true to neuroscience. This opens the door for validating

learning theories in neuroscience on challenging problems, as

well as developing effective online learning algorithms which are

compatible with existing neuromorphic hardware.

Learning in networks with plastic
synapses

Learning how to learn online

The primary strategy for developing online learning systems

has been to attempt discovering each piece of the system manually

such that these pieces can one day be assembled to form an

effective online learning system. Alternatively, the paradigm of

meta-learning aims to learn the learning algorithm itself such that

it ultimately discovers a solution that solves the inherent learning

problems out of necessity (Clune, 2019). Meta-learning has been

notoriously difficult to define, and is often used inconsistently

across experiments–however, it is consistently understood to

signify learning how to learn: improving the learning algorithm

itself (Hospedales et al., 2020). More concisely, meta-learning is

a learning paradigm that uses meta-knowledge from previous

experience to improve its ability to learn in new contexts. This

differs from multi-task learning in that, multi-task learning aims

to produce a model that performs well on multiple tasks that are

explicitly encountered during the optimization period, whereas

meta-learning primarily aims to produce a model that is able to

learn novel tasks more efficiently.

Meta-learning consists of an inner (base) and outer (meta) loop

learning paradigm (Hospedales et al., 2020). During base learning,

an inner-loop learning algorithm solves a task, such as robotic

locomotion or image classification, while optimizing a provided

objective. During meta-learning, an outer-loop (meta) algorithm

uses information collected from the base learning phase to improve

the inner-loop (base learning) algorithm toward optimizing the

outer-loop objective. It is proposed that there are three axes

within the meta-learning paradigm: meta-representation (what?),

meta-optimization (how?), and meta-objective (why?) (Hospedales

et al., 2020). The meta-representation refers to the representation

of meta-knowledge ω. This knowledge could be anything from

initial model parameters (Finn et al., 2017; Rothfuss et al., 2018;

Fakoor et al., 2019; Liu et al., 2019), the inner optimization process

(Andrychowicz et al., 2016; Bello et al., 2017; Metz et al., 2018; Irie

et al., 2022), or the model architecture (Zoph and Le, 2016; Liu

et al., 2018; Lian et al., 2019; Real et al., 2019). The meta-optimizer

refers to the choice of optimization for the outer-level in the

meta-training phase which updates meta-knowledge ω. The meta-

optimizer often takes the form of gradient-descent (Finn et al.,

2017), evolutionary strategies (Houthooft et al., 2018), or genetic

algorithms (Co-Reyes et al., 2021). The meta-objective specifies the

goal of the outer-loop learning process, which is characterized by

an objective Lmeta and task distributionD
test(i)
source.

To provide a more formal definition, the bilevel optimization

perspective of meta-learning is presented as follows:

ω∗ = arg min
ω

M
∑

i=1

L
meta(θ∗(i)(ω),ω,Dtest(i)

source) (1)

s.t. θ∗(i)(ω) = arg min
θ

L
task(θ ,ω,Dtrain(i)

source ). (2)

Equation 1 represents the outer-loop optimization, which looks

to find an optimal meta-representation ω∗ defined by the selection

of values ω such that the meta-objective loss Lmeta is minimized

across a set of M tasks from the task testing distribution D
test(i)
source.

The minimization of Lmeta is dependent on finding θ∗(i)(ω), which

is the selection of values for θ that minimize the task loss L
task

using the meta-representation ω. In other words, θ∗(i)(ω) looks to

finds the optimal θ for a given training distribution of data using ω

and ω∗ looks to find the optimal ω for a given testing distribution

with θ∗(i)(ω) that was optimized on the training distribution using

a given ω.

Learning how to learn online with synaptic
plasticity through gradient descent

In learning applications with networks of spiking neurons,

synaptic plasticity rules have historically been optimized through

black-box optimization techniques such as evolutionary strategies
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(Bohnstingl et al., 2019; Schmidgall, 2020; Schmidgall and Hays,

2021), genetic algorithms (Elbrecht and Schuman, 2020; Jordan

et al., 2021), or Bayesian optimization (Nessler et al., 2008; Kulkarni

et al., 2021). This is because spiking dynamics are inherently

non-differentiable, and non-differentiable computations prevent

gradient descent from being harnessed for optimization. However,

recent advances have developed methods for backpropagating

through the non-differentiable part of the neuron with surrogate

gradients (Shrestha and Orchard, 2018; Neftci et al., 2019; Li

et al., 2021; Zenke and Vogels, 2021; Guo et al., 2022), which

are continuous relaxations of the true gradient. These advances

have also allowed gradient descent based approaches to be

utilized for optimizing both the parameters defining plasticity

rules and neuromodulatory learning rules in SNNs (Schmidgall

et al., 2021). However, previous work optimizing these rules use

neuromodulated plasticity as a dynamic which compliments the

network on tasks which can be solved without it instead of using

it as the learning algorithm itself (Schmidgall et al., 2021). State

of the art methods which do use neuromodulated plasticity as

a learning algorithm do not learn its dynamics from biological

learning rules, but define rules which are derived from machine

learning approaches (Bellec et al., 2020; Scherr et al., 2020). Instead,

we desire to provide a paradigm of using learning rules from

neuroscience that can be optimized to act as the learning algorithm

through gradient descent.

An insight which enables this is the idea that synaptic plasticity

in the presence of a neuromodulatory signal can be thought of

as a meta-learning optimization process, with meta-knowledge ω

being represented by the learned plasticity rule parameters and

θ as the strength of synaptic weights representing the inner-level

free parameters which change based on ω online. Since both

the parameters governing the dynamics of the neuromodulatory

signal and the plasticity rules in SNNs can be optimized through

backpropagation through time (BPTT) (Schmidgall et al., 2021),

the outer-loop training can be framed to optimize neuromodulated

plasticity rules (Equation 1) which act as the inner-loop learning

process (Equation 2). The optimization goal of outer-loop in

Equation 1 is a selection of the neuromodulatory and plasticity

parameters for ω which minimize the outer-loop loss Lmeta as a

function of θ∗(i)(ω), ω, and D
test(i)
source. The optimization goal of the

inner loop in Equation 2 is to find θ∗(i)(ω) which is defined as a

selection of the parameters for θ which minimize the inner-loop

loss Ltask, such that θ is determined across time as a function of

the plasticity equation and ω, which parameterizes the plasticity

rules and the neuromodulatory dynamics, for a given task D
train(i)
source .

By optimizing the learning process, gradient descent, which acts

on ω in Equation 1, is able to shape the dynamics of learning

in Equation 2 such that it is able to solve problems that gradient

descent is not able to solve on its own. To do this, learning problems

are presented to emulate how biological organisms are trained

to solve tasks in behavioral experiments–specifically with respect

to the online nature of the task. The meta-learning process can

then shape plasticity and neuromodulatory dynamics to address

more fundamental challenges that are presented during the inner-

loop task. Rather than manual design, these fundamental learning

problems are addressed implicitly by the optimization process

out of necessity for solving the meta-learning objective. As this

work will demonstrate, using neuromodulated plasticity as the

meta-representation allows for the learning algorithm itself to be

learned, making this optimization paradigm capable of learning

to solving difficult temporal learning problems. This capability is

demonstrated on an online one-shot continual learning problem

and on a online one-shot image class recognition problem.

Experiments

One-shot continual learning: addressing
credit assignment through one-shot cue
association

Experience-dependent changes at the synapse serve as a

fundamental mechanism for both short- and long-term memory

in the brain. These changes must be capable of attributing the

outcome of behaviors together with the necessary information

contained in temporally-dependent sensory stimuli, all while

ignoring irrelevant details; if the behavior produced by a particular

stimuli led to a good outcome it should be reinforced and visa versa.

The problem, however, is that the outcome of behavior is often not

realized for a long and typically variable amount of time after the

actions affecting that outcome are produced. Additionally, there are

often many elements of sensory noise that could serve to distract

the temporal-learner from proper credit assignment.

To examine these capabilities, a valuable learning experiment

from neuroscience tests the cognitive capabilities of rodents in a T-

maze. The T-maze can be described as an enclosed structure that

takes the form of a horizontally-placed T (Lett, 1975; Wenk, 1998;

Dudchenko, 2001; Deacon and Rawlins, 2006; Engelhard et al.,

2019), with the maze beginning at the base of T and ending at

either side of the arms, see Figure 1. The rodent moves down the

base of the maze and chooses either side of the arms. In some

experiments, a series of sensory cues are arranged along the left and

right of the apparatus as the rodent makes progress toward the end

of the maze. A decision as to which side of the maze will provide

positive and negative reinforcement is based on the arrangement

of these stimuli (Morcos and Harvey, 2016; Engelhard et al., 2019).

The rodent is rewarded for choosing the side of the track with the

majority of cues. This task is not trivial to solve since the rodent has

to recognize that the outcome is not effected by the presentation

ordering of the cues or which side the last cue was on. Rather,

the cues must be counted independent of their ordering for each

side and the sums must be compared to make a decision. Making

learning more difficult, the reward for solving this problem is not

presented until after a decision has been made, so the rodent must

address credit assignment for its behavior across the time span of

an entire cue experiment.

Previous experiments with SNNs in simulation have

demonstrated that synaptic plasticity alone enables a network

to solve this problem where it was not able to be solved with

feedforward SNNs (Schmidgall et al., 2021) or Recurrent SNNs

(RSNNs) (Bellec et al., 2020) using BPTT. However, previous

work only considered learning in this environment in a setting

where the neurons associated with a particular cue remained

consistent across gradient updates and experiments. In this way,
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there was no inner- and outer-level optimization. Rather, the

synaptic plasticity served as a mechanism for memorization and

cue-decision making, but not actually learning which cues and

which decisions are associated with positive reward during the

network time-horizon, and hence it does not qualify as a meta-

learning problem. Additionally, during in-vivo rodent experiments,

accurate cue-problem performance is demonstrated with only 7-12

sessions per mouse (Morcos and Harvey, 2016). This differs from

the learning efficiency of Bellec et al. (2020) and Schmidgall et al.

(2021), which take on the order of hundreds and thousands of

training sessions respectively.

Many- and one-shot learning
Converting this experiment from neuroscience into simulation,

sensory cues are emulated as probabilistic spike trains, with

subgroups of neurons corresponding to particular sensory cues.

Twenty sensory neurons are organized into four subgroups, five

of which represent right-sided cues, five for left-sided cues, five of

which display activity during the decision period, and five which

purely produce spike noise (Figure 2B). To transform this problem

into ameta-learning problem, the particular sensory neurons which

are associated with cues, decision timings, and noise are randomly

permuted (Figure 2C) making the temporal learner unable to know

which neurons are associated with which stimuli at the beginning

of each cue-association task. The network is then presented with

a series of cue-trials (Figure 2A) and a reward signal at the end

of each trial. The many-shot cue association experiment is as

follows: (1) the neurons associated with particular cues in previous

experiments are randomly permuted, (2) the network is placed at

the beginning of the cue-maze, (3) a series of sensory inputs, noise,

cues, and decision activity are input into the sensory neurons as the

learner moves along the apparatus, (4) at the end of the maze the

learner makes a decision (left or right) based on the sensory input

and a reward signal is provided as input to the neuromodulatory

network based on whether it was the correct decision, (5) the

agent is placed at the beginning of the maze and starts from step

2 without resetting network parameters and traces for N trials for

all K cues (left and right) acting as a training phase (i.e. inner

loop solving Equation 2), (6) the performance of the network is

tested based on the information that has been learned from the

N-shot cue presentations, (7) plasticity parameters are updated

through gradient descent based on evaluation performance for the

final test trial (i.e. outer loop solving Equation 1), and the learning

problem is repeated from step 1. The benefit of permuting the

sensory neurons as a source of inner-loop learning is that it results

in a large number of variations of the problem. With only 20

neurons there are 20! = 2.4 · 1018 variations, which results in

learning experiments which are unlikely to have repetitions in the

problem domain.

One-shot learning is a particularly challenging variation of the

N-shot learning paradigm, where N is set equal to one for each of

the K classes. In this way, the learning model is only provided with

one example of each class and must be capable of differentiating

between classes based only on the given single example. One-shot

learning is argued to be one of two important capabilities of the

brain that is missing from models of learning in computational

neuroscience (Brea and Gerstner, 2016).

Architecture
The DP-SNN in Figure 3 contains one-hidden layer of

48 Current-Based Leaky Integrate-and-Fire (CUBA) neurons

(Methods, Equations 6, 7). Synaptic connections between the input

neurons and the hidden layer neurons accumulate changes in

an eligibility trace based on an additive pair-based STDP rule

(Methods, Equation 12). The STDP paradigm typically describes

two forms of change: Long-Term Potentiation (LTP) and Long-

Term Depression (LTD). LTP describes an increase in synaptic

strength while LTD describes a decrease in strength. For the pair-

based STDP rule, an eligibility is maintained for the LTP dynamics

of the pair-based rule and trace for the LTD dynamics. Pair-

based STDP (Methods, Equation 11) represents plasticity based

on the product of timing relationships between pairs of pre-

and post-synaptic activity. Learning signals for the LTP trace and

the LTD trace are produced by an independent neuromodulatory

SNN (NM-SNN) using an input neuron specific modulatory signal

(Methods, Equation 19) for both the LTP and LTD dynamics.

Connections from the hidden neurons to the output activity are

non-plastic synapses learned through gradient descent. During

network initialization, only a fraction of neurons are connected,

with a connection probability of 50%. Each initialized synapse

is assigned to represent either an inhibitory synapse with 20%

probability or an excitatory synapse with 80% probability, with

inhibitory synapses producing negative currents in outgoing

neurons and excitatory synapses producing positive ones. The

neuromodulatory SNN contains two layers of 64 CUBA neurons

(Methods, Equations 6, 7). The synapses are non-plastic and are

fully-connected between layers. The NM-SNN receives the same

sensory input as the DP-SNN in addition to the DP-SNN hidden

neuron activity and a learning signal that occurs at the decision

interval for the training cue sequences. Both the DP-SNN and

the neuromodulatory SNN share the same meta-objective and are

optimized jointly in an end-to-end manner with BPTT in the

outer loop (i.e. Equation 1). Error for the one-shot learning task

is calculated via binary cross entropy loss on the output neuron

activity compared with the correct cue label (Figure 2H) during

the testing data trajectory, with L
meta = −

∑2
i=1(log(p(yi)) +

(1 − yi)log)(1 − p(yi)) and yi equal to the weighted output

neuron activity.

Experimental setup
The one-shot learning experiment in this work presents M =

5 cues (Figures 2A–C). During a cue presentation period the

permuted cue neuron has a firing probability of 0.75. When the

cue neuron is not active (during a cue presentation) the firing

probability is 0.15. The noise neurons have a firing probability of

0.15 at each moment in time and the decision interval neurons

have a firing probability of 0.75 during a decision period and 0.15

otherwise. The cue presentation period for each cue spans 25 ms

which is followed by a 30 ms resting period between each cue. After

the final cue there is a 50 ms resting period before the decision

period which is 25 ms totalling 350 ms for each individual cue

problem in the one-shot cue-association task. The simulation step

size is set to 1 ms. An environment feedback signal arrives at the

end of each cue-trial during the decision interval, requiring the
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FIGURE 1

Learning to learn online with neuromodulated synaptic plasticity. An example of the meta-learning paradigm on a one-shot cue association

problem. A virtual rodent travels down a T-maze for a series of trials with a novel randomly permuted sensory input, and must learn the

representation of the novel permutation through the inner-loop optimization via synaptic plasticity (pair-based STDP) and neuromodulation from N

training trials before it is evaluated on a testing trial. The outer-loop representation optimizes (through gradient descent) the plasticity and

neurmodulatory parameters (ω) to better learn from novel random permutations during the training trials; meaning, the (inner) base learning, which

optimizes Equation 2, is accomplished through the network dynamics learned by the (outer) meta learning Equation 1 (which is solved by gradient

descent). This illustrates learning to learn, where Equation 1 is learning how to make the network learn (i.e. solve Equation 2). Permuted sensory cues

are sent to the Di�erentiable Plasticity SNN (DP-SNN), which has plastic synapses, and the Neuromodulatory SNN (NM-SNN), which sends top-down

signals that modulate plastic synapses in the DP-SNN.

synapses to store and process the necessary information relating

the permuted input cues and the learning signal. This signal is

only given to the neuromodulatory network during the training

data phase (Figure 2A). The environment learning signal is two-

dimensional binary vector, with the first element as one during a

right-cue task, the second element as one during a left cue-task, and

each element is otherwise zero.

Results
Synaptic plasticity occurs continuously at every moment in

time rather than during select periods. Task specific knowledge

is not able to be transferred between cue streams since cue

frequency, cue ordering, and input permutations are randomly

ordered. Rather information must be transferred between cue

streams by improving online learning via the optimization

of the meta-representation of plasticity–improving the learning

algorithm itself (i.e. solving Equation 1). Recalling the definition

of continual learning from Delange et al. (2021), information

within a cue stream must be retained and improved upon across

the two presented training trials without clear task divisions

being provided. Unimportant information in the form of noise

neurons and random cue firings must be selectively recognized and

forgotten. Critically, this requires the optimized learning algorithm

to store learned information in synapses from the training cue trials

without catastrophically forgetting in order to solve the testing

cue trial.

A representative trial of the one-shot cue association problem

is shown in Figure 2. Performance on the testing set of novel

cue permutations yields 95.6% accuracy, which is averaged

across 30 trainings with different randomly initialized parameters.

Figure 4 demonstrates the performance accuracy of the network

demonstrated in Figure 3 when the number of cues presented, M,

are varied from 1-15. Interestingly, while the network plasticity

rule was only optimized for M = 5 cues, the learning behavior

exhibits the capability of accurately solving cue problems above and

below the number of cues it was optimized for without additional

training. BelowM = 5,M = 1 obtains 98.1% accuracy andM = 3

obtains 96.7% accuracy. Above M = 5, there is a consistent loss

in accuracy fromM = 7 with 94.2% toM = 15 with 68.7%. These

results demonstrate that the learned neuromodulated plasticity rule

generalizes in the task solving domain with respect to the number

of cues without additional training on the meta-representation.
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FIGURE 2

One-shot cue association. Visual demonstration of the continual one-shot learning paradigm for a trained neuromodulatory network. (A) Graphical

interpretation of cue-association task. Two training data mazes are presented in a random order, one from each class of right (first maze) and left

(second maze) cues followed by a testing data maze. Gray corresponds to training data which receives no reward to backpropagate and gold

corresponds to testing data which does receive reward to backpropagate. (B) Non-permuted sensory information represented as spikes indexed

from 0 to 20 (bottom to top). (C) Permuted form of sensory information presented in (B) indexed by which neuron receives spikes. (D) Eligibility trace

dynamics (Methods, Equation 16) sampled from five random synapses. (E) LTP (green) and LTD (magenta) neuromodulatory dynamics from a random

modulatory neuron. (F) Activity of a hidden neuron. (G) Sample of 16 hidden neuron spiking activity. (H) Action neuron activity.

Recognizing novel character classes from a
single example

Several learning challenges are presented in Lake et al.

(2017) with the aim of providing benchmarks that more closely

demonstrate human-like intelligence in machines. The first among

these challenges is the “characters challenge,” which aims at

benchmarking a learning algorithm’s ability to recognize digits

with few examples. The dataset for this challenge contains 1623

classes of handwritten characters across 50 unique alphabets, with

each character consisting of 20 samples (Lake et al., 2015). In this

challenge, a learner is presented with a phase 1 image as well as a

set of phase 2 images (Figure 5) where, one image presented is from

the same phase 1 image class, and several other images presented

are from other image classes. The phase 2 images are all presented

simultaneously, and the learner must determine which image from

phase 2 is in the phase 1 class. In the original design of this task,

each image is able to be observed and compared simultaneously,

and the image most closely matching the phase 1 image can be

compared directly. A more challenging variation of this problem

Frontiers inNeuroscience 06 frontiersin.org

https://doi.org/10.3389/fnins.2023.1183321
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Schmidgall and Hays 10.3389/fnins.2023.1183321

which aligns more closely to biological learning is presented in

Scherr et al. (2020), where each sample from phase 1 and phase 2 is

presented sequentially instead of the learner being able to view and

compare all samples simultaneously. The problem is considered

solved correctly if the learner has the highest output activity for the

image in phase 2 that matches the image class from phase 1. This

variation of the characters challenge requires the learner to address

the problem of holding information in memory across time and

actively comparing that information with subsequently presented

data, which even presents itself as a challenge for humans. Informal

human testing from Scherr et al. (2020) demonstrates error rates

around 15% based on 4 subjects and 100 trials.

Experimental setup
Both phase 1 and phase 2 images are presented for 20 ms with

a simulation step size of 1 ms. One image is presented in phase 1

and five images are presented in phase 2 for a total trajectory time

of 120 ms. This causes the character challenge to be particularly

difficult because the set of testing tasks is much larger than the set of

training tasks. It is argued that the character presentation should be

intentionally small such that the learner must carry out spike-based

computation and learning vs. rate-based (Scherr et al., 2020). This

time span is small compared to the average human visual reaction

time which is around 331 ms (Jose and Gideon Praveen, 2010). The

phase 1 and phase 2 character classes are selected uniformly from

a categorical distribution and the phase 2 characters are organized

with random ordering. Neuromodulatory signals are only sent by

the NM-SNN to the DP-SNN during the 20 ms presentation of

the phase 1 character. During this period, the synapses must be

modified to recognize the phase 2 image that belongs to the same

character class as the phase 1 image.

To increase the number of classes in the character dataset

each character set is rotated by 90, 180, and 270 degrees, and are

considered independent classes, increasing the number of character

classes from 1623 to 6492. The character classes in the dataset are

split into 20% testing and 80% training. There are 1.2 ·1019 possible

just on the ordering of character class arrangements in phase 2 in

this problem, making it unlikely for the experiment to repeat any

particular trial. Each gradient is computed across 256 cue trials and

the model is updated for 2000 updates (Figure 5D).

Architecture
The character image is fed into a several layers of a CNN

for pre-processing and is flattened at the output. The flattened

output is used as current input to a layer of 196 spiking neurons,

which represent the input of the DP-SNN and the NM-SNN,

see Figure 6. The DP-SNN consists of one hidden layer with 48

CUBA neurons (Methods, Equations 6, 7). Synaptic connections

between the 196 input neurons and the 48 hidden layer neurons

store LTP and LTD dynamics in separate eligibility traces based

on an additive triplet based STDP rule (Methods, Equation 15).

The triplet-based STDP provides a more accurate representation

of biological STDP dynamics compared with the pair-based rule

through the use of a slow and fast post-synaptic trace which

FIGURE 3

Cue association architecture. Depiction of the network structure for

the DP-SNN (Bottom) and the NM-SNN (Top) for the cue

association experiment.

FIGURE 4

M cue performance. Performance accuracy of cue association

model trained on 5 cues and then tested on M cues between 1 and

15.

Frontiers inNeuroscience 07 frontiersin.org

https://doi.org/10.3389/fnins.2023.1183321
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Schmidgall and Hays 10.3389/fnins.2023.1183321

FIGURE 5

One-shot character class recognition. Visual demonstration of online one-shot character class recognition problem with triplet-based STDP. (A)

Examples of image sequences from three typical trials. Phase 1 image (green background) and samples of 5 phase 2 images, where character class

from phase 1 image corresponds with a phase 2 image (green background) presented with random ordering. Meta-representation ω is updated

based on the performance of ω on a family of training tasks. (B) Activity of DP-SNN during the presentation of a novel testing sequence. (C)

Conceptual depiction of the interaction between CNN, NM-SNN and DP-SNN. Sensory information travels from CNN into both NM-SNN and

DP-SNN, with DP-SNN receiving neuromodulatory signals from NM-SNN and outputting activity into classification neurons. (D) Training performance

comparison between plastic SNN (DP-SNN), non-plastic SNN, L2L eligibility propagation, and human performer on testing set data. Human

performer obtains 15%, DP-SNN 20.4%, L2L EProp 29.2%, and non-plastic 80%. (E) Depiction of the increased sparseness of hidden neuron activity as

training progresses from training iteration 0 (top) to training iteration 1,000 (bottom).

accumulate post-synaptic activity with varied trace decay factors

(Methods, Equation 14). Connection probabilities between neurons

are set to 50% during initialization, with 20% inhibitory synapses

and 80% excitatory. Modulatory signals are produced by the NM-

SNN using an input neuron specific modulatory signal (Methods,

Equation 19) for both the LTP and LTD dynamics. The NM-

SNN receives input from the image layer spiking neurons along

with the DP-SNN hidden neuron activity. However, to make

the challenge more difficult, the NM-SNN does not receive any

additional inputs and must generate neuromodulation from the

same sensory information as the DP-SNN. The NM-SNN consists

of two layers of 64 CUBA neurons with fully-connected non-

plastic synapses. The pre-processing CNN consists of the following

steps: (1) convolution from 1 to 4 channels with a kernel size
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of 3, (2) batch norm, (3) ReLU operation, (4) max pooling

with kernel and stride size of 2, (5) convolution from 4 to 4

channels with a kernel size of 3, (6) batch norm, (7) ReLU

operation, and (8) a max pool with kernel and stride size of

2. This is then flattened and are used as current input to a

196 CUBA neurons which act as input for the DP-SNN and

the NM-SNN.

Results
The performance of the NM-SNN and DP-SNN is compared

to a non-plastic SNN using the same connective structure. The

non-plastic SNN is demonstrated to be unable to solve this

task with a testing error average of around 80%, which is

equivalent to random selection. On the other hand, the DP-

SNN obtains a testing error of 20.4% after 2000 gradient steps

on the outer-loop. This performance is comparable to informal

human testing (Scherr et al., 2020) which is around 15%.

Additionally, this performance is compared with its most similar

counterpart, the L2L Eligibility Propagation method introduced

in Scherr et al. (2020), which obtained a 29.2% accuracy. A

surprising finding was that the DP-SNN obtains 64.1% accuracy

on MNIST digits without any additional gradient steps on the

plasticity parameters.

Discussion

In this paper, we introduce a method for learning to learn

with neuroscience models of synaptic plasticity in networks of

spiking neurons, where the neuromodulated plasticity dynamics

are learned through gradient descent and online learning tasks

are solved with the learned neuromodulated plasticity dynamics

online. This framework was demonstrated on two challenging

online learning tasks: a one-shot continual learning problem and

a one-shot image class recognition problem. These challenges

required neuromodulated plasticity to act as the mechanism of

intra-lifetime learning, and presented a way for learning the

parameters of plasticity with gradient descent such that it can

address these problems.

Previous work on the development of online SNN learning

algorithms includes the work of e-prop (Bellec et al., 2020), which

is a plasticity rule that was mathematically derived from BPTT,

where a learning signal defined by a given loss function over a

task is projected to all neurons in the SNN using random feedback

connections. This projected feedback interacts with an eligibility

trace that accumulates the BPTT plasticity approximation to update

synaptic weights. E-prop was demonstrated to be competitive with

BPTT on several temporal learning benchmarks. In Scherr et al.

(2020), a method called natural e-prop is introduced, which uses

the plasticity dynamics of e-prop and learns a neuromodulatory

signal toward solving several one-shot learning challenges. Another

online learning algorithms for SNNs is Surrogate-gradient Online

Error triggered Learning (SOEL) (Stewart et al., 2020). SOEL

calculates a global error signal and uses surrogate gradient descent

to create a plasticity-like rule for updating the network synapses

online. Works like e-prop and SOEL are not competing algorithms,

but rather are complimentary with respect to this framework.

FIGURE 6

Character recognition architecture. Depiction of the network

structure for the DP-SNN [(Bottom), right], the NM-SNN (Top), CNN

pre-processing [(Bottom), left] for the cue association experiment.

The e.g. timing parameters, voltage parameters, and, the surrogate

gradient parameters could be learned by gradient descent using

these methods as the inner-loop optimization to produce an

even more effective version of the existing algorithm. There have

also been many previous contributions toward neuromodulated

plasticity in non-spiking Artificial Neural Networks (ANNs)

(Soltoggio et al., 2008; Risi and Stanley, 2012; Velez and Clune,

2017; Beaulieu et al., 2020; Miconi et al., 2020). However, plastic

ANNs have been demonstrated to struggle maintaining functional

stability across time due to their continuous nature which causes

synapses to be in a constant state of change (Schmidgall and

Hays, 2021). The effect of this instability was shown to not disturb

the performance as significantly in plastic SNNs as it did on

plastic ANNs. In addition, ANNs cannot be utilized together

with neuromorphic hardware, impeding their applicability for

low-power edge computing devices. While the learning to learn

framework can produce powerful learning dynamics, one of the

primary limitations of this work is the compute requirements. This

is because to calculate the gradient, for each parameter of each

synapse the error at the end of an episode must backpropagation all

the way back through time which grows polynomial in complexity

with respect to the episode duration. However, this is also a problem

present in other learning to learn paradigms (Scherr et al., 2020).

To realize the full potential of this framework, described here

are several topics for future research, including: incorporating

cell-type specific neuromodulatory signals (Liu et al., 2021)

into the learning process; exploring the addition of glial cell

dynamics (Gordleeva et al., 2021; Ivanov and Michmizos, 2021);

providing deeper insight into the learning capabilities of different

plasticity rules in the neuroscience literature, such as the wide-

range of existing voltage-dependent plasticity rules, rate-based

plasticity rules, and spike-timing dependent plasticity rules; and

exploring the use of this framework on robotic and reinforcement

learning experiments. Another directionmight explore learning the

neural architecture in conjunction with the plasticity parameters,
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since architecture is known to play a significant role in the

function of neural dynamics (Gaier and Ha, 2019). Recent

works have explored learning the plasticity rule equation in

addition to the plasticity rule parameters (Jordan et al., 2021). A

differentiable plasticity rule search constrained toward biological

realism may provide more powerful learning applications of

this framework.

Finally, addressing the problem of online learning has been

a central focus of neuromorphic computing (Davies et al., 2021).

The existing need for learning methods that can be used on these

systems has impeded the use of neuromorphic systems in real-

world applications. From a practical perspective, backpropagation

on these systems is only envisioned as a utility for offline training

since on-chip BPTT is expensive with respect to complexity,

memory, and energy efficiency, and is not naturally suited

for online learning. Instead, some neuromorphic systems have

invested in on-chip plasticity in part to address online learning

in hopes that an effective method for utilizing this capability is

discovered. Neuromorphic processors implement on-chip plasticity

by allowing the flexible reconfiguration of a set of local variables

that interact to adapt synaptic weights (Jin et al., 2010; Davies

et al., 2018, 2021; Rajendran et al., 2019; Pehle et al., 2022).

The reconfiguration of these variables have historically modeled

learning rules from the neuroscience literature. In spite of this,

the goal of finding learning rules that can solve a wide variety of

challenging problems (like backpropagation) while building off of

the impressive capabilities of the brain remains open. We hope that

this framework of learning to learn with backpropagation inspires

the next generation of on-chip learning algorithms for the field of

neuromorphic computing.

The framework of learning to learn with neuromodulated

synaptic plasticity in this paper provides a method for combining

the power of gradient descent with neuroscience models of

plasticity, which opens the doors toward a better synthesis of

machine learning and neuroscience.

Methods

Leaky Integrate-and-Fire

The Leaky Integrate-and-Fire (LIF) neuron model is a

phenomenological model of neural firing-dynamics. Activity is

integrated into the neuron and stored across time, and, once the

stored activity surpasses a threshold value, a binary signal is emitted

and the voltage is reset. The “leaky” part of the model name refers

to an introduced time-dependent decay dynamic acting on the

membrane potential. While the simplicity of the LIF dynamics

deviates from the complexity of the biological neuron, the purpose

of the model is to capture the essence of neuron dynamics while

providing value from a computational perspective. The LIF neuron

model requires among the fewest computational operations to

implement compared with other neuron models.

To begin describing the LIF dynamics, we represent the

continuous difference equation τ
dvj
dt

for the voltage state vj(t) ∈

R as a discrete time equation vj + τ
dvj
dt
= vj(t + 1τ ) since

computational models of spiking neurons typically operate across

discrete update intervals.

vj(t +1τ ) = vj(t)− αv[vj(t)− vrest]+ RIj(t), (3)

The term αv[vj(t) − vrest] represents the membrane potential

leak, where αv ∈ [0, 1] is the leak time-constant and vrest ∈ R as

the neuron resting potential, which is the value that the membrane

potential returns to in the absence of external activity. Ij(t) ∈ R

represents incoming current, which is the source of an increase in

voltage vj(t) for the neuron j. This current is scaled by a resistance

factor R ∈ R.

sj(t) = H(vj(t)) =

{

0 vj(t) ≤ vth

1 vj(t) > vth
, (4)

H :R → {0, 1} is a piece-wise step function which, in the case

of a spiking neuron, outputs 1 when a neuron’s membrane potential

surpasses the defined firing threshold vth ∈ R and otherwise

outputs 0. In the LIF neuron model, once a neuron fires a spike, the

membrane potential is reset to its resting potential vj(t)← vrest .

In a spiking neural network, Ij(t) from Equation 3 is defined

as Ij =
∑

i W i,jsi(t), which represents the sum of weighted spikes

from all pre-synaptic neurons i that are connected to post-synaptic

neuron j. The weight of each spike is given by W i,j(t) ∈ R, with

W i,j(t) < 0 representing inhibitory connections, and W i,j(t) > 0

representing excitatory connections.

vj(t +1τ ) = vj(t)− αv[vj(t)− vrest]+ R
∑

i

W i,j(t)si(t), (5)

Consistent with Intel’s neuromorphic processor code named

Loihi, our experiments use an adaptation of the LIF which

incorpoates current called the Current-based Leaky-integrate and

fire (CUBA) neuron model (Davies et al., 2018).

ui(t +1τ ) = ui(t)− αu[ui(t)− urest]+
∑

j

W i,j(t)sj(t), (6)

vi(t +1τ ) = vi(t)− αv[vi(t)− vrest]+ Rui(t). (7)

In the CUBA neuron model, a decaying current trace ui(t)

integrates incoming current Ij =
∑

i W i,jsi(t) from pre-synaptic

neurons i into the post-synaptic current trace j in Equation 6.

Then instead of current Ij directlymodifying the neuronmembrane

potential vi(t) in Equation 7, the current trace ui(t) takes its place.

Backpropagation through spiking neurons
The role of H(·) in Equation 4 can be viewed analogously

to the non-linear activation function used in artificial neural

networks. However, unlike most utilized non-linearities, H(·) is

non-differentiable, and hence backpropagating gradients becomes

particularly challenging. To backpropagate through the non-

differentiable function H(·), Spike Layer Error Reassignment in

Time (SLAYER) is used. SLAYER represents the derivative of the

spike function H(·) with a surrogate gradient, and backpropagates

error through a temporal credit assignment policy (Shrestha and

Orchard, 2018).
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Spike-timing based plasticity rules

Spike-timing Dependent Plasticity rules, unlike rate-based

models, are dependent on the relationship between precise spike-

timing events in pre- and post-synaptic neurons (Gerstner et al.,

1996; Markram et al., 1997; Bi and Poo, 1998; Sjöström et al.,

2001). Equations for neuronal and synaptic plasticity dynamics

are presented as discrete-time update equations as opposed to

continuous-time equations to provide a closer correspondence to

the computational implementation.

Synaptic traces
STDP can be defined as an iterative update rule through the use

of synaptic activity traces.

x
(l)
i (t +1τ ) = αxx

(l)
i (t)+ f (x

(l)
i (t))s

(l)
i (t). (8)

The bio-physical meaning of the activity trace x
(l)
i (t) ∈ R > 0 is

left abstract, as there are several candidates for the representation of

this activity. For pre-synaptic events, this quantity could represent

the amount of bound glutamate or the quantity of activated NMDA

receptors, and for post-synaptic events the synaptic voltage by a

backpropagating action potential or by calcium entry through a

backpropagating action potential.

The variable αx ∈ (0, 1) is traditionally represented as a

quantity (1 − 1
τ
), which decays the activity trace to zero at a rate

inversely proportional to the magnitude of the time constant τ ∈

R > 1. The trace x
(l)
i (t) is updated by a quantity proportional

to f :R → R in the presence of a spike s
(l)
i (t). This synaptic

trace is referred to as an all-to-all synaptic trace scheme since each

pre-synaptic spike is paired with every post-synaptic spike in time

indirectly via the decaying trace.

In the linear case of this update rule f (x
(l)
i (t)) = β ∈ R > 0,

the trace is updated by a constant factor β in the presence of a spike

s
(l)
i (t).

x
(l)
i (t +1τ ) = αxx

(l)
i (t)+ βs

(l)
i (t). (9)

Another candidate for the function f (x
(l)
i (t)) is β[xmax−x

(l)
i (t)],

which updates the trace by a constant β together with a factor

[xmax−x
(l)
i (t)] that scales the update depending on the relationship

between x
(l)
i (t) and its proximity to the trace saturation point

xmax ∈ R > 0 (Morrison et al., 2008).

x
(l)
i (t +1τ ) = αxx

(l)
i (t)+ β[xmax − x

(l)
i (t)]s

(l)
i (t). (10)

When β < 1, as x
(l)
i (t) approaches xmax, the update scale

[xmax − x
(l)
i (t)] reduces the magnitude of the trace update,

producing a soft-bounded range 0 ≤ x
(l)
i (t) ≤ xmax.

Pair-based STDP
The pair-based model of STDP describes a plasticity rule from

which synapses are changed as a product of the timing relationship

between pairs of pre- and post-synaptic activity.

W
(l)
i,j (t +1τ ) = W

(l)
i,j (t)+ A+,i,j(W

(l)
i,j (t))x

(l−1)
i (t)s

(l)
j (t)

− A−,i,j(W
(l)
i,j (t))x

(l)
j (t)s

(l−1)
i (t). (11)

Weight potentiation is realized in the presence of a post-

synaptic firing s
(l)
j (t) = 1 by a quantity proportional to the pre-

synaptic trace x
(l−1)
i (t). Likewise, weight depression is realized

in the presence of a pre-synaptic s
(l−1)
i (t) = 1 proportional to

the post-synaptic trace x
(l)
j (t). Potentiation and depression are

respectively scaled by A+,i,j :R → R and A−,i,j :R → R, which

are functions that characterize the update dependence on the

current weight of the synapse W
(l)
i,j (t). Hebbian pair-based STDP

models generally define A+,i,j(W
(l)
i,j (t)) > 0 and A−,i,j(W

(l)
i,j (t)) >

0, whereas anti-Hebbian models define A+,i,j(W
(l)
i,j (t)) < 0 and

A−,i,j(W
(l)
i,j (t)) < 0.

Weight-dependence
An additive model of pair-based STDP definesA+,i,j(W

(l)
i,j (t)) =

η
(l)
+,i,j, which scales LTP and LTD linearly by a factor η

(l)
+,i,j ∈ R and

η
(l)
−,i,j ∈ R respectively.

W
(l)
i,j (t +1τ ) = W

(l)
i,j (t)+ η

(l)
+,i,jx

(l−1)
i (t)s

(l)
j (t)

− η
(l)
−,i,jx

(l)
j (t)s

(l−1)
i (t). (12)

Additive models of STDP demonstrate strong synaptic

competition, and hence tend to produce clear synaptic

specialization (Gilson and Fukai, 2011). However, without

any dependence on the weight parameter for regulation, the weight

dynamics may grow either without bound or, with hard bounds,

bimodally (Rubin et al., 2001; Morrison et al., 2008; Gilson and

Fukai, 2011).

A multiplicative, or weight dependent, model of pair-based

STDP defines A+,i,j(W
(l)
i,j (t)) = η+,i,j(Wmax − W

(l)
i,j (t)) for LTP,

which scales the effect of potentiation based on the proximity of

the weight W
(l)(t)
i,j to the defined weight soft upper-bound Wmax.

Similarly, LTD defines A−,i,j(W
(l)
i,j (t)) = η−,i,j(W

(l)
i,j (t) − Wmin),

which scales weight depression according to the defined soft-lower

boundWmin.

W
(l)
i,j (t +1τ ) = W

(l)
i,j (t)+ η+,i,j(Wmax −W

(l)
i,j (t))x

(l−1)
i (t)s

(l)
j (t)

− η−,i,j(W
(l)
i,j (t)−Wmin)x

(l)
j (t)s

(l−1)
i (t). (13)

LTP and LTD produce weight changes depending on their

relationship to the upper- and lower-bound, with LTP more

effective when weights are farther from the upper-bound and LTD

more effective when weights are farther from the lower bound.

The use of soft bounds in practice leads to LTD dominating over

LTP (Kempter et al., 1999; Song et al., 2000; Rubin et al., 2001;

van Rossum et al., 2001; Gilson and Fukai, 2011) and, opposite

to additive pair-based STDP, fails to demonstrate clear synaptic

specialization (Gilson and Fukai, 2011).

Additive and multiplicative models of STDP have been

regarded as extremes among a range of representations, with
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LTP as A+,i,j(W
(l)
i,j (t)) = η+,i,j(Wmax − W

(l)
i,j (t))

µ and LTD as

A−,i,j(W
(l)
i,j (t)) = η−,i,j(W

(l)
i,j (t) −Wmin)

µ (Gütig et al., 2003; Song

et al., 2005). Here, the parameter µ acts as an exponential weight-

dependence scale, with µ = 0 producing an additive model, and

µ = 1 producing a multiplicative model. Values of 0 < µ < 1

result in rules with intermediate dependence onW
(l)
i,j (t).

Triplet-based STDP
Experimental data has demonstrated that pair-based STDP

models cannot provide an accurate representation of biological

STDP dynamics under certain conditions. Particularly, these

rules cannot reproduce triplet and quadruplet experiments, and

also cannot account for the frequency-dependence of plasticity

demonstrated in STDP experiments (Senn et al., 2001; Sjöström

et al., 2001).

x
(l)
i,τ (t +1τ ) = ατx

(l)
i,τ (t)+ f (x

(l)
i,τ (t))s

(l)
i (t) (14)

To address the representation limitations of pair-based STDP,

a plasticity rule based on a triplet interaction between one

pre-synaptic spike and two post-synaptic spikes is proposed in

Gjorgjieva et al. (2011). To implement this, a second slow synaptic

trace is introduced for the post-synaptic neuron is introduced, with

a time constant ατ ∈ R > αx, with αx representing the decay rate

of the fast synaptic trace from Equation (8). More specifically, the

triplet model of STDP produces LTP dynamics that are dependent

on the pre-synaptic trace x
(l−1)
i (t) [Equation (14)] and the slow

post-synaptic trace x
(l)
j,τ (t−1τ ), which is evaluated at time t−1τ ,

one timestep prior to the evaluation of traces x
(l)
j (t) and x

(l−1)
i (t):

W
(l)
i,j (t +1τ ) = W

(l)
i,j (t)+ A+,i,j(W

(l)
i,j (t))x

(l−1)
i (t)x

(l)
j,τ (t −1τ )

− A−,i,j(W
(l)
i,j (t))x

(l)
j (t)s

(l)
i (t). (15)

The triplet rule has demonstrated to explain several plasticity

experiments more effectively than pair-based STDP (Sjöström et al.,

2001; Wang et al., 2005; Gjorgjieva et al., 2011). Additionally, the

triplet rule has been demonstrated to be capable of beingmapped to

the BCM rule under the assumption that (1) pre- and post-synaptic

spiking behavior assumes independent stochastic spike trains, (2)

LTD is produced in the presence of low post-synaptic firing rates,

(3) LTP is produced in the presence of high post-synaptic firing

rates, and (4) the triplet term is dependent on the average post-

synaptic firing frequency (Pfister and Gerstner, 2006). If these

requirements are matched, the presented triplet-based STDP rule

demonstrates the properties of the BCM rule, such as synaptic

competition which produces input selectivity, a requirement for

receptive field development (Bienenstock et al., 1982; Pfister and

Gerstner, 2006).

Neuromodulatory plasticity rules

Synaptic learning rules in the context of SNNs mathematically

describe the change in synaptic strength between a pre-synaptic

neuron i and post-synaptic neuron j. At the biological level, these

changes are products of complex dynamics between a diversity

of molecules interacting at multiple time-scales. Many behaviors

require the interplay of activity on the time-scale of seconds to

minutes, such as exploring a maze, and on the time-scale of

milliseconds, such as neuronal spiking. Learning rules must be

capable of effectively integrating these two diverse time-scales. Thus

far, the learning rules observed have been simplified to equations

which modify the synaptic strengthW
(l)
i,j (t) based on local synaptic

activity without any motivating guidance and without the presence

of external modulating factors.

Biological experiments have demonstrated that synaptic

plasticity is often dependent on the presence of neuromodulators

such as dopamine (Schultz et al., 1993; Seamans, 2007; Zhang

et al., 2009; Steinberg et al., 2013; Speranza et al., 2021),

noradrenaline (Ranganath and Rainer, 2003; Salgado et al., 2012),

and acetylcholine (Ranganath and Rainer, 2003; Hasselmo, 2006;

Teles-Grilo Ruivo and Mellor, 2013; Brzosko et al., 2015; Zannone

et al., 2018). These modulators often act to regulate plasticity at the

synapse by gating synaptic change, with recent evidence suggesting

that interactions more complex than gating occur (Zhang et al.,

2009; Frémaux and Gerstner, 2016; Gerstner et al., 2018). The

interaction between neuromodulators and eligibility traces has

served as an effective paradigm for many biologically-inspired

learning algorithms (Seung, 2003; Frémaux et al., 2013; Bing et al.,

2018; Bellec et al., 2019, 2020).

Eligibility traces
Rather than directly modifying the synaptic weight, local

synaptic activity leaves an activity flag, or eligibility trace, at

the synapse. The eligibility trace does not immediately produce

a change, rather, weight change is realized in the presence of

an additional signal. In the theoretical literature on three-factor

learning, this signal has been theorized to be accounted for

by external, or non-local, activity (Marder, 2012; Frémaux and

Gerstner, 2016; Gerstner et al., 2018). For learning applications,

this third signal could be a prediction error, or for reinforcement

learning, an advantage prediction (Frémaux et al., 2013). In a

Hebbian learning rule, the eligibility trace can be described by the

following equation:

E
(l)
i,j (t +1τ ) = γE

(l)
i,j (t)+ αi,jfi(x

(l−1)
i )gj(x

(l)
j ). (16)

The constant γ ∈ [0, 1] inversely determines the rate of decay

for the trace, αi,j ∈ R is a constant determining the rate at which

activity trace information is introduced into the eligibility trace,

fi is a function of pre-synaptic activity x
(l−1)
i , and gj a function

of post-synaptic activity x
(l)
j . These functions are indexed by their

corresponding pre- and post-synaptic neuron i and j since the

synaptic activity eligibility dynamics may be dependent on neuron

type or the region of the network.

Both rate- and spike-based models of plasticity can be

represented with the eligibility trace dynamics described in

Equation (16). Spike-based models of plasticity, such as the

triplet-based (Equation 15) and pair-based model (Equation 11),

often require two synaptic flags E
(l)
+,i,j and E

(l)
−,i,j for LTP and

LTD respectively.

Frontiers inNeuroscience 12 frontiersin.org

https://doi.org/10.3389/fnins.2023.1183321
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Schmidgall and Hays 10.3389/fnins.2023.1183321

Modulatory eligibility traces
In the theoretical literature, eligibility traces alone are not

sufficient to produce a change in synaptic efficacy (Frémaux and

Gerstner, 2016; Gerstner et al., 2018). Instead, weight changes are

realized in the presence of a third signal.

W
(l)
i,j (t +1τ ) =W

(l)
i,j (t)+M(t)E

(l)
i,j (t). (17)

Here, M(t) ∈ R acts as a global third signal which is

referred to as a neuromodulator. Weight changes no longer

occur in the absence of the neuromodulatory signal, M(t) = 0.

When the value M(t) ranges from positive to negative values,

the magnitude and direction of change is determined causing

LTP and LTD to both scale and reverse in the presence of

certain stimuli.

The interaction between individual neurons and the

global neuromodulatory signal need not be entirely defined

multiplicatively as in Equation 17, but can have neuron-specific

responses defined by the following dynamics:

W
(l)
i,j (t +1τ ) =W

(l)
i,j (t)+ hj(M(t))E

(l)
i,j (t). (18)

The function hj :R → R is a neuron-specific response

function which determines how the post-synaptic neuron j

responds to the neuromodulatory signal M(t). This form of

neuromodulation accounts for random-feedback networks when

hj(M(t)) = h(bjM(t)). However, this form of neuromodulation

does not account for the general supervised learning paradigm

through backpropagating error. Equation (18) must be extended to

account for neuron-specific neuromodulatory signals:

W
(l)
i,j (t +1τ ) =W

(l)
i,j (t)+Mj(t)E

(l)
i,j (t). (19)

In layered networks being optimized through backpropagation,

the neuron-specific error is Mj(t). In the case of backpropagation,

Mj(t) is calculated as a weighted sum from the errors in

the neighboring layer closest to the output. The neuron-

specific error in Equation 19 can also be computed with the

dimensionality of the pre-synaptic neurons, Mi(t), which was the

form of neuromodulation used in both experiments from the

Experiments section.
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