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Late-onset Alzheimer’s disease (LOAD) is a major health concern for senior 
citizens, characterized by memory loss, confusion, and impaired cognitive 
abilities. Apolipoprotein-E (ApoE) is a well-known risk factor for LOAD, though 
exactly how ApoE affects LOAD risks is unknown. We  hypothesize that ApoE 
attenuation of LOAD resiliency or vulnerability has a neurodevelopmental origin via 
changing brain network architecture. We investigated the brain network structure 
in adult ApoE knock out (ApoE KO) and wild-type (WT) mice with diffusion tensor 
imaging (DTI) followed by graph theory to delineate brain network topology. Left 
and right hemisphere connectivity revealed significant differences in number 
of connections between the hippocampus, amygdala, caudate putamen and 
other brain regions. Network topology based on the graph theory of ApoE KO 
demonstrated decreased functional integration, network efficiency, and network 
segregation between the hippocampus and amygdala and the rest of the brain, 
compared to those in WT counterparts. Our data show that brain network 
developed differently in ApoE KO and WT mice at 5  months of age, especially 
in the network reflected in the hippocampus, amygdala, and caudate putamen. 
This indicates that ApoE is involved in brain network development which might 
modulate LOAD risks via changing brain network structures.
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1 Introduction

Apolipoprotein E (ApoE), a class of lipoproteins responsible for 
cholesterol transport and lipoprotein metabolism (Mahley et  al., 
2009), is the strongest genetic risk factor for the late-onset Alzheimer 
Disease (LOAD) (Biffi et al., 2010; Yu et al., 2014; Yamazaki et al., 
2016; Hersi et al., 2017; Kanatsu and Tomita, 2017; Liao et al., 2017) 
and emerging therapeutic targets for it (Safieh et al., 2019; Uddin et al., 
2019; Yamazaki et al., 2019). The 3 polymorphic alleles of ApoE, ε2, 
ε3, and ε4, exhibit differential effects on LOAD risks in an isoform-
specific manner (Munoz et al., 2019): ApoE3 is the most common 
allele in the population; ApoE4 variant is found in more than 65% of 
AD (Heffernan et al., 2016) with 12 folds increase in occurrence of AD 
(Kim et  al., 2014; Liao et  al., 2017); whereas ApoE2 is under-
represented in AD patients and thought to be neuroprotective (Dorey 
et al., 2017). However, how ApoE modulates risks for LOAD is not 
well understood.

Our study explores the possibility of neurodevelopmental origin of 
ApoE-imposed vulnerability or resiliency through brain network 
remodeling. Network dysfunctions (Palop and Mucke, 2016; Kazim 
et al., 2021; Pini et al., 2022) are known to be associated with LOAD 
and frontotemporal dementia (Filippi et  al., 2013). The “dual-hit 
hypothesis” (Zhu et al., 2004, 2007) is well recognized in LOAD. The 
manifestation of the disease is synergistically caused by the “first hit,” 
the intrinsic vulnerability, followed by the “second hit” of a trigger later 
in life. We hypothesize that ApoE attenuation of LOAD resiliency or 
vulnerability has a neurodevelopmental origin via changing brain 
network architecture. We hypothesize that ApoE is involved in brain 
network development, such that when it is knocked out, it could alter 
the network architecture, in what could be considered a “first-hit.” This 
disruption from the default brain network could attenuate vulnerability 
or resiliency for the “second-hit” later in life, therefore affecting LOAD 
risks. This notion is supported by the fact that ApoE is found to 
be associated with synaptic plasticity (Yu et al., 2014). ApoE functions 
in the transportation and clearance of cholesterol in the brain, which 
is necessary to form and develop synapses and dendrites (Mauch et al., 
2001; Hauser et al., 2011). ApoE-containing lipoproteins are able to 
deliver cholesterol to neurons then increasing synapse formations by 
aiding in the creation of synaptic vesicles (Hauser et  al., 2011). 
Consequently, disruption in this transport of cholesterol via ApoE can 
compromise synaptic formation, impacting synaptic plasticity or 
resulting in synaptic and dendrite degeneration (Hauser et al., 2011). 
The global alteration of synaptic plasticity during neurodevelopment 
might contribute to changes in brain network development.

We tested this hypothesis using diffusion MRI followed by graph 
theory to characterize brain network topology in ApoE knock out 
(ApoE KO) mice compared to that of their wild-type (WT) 
counterparts. To test the neurodevelopmental origin of brain network 
alteration due to ApoE deficiency, the age of 5 months, equivalent to 
human younger mature adults (Hagan, 2017; Sukoff Rizzo and 
Crawley, 2017), was chosen when the adult mouse brain network has 
formed but not yet near the age of LOAD onset in aging mice (~ 
18 months of age). The objective was to determine whether knocking 
out ApoE could result in altered brain network structure in adult mice, 
long before the equivalent age of LOAD onsets.

Mouse models of human disease are valuable for studying disease 
etiology, and imaging modalities are useful for phenotyping mice  
(Wu and Lo, 2017). The use of ApoE KO mice was first published in 
1992 and has since been a useful tool in studying the effects of ApoE 

on neurodevelopment (Getz and Reardon, 2016). A number of studies 
showed behavioral differences in ApoE KO animals, including deficient 
olfactory function (Nathan et al., 2004), impaired working memory 
process (Gordon et  al., 1995), and decreased exploratory behavior 
(Fuentes et al., 2018). These behavioral deficits are consistent with some 
LOAD symptoms, such as memory loss, impaired decision-making 
ability and increased emotional reactivity (How Alzheimer's disease 
changes the brain, 2022).

Our approach to delineate brain network structure uses diffusion 
tensor imaging (DTI) with subsequent graph theoretical analysis for 
network topology characterization. DTI is a three-dimensional MRI 
imaging modality that leverages local water diffusion properties to 
probe neuronal fiber structures based on the signal intensity following 
sequential gradient pulses in that voxel (Basser and Pierpaoli, 1996; 
Pierpaoli et al., 1996; Medina and Gaviria, 2008). Diffusion in the 
white matter of the brain is typically anisotropic due to the structure 
of an axon and its surrounding myelin sheath, such that diffusion 
along the neuronal fiber occurs readily, while diffusion perpendicular 
to the fiber is restricted (Medina and Gaviria, 2008; Wu and Lo, 2017). 
This diffusion anisotropy paints a picture of brain fiber tractography, 
organization, and architecture, by mapping white matter connections. 
Fractional anisotropy (FA) as well as axial diffusivity (AD), radial 
diffusivity (RD), and mean diffusivity (MD) can be  used to 
characterize neuronal microenvironment changes due to pathological 
processes, such as axonal injury, neuroinflammation, or demyelination 
(Budde et al., 2007; Chang et al., 2017); whereas brain connectomes 
derived from graph theoretical analysis provide a systems view of the 
macroscopic brain network architecture (Watts and Strogatz, 1998; 
Bullmore and Sporns, 2009; Rubinov and Sporns, 2010; Estrada, 2011; 
Ingalhalikar et  al., 2015). Graph theory defines brain regions and 
neuronal tracts between them as nodes and edges to quantitatively 
describe a variety of measures of network segregation and efficiency 
(Rubinov and Sporns, 2010). In turn, this allows a systems approach 
to study the architecture of the brain network. These tactics allow us 
to investigate local diffusion properties and the global brain network 
differences between ApoE KO and WT mice.

We performed DTI on age-matched WT and ApoE KO male mice 
to examine diffusion parameters and used graph theoretical analysis 
to evaluate differences in their neuronal fiber connectivity to delineate 
brain network architecture. Starting with the whole brain, 
we investigated differences in right and left hemisphere diffusivity and 
connectivity, for WT and ApoE KO separately. Though we saw no 
differences in diffusivity, we  compared left and right hemisphere 
connectivity, without assigning any regions of interest (ROI) nor 
regions of avoidance (NOA). This served as an unbiased, data driven 
approach and allowed us to see what differences exist in brain network 
characteristics. Both the left and right ipsilateral connectivity revealed 
an increase in significantly different connections between the 
amygdala, hippocampus, caudate putamen and other brain regions in 
ApoE KO mice. From here we conducted a more specific pathway 
analysis on the amygdala, hippocampus and caudate putamen. Not 
only did these regions stand out with multiple differences in 
connectivity from our unbiased approach, but these brain regions are 
associated with known behavioral phenotypes of ApoE KO mice 
(D'Hooge and De Deyn, 2001; Li and Liberles, 2015). Next, we looked 
at contralateral connections (fiber seeds in the left hemisphere and 
their connections in the right hemisphere) of both the entire 
hemisphere and of the regions of interest established by the ipsilateral 
analysis. Mapping contralateral fibers would reveal any differences in 
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long range fiber connectivity. Our study explores brain regions where 
ApoE affects neuronal network in a frequently used LOAD mouse 
model. Differences in these animals’ neuronal network add to our 
knowledge base of this animal model and suggests that ApoE plays a 
role in brain network development and organization, which could 
predispose brains to differential LOAD vulnerability or resiliency.

2 Methods

2.1 Animals and sample preparation

All animals received humane care in compliance with the NIH 
Office of Laboratory Animal Welfare (OLAW) guidelines. Animal 
protocols were approved by the University of Pittsburgh Institutional 
Animal Care and Use Committee (IACUC). Mice were provided with 
ad libitum water and chow.

ApoE KO breeding pairs (B6.129P2-Apoetm1Unc/J) were obtained 
from Jackson Laboratory (JAX stock #002052) (Piedrahita et al., 1992). 
Homozygous male ApoE KO (n = 10) and WT littermates (n = 9) were 
included in the study. Once weaned on post-natal day p28, male 
littermates were housed with 2–4 males per cage and kept on a 12:12 h 
dark/light cycle until 22 weeks of age when their brains were harvested 
for DTI. Twenty-two weeks (5 months) of age is considered mature 
adult (Hagan, 2017; Sukoff Rizzo and Crawley, 2017). Animals were 
euthanized using 5% isoflurane for 10 min or until they did not respond 
to a foot prick with forceps. Cervical dislocation was then performed. 
A chest incision through the abdominal wall and ribs was made, 
exposing the heart. The brain was fixed by cardiac perfusion with 5 mL 
of 4% paraformaldehyde (PFA) in phosphate buffered saline (PBS) via 
cardiac puncture. The animal’s brain was carefully harvested, 
preserving its anatomy. The intact brain was then placed in 4% PFA for 
a minimum of 2 days at 4°C, followed by PBS at 4°C for 2 days, then 
10% formalin. Two days prior to imaging, brain samples were 
rehydrated in PBS at 4°C. At the time of scanning, the fixed brain was 
removed from PBS and excess liquid was dried from the surface. The 
brain was then transferred to a custom MRI sample holder containing 
Fomblin-Y perfluoropolyether vacuum oil (Millipore Sigma, 
MW = 1800) to eliminate any tissue-to-air artifact.

2.2 3D isotropic diffusion tensor imaging 
acquisition

3D isotropic diffusion MRI images were acquired with spin echo 
diffusion preparation, field of view (FOV) = 4.0×1.1×1.1 cm3, 
acquisition matrix size 256x70x70, repetition time (TR) = 1,000 ms, 
echo time (TE) = 16.665 ms, diffusion gradient separation = 8 ms, 
diffusion gradient duration = 4 ms, 30 diffusion directions, b = 1,200 s/
mm2 per direction, total acquisition time = 11h9m36s.

2.3 3D isotropic anatomical T2-weighted 
imaging

3D T2-weighted isotropic images were acquired with 3D Rapid 
Imaging with Relaxation Enhancement (RARE), a Fast Spin-Echo 
(FSE) sequence, with exactly the same geometry as the DTI scans, for 
anatomical registration in the same brain space with the following 

parameters: FOV = 4.0 × 1.1 × 1.1 cm3, matrix size 512 × 141 × 141, 
TR = 1,000 ms, TE = 12.00 ms, RARE factor = 8, effective TE = 48.00 ms, 
refocusing flip angle 180 deg., total acquisition time 5h33m12s.

2.4 Registration to Allen mouse template

Diffusion MRI was performed on two ex vivo mouse brains 
simultaneously. Thus, diffusion-weighted imaging (DWI) Nifti-
volumes contained two mouse brains. In a first step, the 1st volume of 
the DWI data was used to detect each mouse brain via watershed 
segmentation and a manually guided segmentation approach. Based 
on this segmentation for multiple mouse brains, the DWI data of each 
animal was stored in separate 4D Nifti files.

Registration to the Allen brain template: The 3D-RARE data was 
registered to the Allen brain template as described previously (Koch 
et al., 2019) using ANTx2, a custom MATLAB toolbox. In short, the 
3D-RARE volume was rigidly registered to the Allen brain template 
(Allen Institute for Brain Science, USA) and segmented into gray matter 
(GM), white matter (WM) and cerebrospinal fluid (CSF) tissue 
probability maps (TPMs) using the Unified Segmentation approach as 
implemented in SPM (Friston et al., 1994; Ashburner and Friston, 2005). 
For the segmentation task the tissue probability maps (TPMs) of 
Hikishima et  al. (2017) served as priors for tissue classification. A 
weighted image was constructed using the tissue segments of the animal 
and the TPMs of the template, respectively. The weighted images were 
co-registered using affine and nonlinear B-spline transformation via 
Elastix package (Klein et al., 2010). The resulting parameter for forward 
transformation were stored to allow a subsequent image transformation 
from native animal space to Allen mouse template space. Parameter files 
for inverse transformation were also generated and stored to allow a 
subsequent image transformation from template space to native space 
(e.g., hemispheric brain mask). Using the files for inverse transformation, 
we transformed the template to the native, 1st volume of the DWI data 
to create the final brain segmentation mask.

A 72 region-based homolog atlas was generated by comprising or 
omitting regions of the 2017 Allen mouse brain atlas (Wang et al., 
2020, see Table 1 for regions and abbreviations). The volume of this 72 
region-based atlas, which is in register with the ABA in standard 
space, was transformed to native space via inverse transformation.

2.5 Property and network analysis

2.5.1 Diffusion parameters
The Allen brain atlas-based segmentation created 72 regions of 

interest (ROIs), 36 ROIs for each left or right hemisphere, and average 
diffusion parameters were calculated according to these ROIs by DSI 
studios. See https://sites.google.com/a/labsolver.org/dsi-studio/
Manual/diffusion-mri-indices#TOC-DTI-based-metrics for more 
details. Definitions of diffusion-based metrics can be found in Table 2.

2.5.2 Tractography
Quantification of fiber tracking was completed using DSI studio1 

(version 06/2018), with a minimum fiber tract length of 0, maximum 

1 https://dsi-studio.labsolver.org/
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TABLE 1 (Continued)

R cerebellum RCB

R Superior colliculus motor related RSUC

R ventricular systems RVS

R hypothalamus RHY

R Inferior colliculus RInfC

R periaqueductal gray RPAG

R isocortex RICtx

R cortical amygdalar area RCOA

R olfactory areas ROlfA

R pons RP

R midbrain reticular nucleus RRN

R nucleus accumbens RNA

R fimbria RF

R anterior cingulate area RACA

R somatomotor areas RMO

R somatosensory areas RSS

R piriform area RPIR

R taenia tecta RTT

R accessory olfactory bulb glomerular 

layer

RAOB_gl

R accessory olfactory bulb granular 

layer

RAOB_gr

R retrohippocampal region RRHP

R entorhinal area REC

R field CA1 RCA1

R field CA3 RCA3

R dentate gyrus RDG

R field CA2 RCA2

R accessory olfactory bulb mitral layer RAOB_mi

R striatum RSTR

R midbrain RMB

R medulla RMY

fiber tract length of 300 mm, tracking algorithm RK4, angular 
threshold 0, and a total of 1,000,000 seeds calculated. Whole brain 
seeding for the entire brain as well as the left or right hemisphere and 
fiber tracking with the parameters above were conducted. We did not 
assign regions of interest but instead placed seeds over the entirety of 
the left hemisphere and reinstated the left hemisphere atlas afterwards 
to see where fiber tracts mapped to. Fiber tracts were then mapped to 
our 36 brain regions on the left hemisphere, so we were able to assess 
the amount of fiber tracts present in each region. This process was 
repeated by planting seeds in the right hemisphere and mapping the 
fibers to the right hemisphere. In addition to ipsilateral fiber tracking, 
we also looked at contralateral connections, to see if ApoE KO males 
would have differences in long-range axon patterning. In this case, 
we placed seeds in the left hemisphere and compared fiber numbers 

TABLE 1 Abbreviations for the atlas based parcellations are listed for the 
left (L) and right (R) hemisphere.

Region Abbreviation

L corpus callosum CC

L caudoputamen CP

L anterior commissure olfactory limb ACOL

L pallidum PAL

L internal capsule IntC

L thalamus TH

L cerebellum CB

L superior colliculus motor related SUC

L ventricular systems VS

L hypothalamus HY

L inferior colliculus IC

L periaqueductal gray PAG

L isocortex ICtx

L cortical amygdalar area COA

L olfactory areas OlfA

L pons P

L midbrain reticular nucleus RA

L nucleus accumbens NA

L fimbria F

L anterior cingulate area ACA

L somatomotor areas MO

L somatosensory areas SS

L piriform area PIR

L taenia tecta TT

L accessory olfactory bulb glomerular 

layer

MOB_gl

L accessory olfactory bulb granular 

layer

MOB_gr

L retrohippocampal region RHP

L entorhinal area EC

L field CA1 CA1

L field CA3 CA3

L Dentate gyrus DG

L field CA2 CA2

L accessory olfactory bulb mitral layer MOB_mi

L striatum STR

L midbrain MB

L medulla MY

R corpus callosum RCC

R caudoputamen RCP

R anterior commissure olfactory limb RACOL

R pallidum RPAL

R internal capsule RIC

R thalamus RTH

(Continued)
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in the right hemisphere, and vice versa. When placing seeds in the left 
hemisphere to study long-range contralateral connections, ipsilateral 
connections will still track and are reflected in total fiber numbers and 
network parameters.

Fiber tracts for the hippocampus were generated by merging the 
left hemisphere’s Ammon’s Horn area 1 (CA1), Ammon’s Horn area 
2 (CA2), Ammon’s Horn area 3 (CA3), and the dentate gyrus (DG). 
Fiber tracts for the amygdala were generated using the left 
hemisphere Cortical Amygdalar (COA) region. This was repeated 
in the right hemisphere by merging the RCA1, RCA2, RCA3, and 
RDG, and then the RCOA. Similarly, we assessed connectivity in 
the caudate putamen, and fiber tracts were generated using the left 
hemisphere caudate putamen region, then again with the right 
caudate putamen. Whole brain tract rendering was set to local 
index and either FA, MD, AD, or RD on a heat scale of 0–1 was 
specified in DSI studios.

Fiber tracts were assigned as direction for visualizing fiber tract 
directionality. Fiber tract color is indicative of fiber tract direction - 
red representing left–right fiber orientation, blue representing front-
back fiber orientation, whereas green representation top-bottom 
orientation. Representative images of fiber tractography were 
generated using DSI studio’s (Mar 7 2020) simply for visual purposes. 
Any fiber tract analysis or quantification was conducted using only the 
06/2018 version for consistency, but for visualizing whole-brain seed 
fiber tracts, the fiber tracts generated were visually improved in this 
version and employed for qualitative purposes.

2.5.3 Adjacency matrix and connectogram
The hemisphere of the 72-region atlas-based parcellation used 

as the ROIs to create the adjacency matrices and connectograms 
depended on ipsilateral or contralateral analysis. For close-range 
fiber analysis, the hemisphere ipsilateral to where the seeds were 
placed of the 72-region atlas-based parcellation was used as the 
ROIs, and an adjacency matrix was calculated by using count of the 

connecting tracks in DSI studios after tractography. For long-range 
fiber analysis, the hemisphere contralateral to where the seeds were 
placed was used for calculation of the count of connecting tracts. 
The graph theory extraction threshold for both ipsilateral and 
contralateral was 0.001. In contralateral analysis, heat maps will 
display all 72 × 72 regions. Chord diagrams of adjacency matrices 
were generated using Circos table viewer,2 where row and column 
size were matched creating ribbons that are to scale with the 
number of connections between two regions of interest, each color 
representing a different region. Graphs are undirected. Chord 
diagrams of contralateral data display cross hemisphere 
connections, either 36 × 36 left seeds to map tracks to right regions 
and vice versa, to avoid redundancy. Representative ball and stick 
plots are 3D graph visualizations in which balls represent nodes and 
sticks represent edges. The size of the ball corresponds to the 
number of connections in a brain region, and the width of the sticks 
is proportional in size to the number of edges between nodes. As 
such, these are visual representations of our network parameters.

2.5.4 Network topography
Using the same tractography that made the adjacency matrices, 

graph theoretical analysis was calculated by DSI studio for various 
network parameters. The graph theory extraction threshold was 0.001. 
These network parameters included measures of efficiency, global 
efficiency and small worldness, and measures of segregation, local 
efficiency and clustering coefficient. The following graph theory 
definitions can be  found in more detail in Table  3 (Rubinov and 
Sporns, 2010; Ingalhalikar et al., 2015; Scharwächter et al., 2022).

The process from imaging to network topology and connectogram 
are depicted in Figure  1. Characterizing neuronal networks into 
network measures through graph theory describes the physiological 
aspect of information processing, quantifying structure and function 
(Bullmore and Sporns, 2009). Network measures in DSI studio follow 

2 http://circos.ca/

TABLE 2 Definitions of diffusion based metrics.

Diffusion 
parameter

Abbreviation Definition

Fractional anisotropy FA Measures isotropic movement 

of water, in this case along 

axon bundles, 0 being that 

water diffuses freely and 1 

being that water would diffuse 

entirely along one axis (Basser 

and Pierpaoli, 1996).

Axial diffusivity AD Measures diffusion along or 

parallel to axonal fibers 

(Winklewski et al., 2018).

Radial diffusivity RD measures diffusion 

perpendicular to axonal fibers 

(Winklewski et al., 2018)

Mean diffusivity MD Measures the average diffusion 

in all directions (Winklewski 

et al., 2018), also denoted as 

apparent diffusion coefficient 

(ADC).

TABLE 3 Definitions of network parameters.

Network parameter Definition

Global efficiency Quantifies connectedness and potential 

communication between regions by 

taking the inverse of the characteristic 

path length

Local efficiency Describes connectedness around a 

node, or the shortest path length 

between two regions and is considered 

a measure of segregated information

Clustering coefficient The proportion of the number of actual 

connections between nodes and their 

next closest neighbors and the number 

of possible connections between nodes 

and their next closest neighbors

Small worldness The degree of high clustering paired 

with short path lengths
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the implementation of the brain connectivity toolbox. Graph 
theoretical analysis treats brain connections like a graph, so its 
topology can be  quantitatively described by network parameters. 
We graph weighted measures, such that the connectivity matrix will 
be normalized so the maximum value of the matrix is one.

2.6 Statistical analysis

Statistical comparisons of volume, FA, AD, MD, and RD were 
assessed by multiple unpaired t-tests, with correction for multiple 
comparisons, two-stage step-up (Benjamini, Krieger, and Yekutieli) 
with desired false discover rate (FDR) at 5.00%.

Differences between WT and KO brain connectivities were 
performed by comparing the distribution of fiber tracts in between all 
36(36–1)/2 = 630 pairs of brain regions. We  excluded pairs where 
>50% of their observations were 0 and, to alleviate skewing and make 
the data more amenable to linear models, log-transformed the data 
after adding a pseudo count of 1 to avoid taking the log of zero. T-tests 
with nWT + nKO – 2 = 17 degrees of freedom were used to compare WT 
and KO pairs and resulting p-values were adjusted using the Benjamini 
Hochberg procedure to adjust for multiple testing by controlling the 
FDR at 5% (Benjamini and Hochberg, 1995). These computations 
were performed in Rv4.1.2.

Statistical comparisons of network parameters and total 
connections were evaluated using unpaired, two-tailed t-tests, with 
confidence level 95%. Definition of statistical significance: p < 0.05.

3 Results

3.1 Left vs. right hemisphere diffusivity 
analysis

We first examined if left and right hemispheres are different in 
measures of volume and diffusivity. Volume and diffusion parameters, 
such as FA, RD, AD and MD, per ROI per hemisphere were averaged 
for both WT and ApoE KO, in order to determine differences between 
the right and left hemisphere of either strain. According to two-sample 
unpaired t-test, no regions were significantly different after adjusting 
for FDR at 5% in the left or right for both ApoE KO and WT 
(Supplementary Tables S1, S2). p-values between left and right ROIs 
are all greater than 0.05. Representative images of both WT and ApoE 
KO average FA (2A, I and B, J respectively), MD (2C, K and D, L), AD 
(2E, M and F, N) and RD (2G, O and H, P) per ROI are shown on a 
color scale of diffusion coefficient (Figure 2). Qualitatively, axial views 
of both left and right hemispheres also show similar patterning 
between the two for both WT and ApoE KO. There are no detectable 
differences between the left and right hemispheres for the 
parameters examined.

3.1.1 ApoE KO vs. WT ipsilateral hemisphere 
analysis

Next, we conducted an unbiased comparison between ApoE KO 
and WT for the entire left hemisphere ipsilateral connectivity followed 
by the entire right hemisphere ipsilateral connectivity. Since we saw 

FIGURE 1

Schematic of methods is depicted. Representative sagittal slices of rodent diffusion MRI scans with voxel contrast assigned as FA (left) and color (right) 
are shown (A). Tractography of the whole brain without assigning an ROI or ROA is demonstrated from both the sagittal and axial viewpoints (B). The 
high-resolution population normalized anatomical template and atlas-based segmentation and parcellation of the 72-brain region atlas are 
demonstrated (C,D). A sample adjacency matrix and connectogram of connections mapped to brain regions (E,G) as well as a representative ball-and-
stick model of network topology (F) are demonstrations of subsequent network analysis conducted steps 1A–1D (E-G).
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little physical or volumetric differences, comparing average 
tractography between WT and ApoE KO groups could illustrate 
significant differences in specific areas of the brain. A unilateral 
analysis of the left hemisphere led to differences in fiber tract 
orientation (representative images 3A and C, top). These left fiber 
tracts were then mapped to our 36 brain regions on the left hemisphere 
(representative images 3A and 3C, middle) so we were able to assess 
the amount of fiber tracts present in each region, as well as visualize 
the 3D graphs via ball and stick plots (3A and 3C, bottom). From our 
whole brain analysis, we created an average connectogram plot (WT 
3B and ApoE KO 3D, top) from the average adjacency matrix (WT 3B 
and ApoE KO 3D, bottom).

We compared average numbers of fiber tracts in the left 
hemisphere in both WT and ApoE KO and found there were 
significantly more fibers in ApoE KO than WT (Table 4). While 
the average connectogram plots (3B and 3D) demonstrate that 
connectivity patterns are typically similar between WT and ApoE 
KO, as in the ribbons representing connections between two 
regions exist in a similar pattern, differences in connectivity 

amounts are discernable from the heatmaps of raw fiber 
tract numbers.

Our analysis showed that the group averaged ApoE KO brains had 
significantly higher numbers of fiber tracts, so we then conducted 
regional analysis to pinpoint exactly which connections between 
regions were greater than WT. Using the adjacency matrices, we were 
able to compare the number of fiber tracts between one region and 
every other region, for all 36 ROIs. This found that only 2 connecting 
regions had significantly higher numbers of connections in ApoE KO 
than WT (see Table  5 for significant connecting regions). This 
statistical analysis revealed, however, that 9 connecting regions were 
significantly lower in ApoE KO mice than WT (Table 5 and visualized 
in Figure 3E).

Next, we compared network measures between ApoE KO and WT 
left hemisphere connectivity. We found no significant differences in 
clustering coefficient, small worldness, global or local efficiency 
(Figure 3F).

Overall, while we found that while ApoE KO averaged significantly 
higher numbers of connections in the ipsilateral left hemisphere 

FIGURE 2

Representative images of whole brain of both the left and right hemisphere have been rendered on a scale of 0–0.4 for average fractional anisotropy 
(FA), medial diffusivity (MD), axial diffusivity (AD), and RD (radial diffusivity) per ROI. General patterning of all diffusion parameters appears the same in 
both the left and right hemisphere.
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connections, this greater connectivity was only significantly different 
between two connecting pairs and was not associated with significant 
differences in network measures. In the 9 connections where ApoE 
KO connection numbers were significantly lower than WT, 3 of the 9 
connection pairs involved the hippocampus, and 5 involved 
subregions of the amygdala.

In the right hemisphere ipsilateral analysis, we similarly compared 
average numbers of fiber tracts and found no significant difference 
between WT and ApoE KO (Table 4). Representative fiber tracts, right 
hemisphere ROIs, and ball-and-stick plots of right hemisphere 
connectivity demonstrate visual connectivity (Figures  3G,I), and 
average connectogram plots and heatmaps of raw fiber tract numbers 
(Figures  3H,J) demonstrate again that connectivity patterns are 
typically similar between WT and ApoE KO.

Using the adjacency matrixes, we compared the number of fiber 
tracts between one region and every other region. This found 
significantly higher numbers of connections in ApoE KO than WT 
between 4 regions (Table 4). This analysis also revealed 6 regions were 
significantly lower in ApoE KO vs. WT (Table 5). While these results 
returned slight differences than the left ipsilateral hemisphere 
connections, the highest number of significantly different connecting 
regions are still found in the hippocampus, amygdala, and 
caudate putamen.

When comparing right ipsilateral weighted network measures, 
we  found, similar to the left ipsilateral analysis, that there are no 
significant differences between WT and ApoE KO in clustering 
coefficient, small worldness, local efficiency, and global efficiency 
(Figure 3L).

3.1.2 ApoE KO vs. WT contralateral hemisphere 
analysis

To explore ApoE’s effects on long-range neuronal 
development, we planted seeds in the left hemisphere and mapped 
their connections to the right hemisphere. Representative fiber 
tracts, ROIs and ball and stick models demonstrate contralateral 
connectivity (Figures  4A,C). We  did not find a significant 
difference in total average fiber tract between ApoE KO and WT 
(Table 4). When comparing the number of fiber tracts between 
one region and every other region in the adjacency matrices 
(Figures 4B,D), we found no significant differences in number of 
connections between any two regions (Table 5 and Figure 4E). 
We  compared ApoE KO and WT left hemisphere network 
parameters, including contralateral connections and found no 
significant differences, clustering coefficient (WT: 0.0084 ± 0.0011, 
ApoE KO: 0.0082 ± 0.0012, p = 0.67), small worldness (WT: 
6.61E-05 ± 1.8E-05, ApoE KO: 5.10E-05 ± 1.61E-05, p = 0.071), 
local efficiency (WT: 0.89 ± 0.13, ApoE KO: 0.86 ± 0.14, p = 0.60), 
and global efficiency (WT: 0.023 ± 0.0048, ApoE KO: 
0.022 ± 0.0052, p = 0.29) (Figure 3F).

In a similar fashion, we planted seeds in the right hemisphere and 
mapped their connections and compared network measures in the left 
hemisphere (Figures  4G,I). Again, we  did not find a significant 
difference in total average fiber tract between ApoE KO and WT 
(Table 4) Here, we also found no significant differences in number of 
connections between any two regions from the adjacency matrices 
(Table 5 and Figure 4K). We compared ApoE KO and WT network 
parameters and none were significantly different, including clustering 
coefficient (WT: 0.0097 ± 0.0030, ApoE KO: 0.0091 ± 0.0037, p = 0.68), 
small worldness (WT: 3.20E-05 ± 1.35E-05, ApoE KO: 
2.98E-05 ± 2.08E-05, p = 0.79), global efficiency, though it approached 
significance, (WT: 0.025 ± 0.0052, ApoE KO: 0.021 ± 0.0037, 
p = 0.0509), and local efficiency (WT: 0.84 ± 0.22, ApoE KO: 
0.77 ± 0.30, p = 0.58) (Figure 4L).

TABLE 4 Average number of connections for each area of analysis are 
shown.

WT ApoE P-value

Left hemisphere 

ipsilateral 499,715 ± 12,109 512,639 ± 13,637 0.042

Right 

hemisphere 

ipsilateral 525,555 ± 21,387 523,448 ± 24,227 0.84

Left hemisphere 

contralateral 654,260 ± 115,659 657,827 ± 98,715 0.94

Right 

hemisphere 

contralateral 685,326 ± 109,612 673,759 ± 66,514 0.78

Left 

hippocampus 

ipsilateral 1.16 ± 0.17*105 1.08 ± 0.17*105 0.356

Right 

hippocampus 

ipsilateral 124,966 ± 24,252 116,930 ± 19,822 0.44

Left 

hippocampus 

contralateral 143,272 ± 22,555 140,201 ± 39,565 0.84

Right 

hippocampus 

contralateral 143,194 ± 31,387 142,295 ± 38,426 0.96

Left amygdala 

ipsilateral 2.56 ± 0.87*104 2.08 ± 1.3*104 0.3622

Right amygdala 

ipsilateral 28,883 ± 9,387 19,881 ± 5,781 0.021

Left amygdala 

contralateral 17,287 ± 9,898 11,090 ± 6,398 0.12

Right amygdala 

contralateral 21,813 ± 7,052 18,062 ± 10,973 0.39

Left caudate 

putamen 

ipsilateral 88,226 ± 20,939 83,502 ± 19,580 0.62

Right caudate 

putamen 

ipsilateral 85,319 ± 15,163 75,513 ± 10,883 0.12

Left caudate 

putamen 

contralateral 180,506 ± 23,124 183,104 ± 42.176 0.87

Right caudate 

putamen 

contralateral 180,202 ± 28,505 169,544 ± 38,151 0.5
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(Continued)

TABLE 5 Significant differences in connection regions for each area 
where fibers were seeded are presented.

Area of interest Connecting 
regions

FDR adjusted 
p-value

Left hemisphere ipsilateral

Significantly higher in ApoE KO

RHP –TT 0.046

DG – CA1 0.041

Significantly higher in WT

COA-CP 0.041

COA-TH 0.013

COA-VS 0.004

COA-CA3 0.01

COA-DG 0.013

ICtx-IC 0.041

NA-CP 0.019

PIR-SUC 0.013

CA1-IntC 0.00043

Right hemipshere ipsilateral

Significantly higher in ApoE KO

RTH-RCC 0.024

RHY-RCP 0.024

RHY-RTH 0.003

RRHP-RPAG 0.042

Significantly higher in WT

RCOA-CP 0.026

RCOA-RICtx 0.019

RinfC-RSUC 0.024

RNA-RolfA 0.019

RMO-RolfA 0.007

RDG-RCP 0.024

Left hippocampus ipsilateral

Significantly higher in ApoE KO

CC –TT 0.02

DG – CA1 0.034

Significantly higher in WT

TH-CP 0.048

PIR-CP 0.019

IC-CA1 0.009

COA-CA3 0.009

COA-DG 0.009

COA-TH 0.009

VS-COA 0.009

PIR-ICTX 0.05

Left amygdala ipsilateral

Significantly higher in WT

COA-CC 0.015

COA-CP 0.015

COA-TH 0.001

COA-SUC 0.031

COA-VS 0.001

COA-HY 0.031

COA-SS 0.031

COA-CA3 0.004

COA-DG 0.015

COA-MB 0.044

Right amydala ipsilateral

Significantly higher in ApoE KO

RPIR-RCOA 0.018

RPIR-REC 0.014

RPIR-RSTR 0.014

Significantly higher in WT

RCOA-RCC 0.033

RCOA-RCP 0.014

RCOA-RVS 0.005

RCOA-RICtx 0

ROlfA-RTH 0.032

ROlfA-RVS 0.049

ROlfA-RICtx 0.014

RCOA-RSS 0.007

RPIR-RICtx 0.018

RCOA-RCA1 0.015

RCOA-RDG 0.014

RCOA-RMB 0.05

ROlfA-RDG 0.015

RICtx-RSTR 0.003

Left amygdala contralateral

Significantly higher in WT

COA-RCC 0.026

COA-RSUC 0.036

COA-RVS 0.036

COA-RPAG 0.026

COA-RICtx 0.039

COA-RRHP 0.026

COA-RCA3 0.036

Left caudate putamen 

ipsilateral Significantly higher in WT

COA-DG 0.013

Right caudate putamen 

ipsilateral Significantly higher in WT

RCOA-RPAL 0.001

RCOA-RHY <0.00001

RCOA-RICtx 0.001

RCOA-ROlfA 0.021

RCOA-RSTR 0.023

TABLE 5 (Continued)
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3.1.3 ApoE KO vs. WT left and right ipsilateral 
hippocampus analysis

The 4 regions in the ipsilateral fiber tract analysis with significantly 
fewer average connections to subregions of the hippocampus (COA-
CA3, COA-DG, CA1-IntC, RDG-RCP) in ApoE KO compared to WT, 
as well as the ipsilateral connections that were higher in ApoE KO 
than WT (DG-CA1 and RDG-RCA3) led us to wonder what fiber 
tract organization looked like when fiber tracts running through the 
hippocampus were isolated. Using automated segmentations and the 
same tracking parameters as the ipsilateral hemisphere analysis, 
we  placed 1,000,000 fiber tract seeds only in the left or right 
hippocampus (CA1, CA2, CA3, and the dentate gyrus) and mapped 
their connections into the rest of the ipsilateral hemisphere. In the left 
hippocampus, an outline of the ROI is depicted for WT and ApoE KO 
respectively, and these ipsilateral hippocampus fiber tracts were 
similarly mapped to our 36 brain regions on the left hemisphere 
(Supplementary Figures S1A,C) so we can assess the amount of fiber 
tracts present in each region. In the same manner as the ipsilateral 
hemisphere, we  used graph theoretical analysis to describe the 
organization of these fiber tracts. Representative ball and stick plots 
are 3D graph visualizations (Supplementary Figures S1B,D), in which 
balls represent nodes and sticks represent edges.

We found no significant difference in the average number of tracts 
derived from the left hippocampus (Table 4). To explore this, we again 
compared the number of fiber tracts between one region and every 
other region, for all 36 ROIs, this time using hippocampus fiber tracts 
rather than left hemisphere fiber tracts (see Supplementary Figure S1 
for details). This found that only 2 connecting regions had significantly 
higher numbers of connections in ApoE KO than WT. On the other 
hand, 8 connecting regions were significantly lower in ApoE KO mice 
than WT (Table 5). Many of the significantly lower connections in this 
case also involve the amygdala and hippocampus, indicating there is 
a deficit in connectivity between these regions and the rest of the brain.

This time, when comparing ApoE KO and WT network 
parameters, we found WT was significantly greater than ApoE KO in 
4 parameters according to student’s two-sample t-test: Clustering 
coefficient (WT: 0.021 ± 0.0040, ApoE KO: 0.015 ± 0.0032, p = 0.0028), 
small worldness (WT: 0.00015 ± 4.62E-05, ApoE KO: 9.45E-05 ± 3.71E-
05, p = 0.011), local efficiency (WT: 0.98 ± 0.18, ApoE KO: 0.71 ± 0.16, 
p = 0.0023), and global efficiency (WT: 0.051 ± 0.011, ApoE KO: 
0.036 ± 0.00085, p = 0.0031) (Figure 5A).

WT and ApoE KO male’s right hippocampus derived fiber tracts 
were not significantly different (Table 4). See Supplementary Figure S2 
for more details. When comparing fiber tracts between regions 
ipsilateral to the right hippocampus, we  only found one pair of 
connection regions were significantly lower in WT compared to 
ApoE KO (Table 5 and Supplementary Figure 1J). We did, however, 
find significant differences in network parameters. We found that WT 
was significantly greater in 3 network parameters (Figure  5B), 
clustering coefficient (WT: 0.023 ± 0.0042, ApoE KO: 0.017 ± 0.0048, 
p = 0.012), global efficiency (WT: 0.060 ± 0.011, ApoE KO: 
0.045 ± 0.017, p = 0.034), and local efficiency (WT: 1.08 ± 0.20, ApoE 
KO: 0.81 ± 0.25, p = 0.018). Small worldness, however, was not 
significantly different (WT: 0.00018 ± 8.04E-05, ApoE KO: 
0.00019 ± 1.6E-04, p = 0.90).

In the hippocampus fiber tracts specifically, we found that while 
overall fiber tract numbers were not significantly different between 
ApoE KO and WT in either the left or right ipsilateral connections, 8 

connecting regions were significantly lower in ApoE KO than WT, all 
from the left ipsilateral hippocampal connections, and 3 were 
significantly higher, many of these regions again involving 
hippocampus and amygdala. Further, we  found that network 
measures, including measures of both integration and segregation 
which are keys to an efficient network, were significantly lower in 
ApoE KO than WT in both hemispheres.

3.1.4 ApoE KO vs. WT contralateral hippocampus 
analysis

In order to explore ApoE’s effects on long-range neuronal 
development in the hippocampus, we  planted seeds in the left 
hippocampus and also mapped their connections to the right 
hemisphere (see Supplementary Figure S2). We found no significant 
difference in the average number of fiber tracts (Table 4). There were 
also no significant differences in contralateral fiber numbers between 
any two regions when comparing ApoE KO and WT adjacency 
matrices (Table  5). We  compared ApoE KO and WT network 
parameters and found WT was significantly higher in 4 different 
parameters (Figure 5C) clustering coefficient (WT: 0.013 ± 0.0021, 
ApoE KO: 0.0096 ± 0.0027, p = 0.0056), small worldness (WT: 
0.00014 ± 6.51E-05, ApoE KO: 6.73E-05 ± 3.32E-05, p = 0.0055), local 
efficiency (WT: 1.39 ± 0.22, ApoE KO: 0.98 ± 0.28, p = 0.0030), and 
global efficiency (WT: 0.044 ± 0.0077, ApoE KO: 0.027 ± 0.0082, 
p = 0.0003).

When exploring ApoE’s effects on long-range neuronal development 
in the right hippocampus, we planted seeds in the right hippocampus 
and mapped their connections to the left hemisphere 
(Supplementary Figure S2). There were, again, no significant differences 
in average fiber numbers and no significant differences in contralateral 
fiber numbers between any two regions when comparing ApoE KO and 
WT adjacency matrices (Table 5). We compared ApoE KO and WT 
network parameters and found that clustering coefficient (WT: 
0.014 ± 0.0031, ApoE KO: 0.011 ± 0.0022, p = 0.067), small worldness 
(WT: 0.00012 ± 5.43E-05, ApoE KO: 9.19E-05 ± 5.27E-05, p = 0.35), and 
local efficiency were not significantly different, though local efficiency 
was approaching significance (WT: 1.43 ± 0.28, ApoE KO: 1.18 ± 0.26, 
p = 0.055). Global efficiency, however, was significantly different (WT: 
0.045 ± 0.0079, ApoE KO: 0.036 ± 0.010, p = 0.0427) (Figure 5D).

3.1.5 ApoE KO vs. WT ipsilateral amygdala analysis
Our left hemisphere approach revealed significant deficiencies 

in 5 areas and our right hemisphere analysis revealed significant 
deficiencies in 3 areas connecting with the amygdala, which again 
led us to wonder what fiber tract organization looked like when 
isolating the amygdala. We repeated the same process as with the 
hippocampus, instead using the amygdala as our ROI, again placing 
1,000,000 seeds in the region. See Supplementary Figure S3 for 
more details.

There was no significant difference in average fiber tract amount 
between WT and ApoE KO, despite noticeably different patterns in 
connectograms (Table  4 and Supplementary Figure S3). We  then 
compared the number of amygdala fiber tracts between one region 
and every other region, for all 36 ROIs. This time, we found 10 regions 
of interest all involving the left amygdala had significantly lower 
numbers of connections in ApoE KO than in WT (Table 5). All of the 
significantly lower connections in this case involve the amygdala, 
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FIGURE 3

Left Hemisphere ipsilateral fiber tracking results are depicted for WT (A,B) and ApoE KO (C,D). To compare connectomes, an adjacency matrix of signed 
FDR adjusted p-values shows connections between regions where ApoE KO > WT (0.1–0.05 light orange, 0.05–0.0 dark orange) and connections between 
regions where WT > ApoE KO (0.0- –0.05 dark blue, −0.05- –0.1 light blue) (E). Average network parameters (F), clustering coefficient, small worldness, 
global efficiency and local efficiency are compared for WT and ApoE KO, t-test was used to determine significance. Right hemisphere ipsilateral fiber 
tracking results are depicted for WT (G,H) and ApoE KO (I,J), an adjacency matrix comparing connections (K) and network parameters (L) are graphed.
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FIGURE 4

Left Hemisphere contralateral fiber tracking results are depicted for WT (A,B) and ApoE KO (C,D). To compare connectomes, an adjacency matrix of 
signed FDR adjusted p-values shows connections between regions where ApoE KO > WT (0.1 -0.05 light orange, 0.05 -0.0 dark orange) and connections 
between regions where WT > ApoE KO (0.0- -0.05 dark blue, −0.05- -0.1 light blue) (E). Average network parameters (F), clustering coefficient, small 
worldness, global efficiency and local efficiency are compared for WT and ApoE KO, t-test was used to determine significance. Right hemisphere 
ipsilateral fiber tracking results are depicted for WT (G,H) and ApoE KO (I,J), an adjacency matrix comparing connections (K) and network parameters 
(L) are graphed.
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alluding to a deficit in amygdala connectivity. Further, network 
parameters pertaining to amygdala fiber tract organization and 
efficiency were significantly lower in ApoE KO than WT according to 
student’s t-test: clustering coefficient (WT: 0.015 ± 0.0064, ApoE KO: 
0.010 ± 0.0023, p = 0.048), small worldness (WT: 8.7E-05 ± 6.58E-05, 
ApoE KO: 3.27E-05 ± 6.67E-06, p = 0.019), local efficiency (WT: 
0.65 ± 0.25, ApoE KO: 0.43 ± 0.11, p = 0.022), and global efficiency 
(WT: 0.047 ± 0.014, ApoE KO: 0.031 ± 0.00068, p = 0.0039) 
(Figure 6A).

We conducted fiber tracking and network analysis for right 
ipsilateral amygdala connections (Supplementary Figure S3). The 
average number of fiber tracts derived from WT right amygdala was 
significantly higher than that of ApoE KO (Table 4). While ApoE KO 
mice have significantly fewer total fibers, we found that three pairs of 
connecting regions had significantly higher numbers of fibers than 
WT. On the other hand, we found that 14 regions had significantly 
lower numbers of connections in ApoE KO than WT (Table 5). When 
comparing ApoE KO and WT network parameters, we found that 
WT was not significantly different in 3 network parameters, 
clustering coefficient (WT: 0.012 ± 0.0021, ApoE KO: 0.014 ± 0.0062, 
p = 0.40), small worldness (WT: 5.7E-05 ± 4.0E-05, ApoE KO: 
5.7E-05 ± 3.9E-05, p = 0.98), local efficiency (WT: 0.53 ± 0.086, ApoE 
KO: 0.58 ± 0.23, p = 0.56). Global efficiency was, however, significantly 
different (WT: 0.036 ± 0.0087, ApoE KO: 0.028 ± 0.0066, p = 0.040) 
(Figure 6B).

3.1.6 ApoE KO vs. WT contralateral amygdala 
analysis

In order to explore ApoE’s effects on long-range neuronal 
development in the amygdala-seeded connectome, we planted seeds 
in the left COA and right COA and both fiber tract counts and 
network parameters when mapped to the right hemisphere 
(Supplementary Figure S4). There was no significant difference in 
fiber tract amount between WT and ApoE KO (Table 4). We found 
that seven pairs of connecting regions had significantly higher 
numbers of fibers in WT than in ApoE KO (Table  5). Though 
significant differences were found in contralateral left amygdala 
fiber analysis, nearly all the pairwise connection measurements for 
the bilateral COA were 0. As such, any non-NA adjusted value of ps 
falling below 0.05 may be spurious. We compared ApoE KO and 
WT network parameters, and found that WT was significantly 
higher in 1 network parameters, and nearing significance in 2 
others (Figure 6C), clustering coefficient (WT: 0.011 ± 0.0067, ApoE 
KO: 0.0068 ± 0.0023, p = 0.0677), small worldness (WT: 
4.52E-05 ± 4.14E-05, ApoE KO: 1.75E-05 ± 8.87E-06, p = 0.054), 
local efficiency (WT: 0.96 ± 0.50, ApoE KO: 0.57 ± 0.20, p = 0.037), 
while global efficiency was not significantly different (WT: 
0.021 ± 0.0080, ApoE KO: 0.016 ± 0.0045, p = 0.37).

In the right contralateral analysis, WT males average number of 
connections and ApoE KO average number of connections were not 
significantly different (Table  4). In this hemisphere, however, 
we found no significant differences in connections between regions. 
We compared ApoE KO and WT network parameters and none were 
significantly different, in clustering coefficient (WT: 0.0097 ± 0.0030, 
ApoE KO: 0.0091 ± 0.0037, p = 0.68), small worldness (WT: 
3.20E-05 ± 1.35E-05, ApoE KO: 2.98E-05 ± 2.08E-05, p = 0.79), global 
efficiency (WT: 0.017 ± 0.0042, ApoE KO: 0.019 ± 0.0166, p = 0.82), 

and local efficiency (WT: 0.84 ± 0.22, ApoE KO: 0.77 ± 0.30, p = 0.58) 
(Figure 6D).

3.1.7 ApoE KO vs. WT ipsilateral caudate putamen 
analysis

Our whole hemisphere unbiased approach revealed two areas 
of significant differences between the CP and other regions in the 
left hemisphere, and 3  in the right hemisphere. While these are 
fewer differences in connectivity than the hippocampus and 
amygdala, we conducted ipsilateral fiber tracking placing seeds in 
the left or right CP and mapping to the rest of the respective 
hemisphere to see if differences in the ROI fibers persisted. There 
was no significant difference in average fiber numbers (Table 4). See 
Supplementary Figure S5 for more details. While there was no 
difference in overall connectivity between ApoE KO and WT CP 
fibers, we did find one region with significantly lower numbers of 
fiber connections in ApoE KO than WT (Table 5). When comparing 
ApoE KO and WT network parameters we found no significant 
differences in clustering coefficient (WT: 0.020 ± 0.0036, ApoE KO: 
0.020 ± 0.0036, p = 0.98), small worldness (WT: 0.00021 ± 0.00011, 
ApoE KO: 0.00021 ± 0.00013, p = 0.99), local efficiency (WT: 
1.00 ± 0.21, ApoE KO: 1.02 ± 0.19, p = 0.90), or global efficiency 
(WT: 0.066 ± 0.019, ApoE KO: 0.069 ± 0.021, p = 0.74) (Figure 7A). 
When comparing ApoE KO and WT network parameters we found 
no significant differences in clustering coefficient (WT: 
0.020 ± 0.0036, ApoE KO: 0.020 ± 0.0036, p = 0.98), small worldness 
(WT: 0.00021 ± 0.00011, ApoE KO: 0.00021 ± 0.00013, p = 0.99), 
local efficiency (WT: 1.00 ± 0.21, ApoE KO: 1.02 ± 0.19, p = 0.90), or 
global efficiency (WT: 0.066 ± 0.019, ApoE KO: 0.069 ± 0.021, 
p = 0.74).

When placing fiber seeds in the right CP, we again found no 
significant difference in average fiber number (Table 4), however 
we found that WT had significantly higher fiber numbers in 5 
connecting regions (Table 5). Interestingly, these differences in 
connectivity all involved the amygdala. When comparing ApoE 
KO and WT network parameters we  found no significant 
differences in clustering coefficient (WT: 0.015 ± 0.0030, ApoE 
KO: 0.017 ± 0.0051, p = 0.25), small worldness (WT: 
0.00014 ± 7.02E-05, ApoE KO: 0.00015 ± 9.33E-05, p = 0.80), local 
efficiency (WT: 0.76 ± 0.17, ApoE KO: 0.87 ± 0.22, p = 0.26), or 
global efficiency (WT: 0.049 ± 0.018, ApoE KO: 0.053 ± 0.012, 
p = 0.58) (Figure 7B).

3.1.8 ApoE KO vs. WT contralateral caudate 
putamen analysis

To explore ApoE’s effects on long-range neuronal development in 
the caudate putamen (CP), we planted seeds in the left CP and mapped 
both local connections to other regions in the left hemisphere, and 
mapped their connections to the right hemisphere, for a total of 72 
possible connections (see Supplementary Figure S6). There was no 
significant difference in average fiber number between ApoE KO and 
WT and there were no significant differences between connecting 
regions (Table 4). We compared ApoE KO and WT network parameters 
and found no significant differences between 4 different parameters 
(Figure 7C) clustering coefficient (WT: 0.0011 ± 0.0022, ApoE KO: 
0.011 ± 0.0012, p = 0.51), Small worldness (WT: 0.0001053 ± 4.672E-05, 
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ApoE KO: 7.485E-05 ± 1.897E-05, p = 0.075), local efficiency (WT: 
1.22 ± 0.24, ApoE KO: 1.17 ± 0.13, p = 0.57), and global efficiency (WT: 
0.046 ± 0.013, ApoE KO: 0.043 ± 0.0072, p = 0.47).

We explored long-range connectivity in the caudate putamen 
on the right side as well (RCP). There were no significant 
differences between average fiber number or between connecting 
regions (Table  4). We  compared ApoE KO and WT network 
parameters and found that clustering coefficient (WT: 
0.0098 ± 0.00094, ApoE KO: 0.011 ± 0.0060, p = 0.49), small 
worldness (WT: 0.6.7E-05 ± 2.37E-05, ApoE KO: 

7.23E-05 ± 4.22E-05, p = 0.76), local efficiency (WT: 1.00 ± 0.12, 
ApoE KO: 1.03 ± 0.28, p = 0.79), and global efficiency (WT: 
0.029 ± 0.0084, ApoE KO: 0.035 ± 0.016, p = 0.32) were not 
significantly different (Figure 7D).

4 Discussion

Our study found that ApoE deficiency in five-month-old adult 
mice resulted in region-specific brain network remodeling, not in 

FIGURE 5

Average network parameters derived from hippocampus-seeded fiber tracking for left ipsilateral (A, top right: clustering coefficient, bottom right: small 
worldness, top left: global efficiency and bottom left: local efficiency), right ipsilateral (B), left contralateral (C), and right contralateral (D) are compared 
for WT and ApoE KO, t-test was used to determine significance. * signifies p ≤ 0.05; ** signifies p ≤ 0.01; *** signifies p ≤ 0.001.
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the hemisphere, but specifically in the fiber tracts connecting the 
hippocampus and amygdala regions to the other ipsilateral regions. 
These brain regions are associated with learning and memory and 
anxiety. The fiber remodeling in the caudate putamen looked 

different than that of the hippocampus and amygdala, with fewer 
significant differences and no changes in network parameters. Each 
hemisphere as a single ROI is unlikely to lead to globally detectable 
differences. Though ApoE is found in many areas of the brain, it is 

FIGURE 6

Average network parameters derived from amygdala-seeded fiber tracking for left ipsilateral (A, top right: clustering coefficient, bottom right: small 
worldness, top left: global efficiency and bottom left: local efficiency), right ipsilateral (B), left contralateral (C), and right contralateral (D) are compared 
for WT and ApoE KO, t-test was used to determine significance.
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FIGURE 7

Average network parameters derived from caudate putamen-seeded fiber tracking for left ipsilateral (A, top right: clustering coefficient, bottom right: 
small worldness, top left: global efficiency and bottom left: local efficiency), right ipsilateral (B), left contralateral (C), and right contralateral (D) are 
compared for WT and ApoE KO, t-test was used to determine significance.
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localized in the olfactory bulb, nerves and pathways as well as in the 
hippocampus and amygdala, specifically (Boyles et al., 1985; Grehan 
et al., 2001). ApoE KO mice are not known to exhibit any locomotor 
or appetitive deficits (Oitzl et  al., 1997; Raber et  al., 2000), and 
behaved similarly to wildtype in sleep and coordination tests 
(Fuentes et al., 2018), so it would follow that brain processing in 
most ROIs, when the hemisphere is treated as one, should not look 
entirely different.

When placing fiber tracking seeds in the hippocampus and 
amygdala specifically, however, we  saw evidence of brain fiber 
network remodeling. We intentionally used mice of mature adult 
age, such they would not exhibit age-related phenotypes yet, 
allowing us to study the effects of ApoE on network topology 
without compounding the effects of aging. Seven and ten connecting 
regions had significantly lower numbers of connections in ApoE 
KO than WT in the hippocampus and amygdala, respectively. This 
in combination with decreased clustering coefficient, small 
worldness, global efficiency and local efficiency, indicates fiber 
network deficiencies in the ApoE KO mice. To some extent, 
we would expect to see differences in brain fiber network, especially 
in brain regions related to olfactory processing, working memory, 
and exploratory behaviors. Nathan et al. (2004) found that APOE 
KO mice have deficient olfactory function and could not 
differentiate between water and odorant solution even when an 
aversive taste was added (Nathan et al., 2004). Gordon et al. (1995) 
found that during the Morris Water Maze, ApoE KO mice’s latency 
to the platform between trials one and two on a given day did not 
improve, suggesting impaired working memory process (Gordon 
et al., 1995). Further evidence for ApoE KO decreased working 
memory and exploratory behavior came from Fuentes et al. (2018), 
who found that ApoE KO spent less time exploring the novel arm 
during the forced alternation test, and also that ApoE KO had a 
lower preference for the novel object in the novel object recognition 
test (Fuentes et al., 2018). The olfactory pathway related to averse 
or predator scents involves the amygdala (de Castro, 2009), and 
spatial and working memory are linked to the hippocampus, 
individual pathway analysis should reveal differences in these areas 
(D'Hooge and De Deyn, 2001).

The quality of these connections and the way in which they affect 
the functional integration and efficiency of the network differed 
between ApoE KO and WT for both ROI pathways we looked at. Small 
worldness and global efficiency are measures of network efficiency 
(Rubinov and Sporns, 2010; Scharwächter et al., 2022), both of which 
were significantly lower in the hippocampus- and amygdala-seeded 
pathways of ApoE KO mice. Measures of network efficiency provide 
insight into how well subunits of a network are integrated, allowing for 
information processing (Rubinov and Sporns, 2010; Scharwächter 
et al., 2022). Small worldness informs of how nodes are connected 
locally as opposed to how a random network is connected. A tell-tale 
sign of this interconnectedness is high clustering with a minimum path 
length, as it predicts more specifically designed information sharing 
between neighbors, especially if this distribution occurs across the 
entire network (Watts and Strogatz, 1998; Achard et al., 2006). Global 
efficiency was significantly lower for the hippocampus and amygdala 
fiber tract pathways and quantifies how regions communicate with 
each other (Rubinov and Sporns, 2010; Ingalhalikar et al., 2015). In 
humans, a decrease in global efficiency is associated with dementia and 
cognitive impairment in certain patients (Lawrence et al., 2014; Berlot 

et al., 2016), and we see it affected in regions where ApoE is known 
to localize.

High functioning networks require integration and efficiency, 
but likewise tend to divide into subunits, known as network 
segregation (Rubinov and Sporns, 2010). Random networks will 
have low clustering coefficients, since they are the number of actual 
connections between neighboring nodes versus the number of 
possible connections. High clustering coefficient in tandem with 
high local efficiency indicates that information transfer between 
nearby nodes is efficient and effective (Basser and Pierpaoli, 1996; 
Watts and Strogatz, 1998; Rubinov and Sporns, 2010; Ingalhalikar 
et  al., 2015). Clustering coefficient and local efficiency are 
significantly lower in ApoE KO hippocampus- and amygdala-
seeded pathways and indicate that individual subunits of their 
network are not structured to communicate as efficiently as their 
WT counterparts.

When it comes to differences in the caudate putamen-seeded 
fiber tracts, we did not see differences in network parameters or 
overall fiber numbers, but we  did some differences in specific 
connection regions. Interestingly, all of these differences involved 
the amygdala. The caudate putamen plays a central role in 
integrating information particularly pertaining to cognition and 
emotion, performing learned movements, and is also linked to 
dopaminergic reward pathways (Schröder et al., 2020). While there 
are some inconsistent findings, generally decreased levels of 
dopaminergic neurotransmitters have been linked to Alzheimer’s 
disorder (Pan et  al., 2019). While our analysis cannot pinpoint 
specific types of neurotransmitters, decreases in connectivity 
specific to the amygdala is an interesting finding. It could suggest 
that neuronal development involving these integral brain regions is 
altered by a loss of ApoE. ApoE KO mice are a widely studied 
animal model, both as AD models as well as atherosclerosis models. 
Other mouse models of AD exist, and have been studied using 
diffusion MRI, and while the results were inconsistent in some 
regards, a common finding was that DTI identified altered diffusion 
in gray matter (Jullienne et al., 2022). Better characterization of 
mouse models of disease only makes it more possible to translate 
findings into human data. Our study is limited to ex-vivo male mice, 
therefore does not encapsulate these characterizations in female 
ApoE KO neuronal network patterning or in-vivo functional data. 
However, by focusing in on the network organization of one 
hemisphere at a time, we were able to determine the differences 
in connections.

Our study found that ApoE affects network patterning. This is 
consistent with the observations of altered network patterning in old 
mice carrying human ApoE isoforms (Badea et al., 2019). However, in 
the study of old mice, it is unclear if ApoE is affecting neurodevelopment 
of network or the degeneration of the network. In our study, the five-
month-of-age in mice is equivalent to mature adults in humans, an age 
that is much earlier than the equivalent age of LOAD onset. This 
suggests that LOAD vulnerability or resiliency could have already 
existed long before manifestation of LOAD symptoms, suggesting a 
neurodevelopment origin of LOAD vulnerability.

Although ApoE polymorphism is known to increase or decrease 
LOAD risks in an allele-specific manner, carrying either of the three 
genetic variants cannot predict if an individual will or will not 
develop LOAD later in life. Our study proves useful in finding 
changes in graph theory related to disease phenotype, which is 
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already done in human studies (Lawrence et al., 2014; Berlot et al., 
2016). The diffusion parameters and brain network characteristics 
derived in our mouse study can be non-invasively and quantitatively 
obtained in humans. Our study suggests that brain network 
characteristics might be possible surrogate biomarkers in conjunction 
of ApoE polymorphism in prediction of LOAD in each individual. If 
the brain network characteristics of individuals carrying ε2, ε3, or ε4 
isoforms with or without LOAD can be  established at a young 
disease-free stage and an old diseased age, these can potentially offer 
a pathway for future individualized precision medicine for potential 
early detection and intervention in the sub-clinical phase before 
downstream pathological features of amyloid plaques or 
neurofibrillary tangles occur.

5 Conclusion

We used diffusion tensor MRI in conjunction of graph theory to 
show that a deficiency of Apolipoprotien-E (ApoE) leads to altered 
brain network, especially in the network reflected in the 
hippocampus, amygdala, and caudate putamen, in five-month-old 
adult mice. Network topology based on graph theory of ApoE KO 
single hemisphere analysis demonstrated decreased functional 
integration, network efficiency, and network segregation between the 
hippocampus and amygdala and the rest of the brain, with 
significantly lower local and global efficiency, small worldness and 
clustering coefficient, as compared to WT, depending on hemisphere. 
Whole-brain seeding for fiber tracts did not reveal any significant 
changes between WT and ApoE KO, however, when looking 
individually into brain regions and pathway known to be affected by 
LOAD and where ApoE is known to localize, network topology is 
significantly different. Our findings suggest a possible 
neurodevelopmental origin of vulnerability by ApoE deficiency 
through altered brain network structures, long before the equivalent 
age of LOAD onset. Our data showed that brain network developed 
differently in ApoE KO and WT mice, indicating that ApoE is 
involved in brain network development. This suggests a possibility 
that ApoE might attenuate risks of LOAD via altering brain network 
architecture. The three-month-of-age in mice is equivalent to young 
adults in humans, an age that is much earlier than the equivalent age 
of LOAD onset. This suggests that LOAD vulnerability or resiliency 
could have already existed long before manifestation of 
LOAD symptoms.
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