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Introduction

Spinal cord injury (SCI) is a major cause of disability worldwide and regenerative
medicine offers hope for the development of new therapies for these injuries (James et al.,
2019). SCI can result in the loss of sensory and motor function and can have a profound
impact on an individual’s quality of life, affecting not only physical abilities but also
emotional and social wellbeing (Eckert andMartin, 2017). Despite decades of research, there
is still no cure for SCI. The lack of regeneration of injured neurons in the spinal cord is one
of the major challenges in the field of regenerative medicine. In mammal, the spinal cord
is a complex structure with limited capacity for regeneration (He and Jin, 2016; Sofroniew,
2018), and the cellular and molecular mechanisms that regulate neuronal regeneration are
not fully understood.

Recent studies have identified new targets and potential strategies for promoting
neuronal regeneration, including the use of stem cell therapy (Okano, 2010; Führmann
et al., 2017), gene therapy (Lentini et al., 2021; Zhang Y. et al., 2022), and tissue
engineering (Madhusudanan et al., 2020; Cheng et al., 2021). The use of gene therapy in
promoting regeneration and functional recovery in various conditions has been highlighted
in recent studies. For instance, gene therapy using a time-restricted glial cell line-derived
neurotrophic factor expression via an immune-evasive doxycycline-inducible gene switch
has shown promise in enhancing axon regeneration and motor neuron survival after
proximal nerve lesions in rats (Eggers et al., 2019). Resident astrocytes were shown to
generate new neurons after SOX2-mediated in vivo fate reprogramming (Su et al., 2014;
Wang et al., 2016). Similarly, another study revealed that ectopic SOX2 in NG2 glial cells can
induce neurogenesis, reduce glial scarring, and generate propriospinal neurons, promoting
functional recovery (Tai et al., 2021). Moreover, the delivery of FGF22 gene therapy after
spinal cord injury has been shown to promote synaptogenesis and targeted support for
neuronal rewiring, with acute and early application improving functional recovery (Aljović
et al., 2023). However, the results reveal the presence of a narrow time frame, at least within
the first 24 h after SCI, during which synaptogenic gene therapy with FGF22 can improve
recovery of motor function. This limited window might be difficult to achieve in a clinical
setting, which may necessitate the exploration of alternative synaptogenic molecules or
approaches with a more extended therapeutic window. Overall, these findings suggest that
gene therapy has the potential to activate the regenerative ability of endogenous glial cells,
leading to regeneration and functional recovery in various conditions.
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Gene editing is another type of gene therapy (Boulad
et al., 2018) that shows promise in promoting regeneration
in various neurodegenerative disease models. Techniques such
as CRISPR-Cas9 and iPSCs can correct genetic mutations that
contribute to regeneration or reduce the risk of developing
neurodegenerative diseases like Parkinson’s disease (Chavez et al.,
2023) and Alzheimer’s disease (György et al., 2018). For instance,
CRISPR/Cas9 can disrupt mutations in genes like APPSwe, which
reduces the secretion of Aβ and may be used for gene therapy
against Alzheimer’s disease. Therefore, gene editing has the
potential to correct genetic mutations, promote regeneration, and
reduce the risk of neurodegenerative diseases.

Despite advancements in developing therapies for SCI,
significant challenges related to safety, efficacy, and scalability
remain. Furthermore, a comprehensive understanding of the
mechanisms underlying neuronal regeneration is lacking,
hindering the development of effective therapies. Gene editing,
which allows for precise modification of genetic sequences, offers a
promising avenue for the correction of disease-causing mutations
or engineering of cells to promote tissue repair and regeneration.
While stem cell technology has shown promise in animal models
of SCI, caution is warranted due to limitations in translating these
findings to human patients. Additionally, while mesenchymal stem
cells may exhibit neuron-like characteristics, their efficacy seems
primarily related to their paracrine activity rather than cellular
replacement mechanisms.

In this opinion article, we present a viewpoint on the potential
of gene therapy in regenerative medicine for treating SCI and
discuss its limitations and future directions. We also discuss
the importance of comparative studies of neuronal regeneration
in different vertebrate species and the potential of combining
different approaches, including gene therapy, to promote neuronal
regeneration in the spinal cord. By better understanding the
mechanisms that regulate neuronal regeneration and developing
safe and effective therapies, we can improve the outcomes for
patients with SCI and other neurological disorders.

Current landscape and challenges

Importance of comparative studies of
neuronal regeneration in the spinal cord

The study of neuronal regeneration in different vertebrate
species, such as zebrafish and axolotls, has allowed for a
better understanding of the mechanisms of regeneration and
the identification of factors that influence regeneration. For
example, zebrafish have a high potential for neuronal regeneration
(Zeng et al., 2016, 2020; Lee et al., 2022). Recent studies have
identified potential candidate genes that can induce neuronal
regeneration after SCI, such as connective tissue growth factor
a (CTGFa) (Mokalled et al., 2016). This extracellular matrix
(ECM) protein can improve spinal cord repair in injured zebrafish.
Additionally, Caveolin 1 (Cav1), a membrane protein, was
significantly upregulated in the rostral side of glial cells at the
injury region and was found to be responsible for axonal regrowth
(Zeng et al., 2021). It is noteworthy that Cav1 is required not
only for CTGF upregulation in the mesangial cells of the kidney

(Guan et al., 2013), but also for high CTGF expression in
hepatocytes (Pavlides et al., 2010). This evidence demonstrates
that the presence of Cav1 can impact CTGF expression in kidney
mesangial cells, and hepatocytes. Furthermore, H2O2 and its
downstream effector CTGF are pro-regenerative factors that enable
axonal growth and reveal a striking ECM remodeling process
during nerve regeneration in a mouse model (Negro et al., 2022).

The above evidence suggests that comparative studies have
identified signaling pathways andmolecules involved in the process
of regeneration and have provided insights into how these pathways
can be targeted to promote regeneration in mammals. Therefore,
the comparison of regenerative and non-regenerative species has
highlighted the importance of the cell response and glial cells in
promoting regeneration.

Limitations and challenges of current
strategies for promoting neuronal
regeneration

Current strategies for promoting neuronal regeneration in
the spinal cord, such as stem cell therapy and gene therapy,
face significant limitations and challenges. Stem cell therapy
has shown some promise in pre-clinical studies, but its clinical
application is hindered by concerns about the potential for
tumorigenesis, limited cell survival, and the lack of integration
of transplanted cells into the host tissue. For example, in the
case of Parkinson’s disease evidence suggests that only 3–20% of
grafted dopaminergic cells survive after the procedure (Brundin
et al., 2000; Kim et al., 2020; Hiller et al., 2022). The loss
of dopaminergic cells in grafts can be triggered by various
factors, such as mechanical trauma, neuroinflammation, poor
vascularization, and growth factor deprivation in the host brain
(Brundin et al., 2000; Moriarty and Dowd, 2018). The critical
period during which most dopaminergic cells die is the first few
days after transplantation (Sortwell et al., 2000). To address these
challenges, utilizing cells with neurotrophic properties to modify
the pathologic brain environment or promote neuroprotective
effects has emerged as a potential strategy for central nervous
system (CNS) disorders. Despite advances in SCI research, clinical
therapeutic approaches that promote neurological recovery are still
limited (Elizei and Kwon, 2017). Currently, the clinically applicable
methods for patients with SCI within the first 48 h mainly
include spine immobilization (Ottosen et al., 2019) and surgical
decompression (Badhiwala et al., 2021). Chemical treatments for
SCI are designed to reduce inflammation, prevent further damage,
and promote healing and recovery. While these treatments have
shown potential in improving sensorimotor recovery in a treatment
time-related manner, high-dose chemical treatment may increase
the risk of adverse events in patients with acute SCI, with minimal
contribution to neurological recovery. It is important to note that
the effectiveness and safety of these treatments may vary, and
more research is needed to fully understand their potential for
treating SCI. Here are a few examples of chemical treatments for
SCI: (1) Corticosteroids, such as methylprednisolone (MP): MP
has been used to treat acute SCI due to its anti-inflammatory
and neuroprotective effects (Bydon et al., 2014); (2) Riluzole:
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This drug has been shown to have neuroprotective properties
by inhibiting the release of glutamate, a neurotransmitter that
can cause excitotoxicity and contribute to secondary injury after
SCI (Nagoshi et al., 2015); and (3) Glibenclamide: Glibenclamide
targets SUR1-TRPM4 ion channels, which are upregulated after
SCI. Blocking these channels has been shown to reduce edema and
improve functional recovery in preclinical models (Kurland et al.,
2013).

In the past, significant progress has been made in
understanding the mechanisms that limit therapeutic outcomes
after SCI. These mechanisms can be classified as extrinsic or
intrinsic to the neurons. Efforts have been focused on investigating
inhibitory factors related to glial scars (Sami et al., 2020), myelin
debris (Li et al., 2020), and axonal components (Yang et al.,
2020; Cheng et al., 2021). For example, Nieuwenhuis et al. (2020)
highlights the importance of PI3Kδ in regulating axon outgrowth
and regeneration in the adult CNS. By enhancing axonal PIP3
levels, PI3Kδ supports the regenerative capacity of injured neurons,
making it a potential therapeutic target for promoting neural
repair after injury. However, achieving axon regeneration remains
the first step in promoting functional recovery. Additionally,
long-distance axon growth across injured sites and proper
neuronal relays with targets have been difficult to achieve (Shen
et al., 2022). Therefore, due to the complex mechanisms and
unusual difficulty of neural regeneration in SCI, it is unlikely
that a single method or strategy will achieve sufficient results to
generate functional recovery. In addition, identifying presynaptic
molecules that can be targeted to promote axon regeneration and
recovery after injury is of significant importance in the field of
neuroscience. Recent studies have shed light on the molecular
mechanisms that inhibit axon regeneration in the adult CNS,
suggesting potential therapeutic targets for neural repair. For
instance, Hilton et al. (2022) explored the role of vesicle priming
machinery in axon regeneration following CNS injury. Their study
revealed that an active vesicle priming process, governed by a
protein complex called Munc13-1/2, hinders axon regeneration in
adult CNS neurons. By reducing the levels of Munc13-1/2, they
found that axon regeneration in injured neurons was promoted.
This indicates that the vesicle priming machinery plays a crucial
role in suppressing axon regrowth and could be a potential target
for promoting neural repair. Similarly, Tedeschi et al. (2016)
discovered that the expression of the calcium channel subunit
alpha2delta2 is upregulated in injured adult CNS neurons, leading
to the suppression of axon regeneration. By decreasing the levels
of alpha2delta2 in injured neurons, the researchers successfully
promoted axon regrowth and functional recovery. In conclusion,
future studies should continue to investigate the molecular
mechanisms that inhibit axon regeneration in the adult CNS. This
will enable researchers to identify novel therapeutic targets, such
as the vesicle priming machinery and the calcium channel subunit
alpha2delta2, which could be leveraged to promote neural repair
after injury.

Taken together, there are various approaches attempting to
increase functional recovery after SCI, but a satisfactory solution
has not yet been found. In summary: (1) Stem cell therapy is
the current strategy for promoting neuronal regeneration in the
spinal cord, but it faces significant limitations and challenges, such
as low cell survival rates, tumorigenesis, and lack of integration

into host tissue; (2) Clinical therapeutic approaches that promote
neurological recovery for SCI are still limited; (3) The complex
mechanisms and unusual difficulty of neural regeneration in SCI
make it unlikely that a single method or strategy will achieve
sufficient results to generate functional recovery.

Continuous efforts are needed to explore new ways of
generating functional recovery after SCI using current technology.
While gene therapy for regeneration has been a hot topic in
recent years, this technology is not yet well-suited for application
in mammalian spinal cord regenerative models. In the next
section, we propose a few different views of gene therapy that
could offer a fresh perspective on regenerative medicine after SCI
in mammalian.

The potential of gene therapy in promoting
neuronal regeneration

For over three decades, researchers have been investigating
the potential of genetic modifications to provide long-lasting
and potentially curative treatments for various inherited human
diseases with a single intervention. In the context of SCI, gene
therapy can be utilized to engineer cells that promote neuronal
regeneration. This approach is typically employed post-injury or
after a disease has manifested, aiming to enhance tissue repair and
regeneration. For instance, Lu et al. (2012) showcased the ability
of genetically modified neural stem cells, engineered to express
a combination of growth factors, to support axonal regeneration
and functional improvement following SCI. Similarly, Pearse et al.
(2004) illustrated the use of gene therapy to overexpress the enzyme
adenylyl cyclase in Schwann cells, which in turn elevated cyclic
AMP (cAMP) levels and promoted axonal regeneration after SCI
in rats. The authors found that the combined approach of gene
therapy and Schwann cell transplantation resulted in enhanced
functional recovery.

Above studies highlight the promising role of gene therapy
in fostering neuronal regeneration and functional recovery in the
context of SCI. Typically applied after the onset of injury or disease,
gene therapy aims to facilitate tissue repair and regeneration. Our
focus is on the treatment of SCI through the use of nanostructured
biomaterials and in vivo gene expression reprogramming.

Nanostructured biomaterials based therapy
Nanoparticles have the potential to revolutionize the field of

medicine by enabling targeted drug delivery and improving the
effectiveness of therapies for a wide range of diseases, including SCI.
Currently, there are limited treatment options available for patients
with SCI, and most therapies focus on managing symptoms rather
than promoting recovery. However, nanoparticle-based therapies
hold promise for improving outcomes in patients with SCI.

Nanoparticles offer a promising approach for delivering
drugs or other therapeutic agents in the treatment of SCI. One
such example is the CAQK peptide, which has demonstrated
potential in treating CNS injuries due to its selective binding to
chondroitin sulfate proteoglycans, which increase in expression
following CNS injury (Mann et al., 2016; Abi-Ghanem et al.,
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2022). Another promising example involves the use of curcumin-
loaded nanoparticles for SCI treatment. Curcumin, a natural
polyphenolic compound derived from the turmeric plant, exhibits
anti-inflammatory, antioxidant, and neuroprotective properties
(Vaiserman et al., 2020; Sabouni et al., 2023), making it a
promising candidate for addressing SCI (Krupa et al., 2019).
However, the therapeutic efficacy of curcumin is limited by
its low bioavailability and poor water solubility. To overcome
these challenges, Ayyanaar et al. (2019) developed poly(lactic-
co-glycolic acid) (PLGA) nanoparticles loaded with curcumin
to enable targeted delivery to the injured spinal cord. Their
study demonstrated that curcumin-loaded PLGA nanoparticles
efficiently targeted the injury site, reduced inflammation, protected
neurons, and promoted functional recovery in a rat model of
SCI. These results suggest that curcumin-loaded nanoparticles hold
promise as a therapeutic strategy for SCI treatment.

Another approach to mitigating detrimental hyperexcitability
and neurotransmitter imbalance following SCI involves targeting
specific neurotransmitter receptors. For instance, inhibiting
acetylcholine receptors, particularly α7 nicotinic acetylcholine
receptors (α7 nAChRs), has been shown to improve neuropathic
pain behaviors by decreasing dynorphin A release (Ji et al., 2019).
Moreover, targeting ionotropic glutamate receptors, such as
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)
receptors, is another promising strategy for SCI treatment (Park
et al., 2003). AMPA receptors mediate fast excitatory synaptic
transmission in the CNS, and their antagonists can counteract
excitotoxicity by blocking excessive receptor activation (Gwak
et al., 2007). This ultimately protects neurons from glutamate-
induced damage. For example, the AMPA receptor antagonist
NBQX (2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline)
has demonstrated reduced neuronal death, improved tissue
preservation, and enhanced functional recovery in animal models
of SCI (Schidlitzki et al., 2017; Zhang J. et al., 2022). To achieve
effective dosing, it is crucial for nanoparticles carrying these
therapeutic agents to accumulate at the injury site. Nanoparticle
design plays a significant role in enhancing local accumulation,
which addresses a major challenge in drug delivery to the CNS:
minimizing accumulation outside of the injury site. In summary,
strategies targeting neurotransmitter receptors, such as α7 nAChRs
and AMPA receptors, along with carefully designed nanoparticles,
can help reduce excitotoxicity, promote neuronal survival, and
improve functional recovery after SCI.

Nanoparticles have multiple advantages as tissue engineering
tools for various pathologies, effectively enhancing regenerative
medicine strategies. Studies reveal that chondroitin sulfate
proteoglycans (CSPGs) enrichment is contributed by most cellular
components close to the lesion epicenter for several months after
injury, with CSPGs being the primary components of neural
ECM (Beller and Snow, 2014; Yang et al., 2020). However, the
upregulation of CSPGs after SCI results in dense isolation of
the injury site, hindering neural regeneration and leading to
permanent deficits. Consequently, treatments targeting CSPGs
are gaining importance, as reducing CSPGs has been shown
to enhance neural regeneration in SCI. For instance, Cafferty
et al. (2007) transplanted genetically modified astrocytes expressing
chondroitinase ABC into injured spinal cords of mice. The study

revealed that chondroitinase ABC facilitated axonal regeneration
by degrading inhibitory CSPGs, ultimately improving functional
recovery. Similarly, Alilain et al. (2011) examined the combined
effects of chondroitinase ABC treatment and rehabilitation training
in rats with cervical SCI, finding enhanced functional recovery and
increased synaptic connectivity. Additionally, Prado et al. (2019)
assessed chondroitinase ABC administration in dogs with naturally
sustained SCI injuries, showing improved locomotor function in
some treated animals, supporting its potential as a promising
therapeutic option for SCI treatment in humans.

On the other hand, Zhang X. et al. (2022) showed
that paclitaxel-encapsulated PCL@SAD nanoparticles, when
administered at the injury site, counteract the inhibitory effects
of CSPGs, promote neural regeneration, provide neuroprotection
to the damaged spinal cord, and improve locomotor recovery.
PCL@SAD is a composite biomaterial scaffold composed of
encapsulated paclitaxel (PCL) and acetal dextran nanoparticles
(SAD). PCL acts as a biodegradable and biocompatible polymer,
offering structural support, while SAD forms a nanofiber hydrogel
that mimics the natural ECM, supporting cell adhesion and growth
(Bouissou et al., 2014; Turner et al., 2020). PCL@SAD scaffolds
integrate PCL’s structural integrity with SAD’s biological properties,
creating an optimal environment for neural tissue regeneration
(Hellal et al., 2011). These scaffolds open a new perspective toward
the application of dextran-based nanoparticles for the treatment of
severe neurological diseases.

Future research should focus on developing novel nanoparticle
formulations by exploring innovative nanoparticle designs,
materials, and surface modifications; optimizing drug release
kinetics and targeted delivery; enhancing biocompatibility and
safety; and investigating the potential for combined therapies that
synergistically promote functional recovery and regeneration after
SCI.

In vivo gene expression reprogramming therapy
Gene therapy holds great promise in treating a variety of human

diseases, including spinal cord injuries. The use of gene therapy in
SCI involves introducing new genes into cells in the spinal cord to
promote regeneration and repair of damaged tissue. The approach
involves modifying cells to produce proteins that promote the
growth and differentiation of neural cells.

Recent studies have demonstrated the crucial role of
transcription factors (TFs) in regulating the proliferation and
differentiation of neural progenitor cells into neurons during
neurodevelopment. TFs are proteins that bind to DNA and control
gene transcription. By reintroducing the expression of key TFs
in glial cells in the spinal cord, researchers aim to reactivate
neurogenic potential and promote neuroregeneration. SOX2 is a
TF that maintains the identity of neural progenitor and stem cells.
Recent studies have shown that SOX2 can reprogram astrocytes
into proliferating neuroblasts, which can further differentiate into
mature neurons with additional treatments. For example, Su et al.
(2014) used a lentiviral vector to introduce the SOX2 TF into
reactive astrocytes in the injured adult spinal cord. This approach
enabled the conversion of reactive astrocytes into functional
neurons in mice after spinal cord injury. In another study,

Frontiers inNeuroscience 04 frontiersin.org

https://doi.org/10.3389/fnins.2023.1181816
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zeng and Zhang 10.3389/fnins.2023.1181816

Wang et al. (2016) employed a lentiviral vector to express SOX2
in spinal cord astrocytes. The vector was injected into the injured
spinal cord of adult mice, allowing for the overexpression of SOX2
in astrocytes and resulting in the generation of induced neurons.
However, it is important to note that the dynamic expression of
SOX2 is essential during the reprogramming process. Persistent
expression of SOX2 can inhibit neuronal differentiation from stem
cells and impede neuronal reprogramming (Su et al., 2014). Thus,
proper regulation of SOX2 expression is critical for achieving
successful neuroregeneration.

NG2 glial cells in the spinal cord also have neurogenic
potential and can be reprogrammed through ectopic SOX2
expression, promoting functional neurogenesis and injury recovery
(Wang and Zhang, 2018; Tai et al., 2021). Pericytes, which
are cells that wrap around capillaries and regulate blood flow
(Bergers and Song, 2005), and microglia, which are immune
cells in the spinal cord, have also shown the potential to
be reprogrammed into functional neurons in culture (Matsuda
et al., 2019; Cakir et al., 2022; Feng et al., 2022). However,
achieving sufficient neuronal reprogramming for repair without
overly disrupting the physiological function of these cells is a
crucial consideration. Achieving functional benefits through in

vivo gene expression reprogramming can be challenging due
to the numerous parameters that need to be optimized. These
parameters may include the site(s) and timing for viral injection,
the reprogramming factor(s) to use, the models of SCI, and the
types of behavioral assays to perform. For instance, multiple
injection sites may be necessary to reprogram a significant number
of new neurons and achieve sufficient impact to facilitate functional
recovery (Tai et al., 2021). Additionally, overexpression of TFs
that only appear during development can activate unconventional
signaling pathways in adult cells. In the future, research in in

vivo gene expression reprogramming should aim to understand
those TFs involved in the reprogramming process to enhance
reprogramming efficiency.

Future directions in neuronal regenerative
medicine

Neuronal regenerative medicine is an advancing field that may
have great potential for treating various neurological disorders,
injuries, and degenerative conditions. To further enhance its
effectiveness, researchers are exploring multiple approaches such
as stem cell therapies, gene therapies, biomaterials, neurotrophic
factors, and electrical stimulation. The integration of these
approaches through combination therapies could maximize the
regenerative potential of neuronal regenerative medicine. For
example, (1) in the early stages after SCI, gene therapy could be
used to achieve several goals: reduce the formation of glial scars and
immune responses to create a more favorable microenvironment
for neuronal regeneration; (2) ectopic expression of potential
TFs, such as SOX2, specifically activates regenerative genes in
particular cell types; (3) potential TF genes could be delivered using
nanoparticles, a non-viral delivery method, to different cell types
such as NG2+ cells; (4) using a nanoparticle approach, inhibitory
genes such as CSPGs could be knocked down to reduce lesion size

and other negative effects, such as reducing the CSPGs produced
by NG2, while increasing fiber sprouting; and (5) use gene editing
to modify histone proteins, which regulate gene activity and affect
the gene-regulatory machinery, to open condensed chromatin and
expose potential regenerative genes. For example, Weng et al.
(2017) used CRISPR/dCas9 fused to the catalytic domain of the
histone acetyltransferase p300 (dCas9-p300) to specifically target
the promoter regions of regeneration-associated genes (RAGs) in
cultured primary neurons. By increasing histone acetylation at
these loci, the researchers successfully activated the expression of
RAGs, which in turn enhanced axonal growth in vitro. This study
demonstrates the potential of using the CRISPR/dCas9 system to
modulate histone modifications and promote axonal regeneration.
Future research could extend this approach to in vivo models of
SCI or other nervous system injuries to evaluate its therapeutic
potential for functional recovery.

Taken together, stem cell therapy could be combined with
various gene therapies or biomaterials to further enhance the
regeneration of damaged neurons. The future of neuronal
regenerative medicine looks promising, with the potential for
innovative therapies that could revolutionize the treatment of
neurological conditions.

Conclusions

In conclusion, while regenerative medicine offers hope for
the development of new therapies for SCI, significant challenges
still need to be overcome. Current strategies face limitations
such as low cell survival rates and lack of integration into host
tissue. Nonetheless, innovative approaches such as nanostructured
biomaterials and in vivo gene expression reprogramming show
promise in promoting neural regeneration and repair. Continued
research into the molecular mechanisms underlying these
approaches and optimizing parameters such as timing, dosing,
and delivery methods could pave the way for more effective
treatments in the future. With ongoing advancements in the field
of regenerative medicine, there is hope for improved outcomes and
better quality of life for individuals living with SCI.

Therefore, our opinion is that continuous efforts are needed
to develop safe and effective therapies, and to better understand
the mechanisms that regulate neuronal regeneration in the spinal
cord. We provide some future directions for neuronal regenerative
medicine: (a) highlight the importance of comparative studies
of neuronal regeneration in different vertebrate species to gain
insights into the underlying mechanisms and to identify potential
targets for promoting regeneration in mammals; (b) to address
the current limitations and challenges in promoting neuronal
regeneration; and (c) combining two different gene therapy
approaches may offer a potential way to promote neuronal
regeneration and improve outcomes for patients with SCI.
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