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Objective: In recent years, motor imagery-based brain–computer interfaces 
(MI-BCIs) have developed rapidly due to their great potential in neurological 
rehabilitation. However, the controllable instruction set limits its application in 
daily life. To extend the instruction set, we proposed a novel movement-intention 
encoding paradigm based on sequential finger movement.

Approach: Ten subjects participated in the offline experiment. During the 
experiment, they were required to press a key sequentially [i.e., Left→Left (LL), 
Right→Right (RR), Left→Right (LR), and Right→Left (RL)] using the left or right index 
finger at about 1  s intervals under an auditory prompt of 1  Hz. The movement-
related cortical potential (MRCP) and event-related desynchronization (ERD) 
features were used to investigate the electroencephalography (EEG) variation 
induced by the sequential finger movement tasks. Twelve subjects participated in 
an online experiment to verify the feasibility of the proposed paradigm.

Main results: As a result, both the MRCP and ERD features showed the specific 
temporal–spatial EEG patterns of different sequential finger movement tasks. 
For the offline experiment, the average classification accuracy of the four tasks 
was 71.69%, with the highest accuracy of 79.26%. For the online experiment, the 
average accuracies were 83.33% and 82.71% for LL-versus-RR and LR-versus-RL, 
respectively.

Significance: This paper demonstrated the feasibility of the proposed sequential 
finger movement paradigm through offline and online experiments. This study would 
be helpful for optimizing the encoding method of motor-related EEG information and 
providing a promising approach to extending the instruction set of the movement 
intention-based BCIs.
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1. Introduction

Brain-computer interfaces (BCIs) are the direct communication pathways through which 
users can interact with the external world utilizing brain activities (Wolpaw et  al., 2002; 
Chaudhary et al., 2016; Coogan and He, 2018; Xu et al., 2021). Over the last few decades, advances 
in disciplines such as neuroscience and engineering have introduced the BCI as a promising tool 
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for neurorehabilitation and neurophysiology research (Robinson and 
Vinod, 2016). The BCIs based on decoding motor-related neural 
activities can be  used to drive functional electrical stimulation, 
intelligent prosthesis, or mechanical exoskeletons, which have 
important research value for the rehabilitation, replacement, and 
enhancement of motor functions (Birbaumer et al., 2008; Sebastian-
Romagosa et al., 2021; Hernandez-Rojas et al., 2022; Ju et al., 2022; 
Wang et al., 2022). The motor-related neural activity of the brain can 
be induced by actual movement or motor imagery (MI). In the existing 
research, MI-based BCI is the most commonly used research paradigm 
(Pfurtscheller and Neuper, 2001; Wolpaw et al., 2002).

Currently, electroencephalography (EEG) has become the most 
widely used monitoring means of BCI due to its non-invasiveness, 
relatively low cost, and high time resolution (Park et al., 2012; Xu et al., 
2018; Meng et al., 2020; He et al., 2022). Movement-related cortical 
potentials (MRCP) and sensorimotor oscillatory EEG activity (event-
related desynchronization/synchronization—ERD/ERS) provide 
complementary information on the associated motor activity (Savić 
et al., 2020). Many studies have focused on detecting the pre-motor 
state of the upper limbs using EEG correlates such as MRCP or ERD 
(Sburlea et  al., 2015). ERD/ERS is a particular time-locked EEG 
feature for MI tasks, which represents decreases and increases of 
power in alpha or beta bands. The alpha and beta frequency bands of 
ERD can be found over the corresponding sensorimotor areas of the 
brain when people imagine the movements of their limbs (Kosei et al., 
2014; Peng et al., 2020; Dai et al., 2022). Jackson et al. found that 
motor execution shared similar mechanisms with MI. Motor 
execution can also induce the ERD/ERS features as MI tasks. In 
addition, movement-related cortical potentials (MRCPs) can be found 
during the processes of movement. MRCP is one kind of event-related 
potential (ERP), which is a time and phase-locked feature. Actual 
movement can evoke more significant MRCP features than MI tasks. 
Based on the similarity of neural oscillatory patterns of MI and motor 
execution, we  could develop new paradigms and algorithms for 
movement-intention decoding through actual movement experiments 
(Jackson et al., 2003; Sochůrková et al., 2006; Katsumata et al., 2009; 
Sandhya et al., 2014).

Great progress has been made with the MI-BCI technique in 
recent years, but it still faces many research challenges. The quantity 
and classification accuracy of controllable instruction sets cannot 
meet the needs of users to complete most daily life actions (Qiu et al., 
2021). So far, most studies have involved only four simple body MI 
tasks (i.e., left hand, right hand, foot, and tongue movements), with 
limited alternative paradigms (Townsend et al., 2006; Yang et al., 2009; 
Xygonakis et al., 2018). To solve the limitations of the instruction sets 
of MI-BCI, there have been studies on the decoding of complex limb 
and sequential limb-movement imagination tasks (Zhou et al., 2010; 
Doud et al., 2011; Yi et al., 2013). Hsu et al. designed a MI normal 
form of left and right leg steps and proposed a filter bank common 
space pattern (FBCSP) combined with fuzzy support vector machine 
type-II method, which achieved 86.25% recognition accuracy on eight 
subjects (Hsu et al., 2017). However, the existing MI tasks not only 
increase the operational complexity of the experiment but also make 
the output time of a single instruction longer, which reduces the 
decoding efficiency to a certain extent. Therefore, it is necessary to 
propose a new movement intention encoding paradigm to shorten the 
time of single instructions and ensure good classification performance 
at the same time.

As mentioned above, both ERD and MRCP are time-locked 
features. In addition, they have specific spatial distribution patterns 
for different limb movements or imagination tasks. Hence, the 
sequential limb movement paradigms can effectively combine the 
time-frequency and spatial domains’ movement-related information, 
which are promising methods to extend the BCI instruction set and 
enhance the specificity of different task-induced EEG features. Yi et al. 
designed a sequential compound limb MI paradigm with a mean 
classification accuracy of 74.14%, while the time of one trial was 6 s 
(Weibo et al., 2016). Many studies have analyzed the brain activation 
mechanism of imagining movements of a single limb sequence. It has 
been found that the effect of learning movement sequences by 
imagining movements is similar to that of performing the same 
movement sequences, and the changes in brain activity between the 
two are consistent (Zhang et al., 2011; Hardwick et al., 2018; Wang 
et al., 2019; Zhang Q. et al., 2019). Recently, we investigated how data 
length affected the classification of repeated keystroke tasks with the 
index finger and found that single-trial EEG induced by the repeated 
finger movements had good separability (Zhang S, et al., 2019).

Therefore, we proposed a sequential finger movement paradigm 
for BCI, which was expected to expand the instruction set and shorten 
the time of single instructions. From the perspective of the time-
frequency-spatial domain, this paper analyzed the neural oscillations 
patterns induced by sequential movement tasks. MRCP and ERD 
features were extracted effectively based on the common spatial 
filtering algorithm, such as discriminative canonical pattern matching 
(DCPM) (Xu et al., 2018; Wang et al., 2020) and filter bank common 
spatial pattern (FBCSP) (Chin et al., 2008; Ang et al., 2011; Sun et al., 
2022). Mutual information analysis was used to select features. Both 
an offline and an online experiment were carried out to verify the 
feasibility of the proposed paradigm.

2. Materials and methods

2.1. Participants

A total of twenty-two subjects (eight males and fourteen females, 
aged 22–24 years old, all right-handed) participated in the experiments 
of this study. Among them, ten healthy subjects participated in the 
offline experiment to analyze the EEG features of sequential finger 
movement, and twelve subjects participated in the online experiment 
to evaluate the effectiveness of the proposed paradigm. None of the 
subjects had a history of neurological disease or movement disorders. 
The subjects were informed of the experimental procedure and 
received a letter of acceptance before the study. The study was approved 
by the ethical committee of Tianjin University.

2.2. Design of the experimental paradigm

2.2.1. Offline experiment
During the experiments, the subjects sat quietly in front of a monitor. 

Their arms were flat on the table and their left and right index fingers were 
on the keyboard “Z” and “1,” respectively. The display background color 
was gray to avoid visual stimulation caused by a screen refresh. We tried 
to make the prompts as small as possible to help subjects focus on the 
middle of the screen, thus minimizing the eye movement artifacts of 
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subjects during the recording. Before the formal experiments, the subjects 
were required to practice pressing keys at one-second intervals under an 
auditory prompt of 1 Hz. The 1 Hz-auditory cues were always present in 
formal experiments as background sounds.

The flow chart of a single experiment trial is shown in Figure 1A. At 
the beginning of each trial, a white circle appeared in the center of the 
screen for 1 s to inform the subject that the trial was about to start. After 
the white circle disappeared, a text prompt appeared. Participants were 
asked to press the key using the corresponding [i.e., Left→Left (LL), 
Right→Right (RR), Left→Right (LR), or Right→Left (RL)] index finger 
in their own time. Subjects were not required to respond immediately to 
the text prompt. They could decide when to press the button for the first 
time. For example, if ‘Right → Left’ appeared, the subjects were reminded 
to press the right-hand key first, and then press the left-hand index finger 
after an interval of 1 s. There was a 2 s rest period after the subjects 
completed the keystrokes. During this time, the text prompt remained 
unchanged. Each participant performed 10 blocks of experiments and 
each session included 60 trials. Each sequential finger movement task 
occurred 15 times at random. For each subject, a total of 600 trials (150 
trials for each task) were recorded. Trials with wrong key presses or key 
presses separated by more than 2 s were discarded.

2.2.2. Online experiment
To verify the feasibility of the left and right sequential finger 

movement paradigm, we performed the online experiment. The online 
experiment consisted of eight blocks. The procedure of blocks 1 ~ 6 was 
the same as that of the offline experiment. For each subject, a total of 360 
trials (90 trials for each task) were recorded. Two two-class classifiers, i.e., 
LL-versus-RR and LR-versus-RL, were built using the data from the 
blocks 1 ~ 6. Session 7 contained 40 trials (20 trials of LL and 20 trials of 
RR, randomly sorted). The timeline of one trial of session 7 was the same 
as the offline experiment. During session 7, voice feedback containing the 
classification result was presented to the subject after the second keystroke 
of each trial. Session 8 also included 40 trials and had voice feedback 
following finger movement during each trial. Compared with session 7, 
session 8 performed 20 trials of LR and 20 trials of RL randomly.

The SVM classifier used in the online experiments was obtained 
based on offline data training. During the online experiments, each 
data segment was input to the SVM classifier for classification after 
pre-processing to extract feature values. The output of the SVM 
classifier included the predicted category label and its probability 
score, and we directly used the predicted label as the result output to 
control the corresponding speech feedback.

2.3. Signal recording

In this study, we used a Neuroscan SynAmps2 amplifier to obtain the 
original EEG signal. The EEG acquisition and amplification device used 
in this study, manufactured by Compumedics Neuroscan, included a 
64-lead EEG cap, a SynAmps2 amplifier, and scan 4.5 software. Sixty Ag/
AgCl scalp electrodes were placed according to the international 10–20 
system (Figure 1B). The acquisition system referenced the data to the 
nose, and the prefrontal lobe served as ground. Some skin preparation 
was required before measurement. If there was dirt or excessive hair on 
the skin where the electrode was to be  placed, the skin should 
be pre-cleaned or shaved. The sampling rate of EEG signal was 1,000 Hz 
and the notch filter of 50 Hz was used to eliminate the power frequency 

interference. We fully checked for bad channels and bad trials (incorrect 
keystrokes and keystrokes with more than 2 s between them). Bad 
channels and bad trials were removed if they existed.

2.4. Data processing and analysis

Independent component analysis (ICA) is a common blind source 
separation method in the case of multiple source signals and unknown 
transmission channel parameters.    It functions by observing the signal 
to estimate the source signal, so as to recover the source signal.    
Observed signal X (t) = {x1 (t), x2 (t), …, xn (t)} by the source signal S 
(t) = {s1 (t), s2 (t), …, sn (t)} is obtained by an unknown mixed matrix 
A, namely, X= AS.ICA is to solve the mixing matrix W when S and A 
are unknown. At the same time, the estimate Y of the source signal S is 
separated from the observed signal by W. The prerequisite for ICA is 
that the number of observed signals is not less than the number of 
source signals (Song et al., 2022). In this experiment, the influence of 
eye movement can be seen according to the EMG signal. Therefore, 
we conducted the ICA process. We used EEGLAB to perform ICA 
processing on the EEG data and eliminate various artifacts, such as eye 
movements and blinking. We chose the Runica algorithm for ICA 
processing. In addition, each subject’s data underwent different bad 
segment removal operations. To ensure the validity of the ICA 
processing, we visually inspected each subject’s data and determined 
the components to be  removed based on the EEG waveform and 
timeline. The number of components removed for each subject was not 
fixed, but generally ranged from 5 to 10.

In this study, we mainly analyzed MRCPs and ERD features to 
compare the differences among four different sequence movement-
induced patterns of the offline experiment. Since the MRCP potential 
is a low frequency time-domain waveform signal, we down-sampled 
the raw EEG data to 16 Hz. Then the data were low-pass filtered at 
0–3 Hz using a 4th-order zero-phase Butterworth filter to preserve the 
low-frequency components of the EEG signal. Common average 
reference (CAR) was used to improve the signal-to-noise ratio. In this 
study, we defined the moment of the first keystroke as 0 s and epoched 
the data from-2 s ~ 3 s for MRCP analysis. The paired t-test was used 
for statistical analysis of whole subjects between two different 
sequential finger movement tasks across all time points. To observe 
the spatial patterns of the four tasks, we  calculated the averaged 
amplitude of all subjects on-150 ms and 850 ms at each channel and 
plotted the mean topographical distribution across all subjects.

For the ERD analysis, the original signal was down-sampled to 
200 Hz and CAR was also applied to it. Then, the signal was bandpass 
filtered to 4 ~ 30 Hz. The short-time Fourier transform (STFT) of the 
Hanning window, which has 256 sampling points, was used to 
calculate the event-related spectral perturbation ERSP between the 
time range of −1.5 s to 2.5 s for each movement task. We also defined 
the moment of the first keystroke as 0 and the baseline was the mean 
of the data ranging from −1.5 s to −1 s. We used the mean ERSP values 
of all subjects from electrodes C3, Cz, and C4 to compare the time-
frequency variation among the four sequential finger movement tasks. 
Additionally, the averaged alpha band ERSP values of each keystroke 
in one trial were calculated to analyze the topographical distribution 
of ERD features. The calculation formula is as follows:

ERSP = ERSPoriginal − ERSPbaseline
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To obtain a higher classification accuracy for single EEG 
recognition, we needed to utilize some spatial filtering methods to 
extract both MRCP and ERD features induced by the sequential 
finger movements. MRCP is a low-frequency waveform feature. 
Our previous work showed discriminative canonical pattern 
matching (DCPM) has superiority for MRCP feature extraction. 
DCPM consists of three major parts: (1) the construction of 
discriminative spatial patterns (DSPs); (2) the construction of CCA 
patterns; and (3) pattern matching (Xu et al., 2018). Canonical 
correlation analysis (CCA) is a multivariate statistical analysis 
method that uses the correlation between synthetic variable pairs 
to reflect the overall correlation between two groups of indicators. 
The CCA algorithm can be used to project the spatially filtered data 
into a new space and calculate the correlation to reflect the overall 
correlation of the two groups of indicators (Ma et al., 2022). In 
addition,  other effective feature extraction methods for 
low-frequency waveform features should also be investigated,  such 
as task-related component analysis (TRCA) (Birbaumer et  al., 
2008; Nakanishi et al., 2018; Sun et  al., 2021), a spatial filtering 
method for task-dependent component analysis,  where the weight 
coefficients are optimized to maximize the inter-trial covariance of 
time-locked data.  The goal of  TRCA is to take task-related 
constituent parts out from multiple time series that are linearly 
weighted (Tanaka et al., 2013). For ERD patterns, the filter bank 
common spatial pattern (FBCSP) was intended to independently 

select the appropriate frequency bands for feature extracting, 
which is a popular and effective method (Ang et al., 2012; Chu et al., 
2021). The FBCSP method is the optimization of classical spatial 
filtering in the frequency domain. The effects of different feature 
selection methods are studied, and the best individual features 
based on mutual information are used to obtain the selection 
method with relatively higher classification accuracy (Yong and 
Wonz, 2019). Hence, we used DCPM and TRCA to extract the 
MRCP features and used FBCSP to extract the ERD features. Then, 
we  selected the features based on mutual information (Zhang 
S. et al., 2019).

Before feature extraction, we  down-sampled the raw data to 
200 Hz first. For each keystroke, we epoched data from 0.5 s ahead of 
the key stroke and 1.5 s after the key stroke to process, i.e., −0.5 ~ 1.5 s. 
Different band-pass filters were used for MRCPs and ERD 
characterization. For MRCPs, we used a band-pass filter (1 to 8 Hz) 
to filter the data, and then used DCPM and TRCA, respectively, to 
extract the features. For the ERD features extraction, three crucial 
characteristic frequency bands, 4 ~ 8 Hz (theta band), 8 ~ 13 Hz (alpha 
band), and 13 ~ 30 Hz (beta band), were selected for band-pass 
filtering, and CSP features were extracted, respectively. As the 
eigenvectors of spatial filters are in descending orders, we selected the 
first two dimensions for DCPM and the first three dimensions for 
TRCA and FBCSP. After spatial filtering, we obtained 56 features (16 
of DCPM, 4 of TRCA, and 36 of FBCSP) for each trial. In the FBCSP 

FIGURE 1

(A) The timeline of one trial of the experimental paradigm. (B) Locations of the electrodes.
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method, the three-dimensional eigenvectors of each CSP filter were 
selected in three frequency bands for CSP spatial filtering. Therefore, 
the FBCSP characteristic dimension of the four classifications was 
4*3*3 = 36. Furthermore, in order to reduce the characteristic 
dimension, the mutual information between features and labels was 
calculated, and pattern recognition was carried out by combining the 
optimal selection features. The data from the training set was used for 
feature selection (Aldehim and Wang, 2015). A linear support vector 
machine (SVM) was used to build the classifier with the help of the 
famous software package LIBSVM (Yang et al., 2015; Bhatnagar et al., 
2016; Dhiman and Priyanka Saini, 2018). We selected the default 
SVM type and set the penalty factor C to 1. For the offline experiment, 
we  used 10-fold cross-validation to calculate the classification 
accuracies. For the online experiment, the DCPM, TRCA, and CSP 
spatial filters were established using EEG data from blocks 1 to 6. 
We selected 10 features using the mutual information analysis for 
each subject. Then the online linear SVM classification models were 
built. All programs were compiled and run on the MATLAB (Matlab 
used the 2022Rb version of MathWorks) platform. The LL-versus-RR 
and LR-versus-RL classifiers were applied in the online experiment, 
respectively. During the online experiment, the EEG data was 
continuously transmitted to the MATLAB data processing module in 
real time. The program continuously detected the labels, and then 
analyzed and processed the data according to the labels. We provided 
visual feedback during the 2 s break after the second keystroke of each 
trial, which allowed participants to receive immediate information 
on their performance. The speech feedback was performed in each 
trial of the post-processing phase of the data processing program for 
each trial phase executed, which lasted 100 ms. Finally, the 
recognition results were fed back to the subjects through 
voice feedback.

3. Results

3.1. EEG patterns of sequential finger 
movement

We first analyzed the MRCP and ERD patterns induced by 
sequential finger movement from the offline experiment. The top of 
Figure  2 shows the average waveforms of MRCPs across all 
participants of four sequential finger movements at channels C3 and 
C4. It is obvious that the potentials decreased before the movement 
onset for both the left and right finger movements, especially for the 
initial finger. We found that the initial tasks with the left finger, i.e., LL 
and LR, induced more negative potential on channel C4. On the 
contrary, right-hand initial finger movement tasks induced more 
negative potential on C3. This phenomenon also coincided with the 
contralateral activation of the cortical activity in hand functional 
areas. For the second sub-action, only the LR and RL tasks showed 
similar MRCP patterns. In addition, the negative potential peak of the 
initial keystroke action was lower than that of the non-initial 
keystroke action.

The bottom of the Figure 2 shows the topography of the average 
MRCP at −150 ms and 850 ms of the 60 channels. We observed that 
the channels with the negative waveforms were distributed over the 
primary motor area and the supplementary motor area. The 
phenomenon of contralateral dominance could be clearly observed 

from the topography. MRCP-related negativity induced by the 
different sub-action tasks (LR and RL) was more pronounced than the 
repeated sub-action tasks (LL and RR). For the LR and RL tasks, there 
were completely opposite spatial distributions at −150 ms and 850 ms. 
Thus, the time-spatial differences of MRCP could be  used 
for classification.

To further investigate the differences between the different 
sub-action tasks (LR and RL) and the repeated sub-action tasks (LL 
and RR), the average MRCP potentials between the different 
sub-actions and the repeated sub-action tasks were, respectively, 
drawn and analyzed using the paired t-test, as shown in Figure 3. The 
grey area is the time period with significant difference between the 
two types of sequential finger movements-induced potential 
amplitudes. As can be seen from the figure, when the initial sub-action 
was left finger movement, Bereitschaftspotential (BP) induced by LR 
and RL tasks were significantly more obvious than those induced by 
LL task on C3 and C4 channels. Similarly, it could be seen that BP 
amplitudes before LR and RL tasks were significantly larger than those 
before RR tasks except RR-versus-RL at C3. These results showed that, 
compared with simple sequential movement, complex sequential 
movement might induce stronger MRCP patterns.

Figure 4A shows the average time-frequency graph of four types of 
index finger sequence movements of 10 subjects in the offline experiment 
at key channels C3, Cz, and C4. In the figure, it can be observed that all 
the four movement tasks could induce obvious ERD phenomena in the 
theta, alpha, and beta bands. Notably, the intensity of ERD patterns varied 
over time. The ERD phenomenon in theta and alpha bands mainly 
occurred within 1 s before keystroke, which was of high intensity and 
involved a wide range. However, there was no significant difference 
among the three channels. For the repeated sub-action tasks (LR and RL), 
we found distinct contralateral hemispheric dominance, which was not 
obvious for the different sub-action tasks (LR and RL). Figure 4B shows 
the mean alpha band EEG power topography among four different finger 
movement tasks. It can be seen from the brain topographic map that the 
LL and RR tasks could activate the motor functional areas of both hands, 
which showed obvious contralateral dominance. In addition, the ERD 
intensity induced by the initial sub-action was greater than that of the 
second sub-action.

3.2. Classification performance of offline 
experiment

For the classification of the data in the offline experiment, the 
optimal filter dimension and characteristic dimension were selected. 
Figure  5A shows the classification accuracy results of the four 
sequential finger movement tasks. The mean classification accuracy of 
the four classes was 71.69%, which was much higher than the random 
level of 25%. The highest accuracy was 79.26% and the lowest accuracy 
was 54.91%.

We also calculated the confusion matrix under the optimal feature 
dimension of the four categories, as shown in Figure 5B. Each row 
represents the true label and each column represents the output result. 
The figure shows the proportion of each type of task divided into four 
different results by the classifier. It shows that the percentage of 
classification errors varied from task to task. The distribution of the 
four action task features in the classifier was not irregular but a regular 
distribution in a certain projection direction. At the same time, it can 
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FIGURE 2

The average MRCPs across all participants of the four sequential finger movements displayed for channels C3 and C4. Time 0 corresponds to the time 
of the first keystroke. At the bottom of the figure is the spatial distribution of the average MRCP at −150  ms and 850  ms of the 60 channels 
corresponding to the four-movement tasks. LL (Left→Left), RR (Right→Right), LR (Left→Right), and RL (Right→Left) are used to depict the four tasks, 
respectively.

FIGURE 3

Average MRCP between the different sub-action tasks (LL and RR) and repeated sub-action tasks (LR and RL) at channel C3 and C4. The gray area is 
the time period with significant difference between the potential amplitudes induced by the two movement tasks (p  <  0.05, paired t-test).
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be seen that the four types of sequential finger movement tasks had 
different classification difficulties. The two types of tasks with two 
different sub-actions were easier to distinguish than the sequences with 
the same sub-actions. When subjects performed RL or LR tasks, the 
false recognition of RR had a higher occurrence rate than the LL task.

3.3. Classification performance of online 
experiment

The online experimental results of 12 subjects are shown in Figure 6 
and Table 1. The online recognition accuracies were 83.33 and 82.71% for 
LL-versus-RR and LR-versus-RL, respectively. The classification results of 
S4, S6, and S11 in the two types of online experiments all reached more 
than 90%, which proved the feasibility of the sequential finger movement 
paradigm proposed in this study. However, the classification accuracies of 
S2, S5, S7, S9, and S10 decreased significantly compared with the offline 
model. This was caused by the overfitting of the model. Due to the 
non-stationarity of MI-EEG signals, there may be significant differences 
in EEG features between the training and testing datasets. Therefore, a 

classification model constructed through the training set may not adapt 
well to the testing set.

4. Discussion

This paper explored expanding the instruction set for movement 
intention-related BCIs. This paper showed that the sequential 
movement of the left and right fingers could induce the distinguishable 
MRCP and ERD features containing time-frequency-spatial 
movement-related information. In our previous study, we combined 
the MRCP and ERD to decode the pre-movement EEG patterns of left 
and right finger movement and obtained a satisfactory performance 
(Wang et al., 2020). However, that study could only be used for binary 
classification. In this study, the cortical activation of the left and right 
index finger keystrokes were predominated contralateral, which was 
consistent with the results of some other studies (Zang et al., 2003; 
Francesco et al., 2005; Bian et al., 2022). In addition, we also found the 
EEG spatial patterns were rhythmically changed with the rhythmically 
sequential tasks (Figures 2, 4). Hence, sequential finger movement 

FIGURE 4

(A) Average time-frequency maps of the four finger movement tasks at channels C3, Cz, and C4. Time 0 corresponds to the time of the first keystroke. 
Blue is ERD, and red is ERS. (B) The average 8–13  Hz ERSP topography of the four movement tasks. Among them, −0.5  ~  0.5  s and 0.5  ~  1.5  s 
correspond to the first and second sub-actions, respectively.
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adds information encoding in the time domain, which is meaningful 
to extend the instruction of movement intentions.

In Figure 2, we can see the negative potential peak of the initial 
keystroke action was obviously lower than that of the non-initial 
keystroke action, especially for the repeated sub-action tasks (LL and 
RR). The reasons for this phenomenon might come from two aspects. 
On the one hand, we epoched all trials using the label of the first 
keystroke. Although we set a 1 Hz background sound cue during the 
experiment, the time between the second keystroke and the first 
keystroke had a certain error compared with 1 s. Hence, for the 
non-initial keystroke, the negative potential may not be  so 
pronounced after calculating the mean wave because the data were 
not perfectly aligned. On the other hand, compared with the different 
sub-action tasks (LR and RL), the subjects were more familiar with 

the non-initial keystroke action due to it being the same as the initial 
action for the repeated sub-action tasks, which might have resulted 
in less activation of the brain cortex. Jancke et  al. showed that 
repeated practice of an action has an effect on motor cortex activation, 
and familiar action-induced ERD features were reduced (Jancke et al., 
2006). This phenomenon may be similar to the repetitive inhibitory 
effect of steady-state visual-evoked potentials (Xu et al., 2022).

In Figure 4, the onset time of ERD in the alpha band is earlier 
than that in the beta band. Some studies indicated that the 
amplitude of alpha-band oscillations significantly decreased over 
the motor regions that began in the motor preparation stage, 
which implied that the alpha rhythm was more relevant to motor 
planning/programming (Kajihara et al., 2015). The rhythmically 
sequential movement we  proposed in this paper is the more 

FIGURE 5

(A) Ten-fold classification accuracies (%) for all subjects of the offline experiment. (B) Confusion matrix of the average recognition accuracies of the 
four kinds of sequence finger movements of all subjects. Each row represents the true label and each column represents the predicted label.

FIGURE 6

The offline and online experimental classification accuracies (%) of all subjects.
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sophisticated motor control. Hence, the cortex associated with 
motor planning and related advanced cognitive activities would 
be active before movement.

We conducted behavioral analysis. The time difference between 
the two keystrokes was analyzed statistically. The results showed that 
there was no significant difference between the two keystrokes under 
different tasks. The results are shown in Figure 7.

The classification results showed that the LL-versus-RR and 
LR-versus-RL are the two classification models with better 
performance. This is mainly due to the difference between the 
preceding sub-actions and the following sub-actions of the above two 
models. Secondly, we found that the classification models with the 
different initial sub-action (LL-versus-RL or RR-versus-LR) had 
better performance than that with different non-initial sub-actions 
(LL-versus-LR or RR-versus-RL). This indicated that the initial 

sub-action can provide more classification information than the 
non-initial sub-action in the sequential movement paradigm. In this 
paper, although the mean four-classification accuracy of the offline 
experiment has shown divisibility, it still does not meet the needs of 
external device control for everyday BCIs. Therefore, the online 
experiment mainly focused on the two best-performing binary 
models. The existing work is still in the preliminary stage. In the 
future, the classification algorithm should be further optimized and 
improved to realize the high classification accuracy meeting everyday 
BCI use with a large instruction set. Considering the similarity in 
EEG patterns between MI and real movement, how to transfer the 
sequential movement paradigm to sequential MI is also a problem 
worth exploring in the future.

The difference between the results of the online and offline 
experiments may be  due to the non-linear and non-stationary 
characteristics of the EEG signals. The offline results were obtained by 
10-fold cross validation calculation, and the training data were close 
to the test data so that it had a high similarity. In the online experiment, 
the training data used to build the classification model were completely 
separated from the test data. Consequently, the online experimental 
classification effect of subjects whose EEG signals changed greatly over 
time was poor.

The experimental paradigm we  are using now is the motor 
execution of the subject performing a real action. Subsequently, 
we will use transfer learning to make subjects realize brain-computer 
interactive control through motor imagination. For the subsequent 
application of motor imagination, it can be used to help patients with 
rehabilitation, assistance, etc.

However, when we  switch from motor execution to motor 
imagination, the EEG signal might be weakened. In addition, there 
could be some problems such as inaccurate time labels. Wu et al. 
studied the problems of applying transfer learning to brain-computer 
interfaces and how to solve them (Wu et al., 2022).

5. Conclusion

This paper demonstrated the feasibility of the proposed 
sequential finger movement paradigm, which had a satisfactory 
performance on recognition. The spatial distributions of both 
MRCPs and ERD were varied regularly with the different finger 
movements. In general, this study proposed a promising encoding 
method of movement intention to improve the discriminated 
information dimension of EEG patterns, which might provide a 
new idea and theoretical basis for effectively expanding the 
command set of movement intention-related BCIs.
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