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This study investigated the neurophysiological differences underpinning motor 
and cognitive skills by measuring the brain activity via functional magnetic 
resonance imaging. Twenty-five healthy adults (11 women, 25.8 ± 3.5 years of 
age) participated in the study. We developed three types of tasks, namely, simple 
motor task (SMT), complex motor task (CMT), and cognitive task (CT), using two-
dimensional images of Gomoku, a traditional game known as five in a row. When 
shown the stimulus, participants were instructed to identify the best spot to win 
the game and to perform motor imagery of placing the stone for the SMT and 
CMT but not for the CT. Accordingly, we  found significant activation from the 
CMT minus SMT contrast in the dorsolateral prefrontal cortex, posterior parietal 
cortex, precentral gyrus, and superior frontal cortex, which reflected increased 
visuospatial attention, working memory, and motor planning. From the CT minus 
SMT contrast, we observed significant activation in the left caudate nucleus, right 
medial prefrontal cortex, and right primary somatosensory cortex, responsible for 
visuospatial working memory, error detection, and cognitive imagery, respectively. 
The present findings indicate that adopting a conventional classification of 
cognitive and motor tasks focused on the extent of decision making and motor 
control involved in task performance might not be ideal.
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1. Introduction

In the motor-learning and performance domain, various forms of motor tasks, such as 
discrete, serial, continuous, fine, gross, open, and closed motor skills, are used for experimental 
testing (Ashford et al., 2006; Grissmer et al., 2010; Schmidt et al., 2018). While the classification 
of discrete (e.g., throwing), continuous (e.g., swimming), and serial (e.g., gymnastics) motor 
skills is based on the continuity dimension, open (e.g., soccer) and closed (e.g., golf) motor skills 
are determined by their perceptual attributes and environmental predictability (McMorris, 2014; 
Schmidt et al., 2018; Gu et al., 2019). In addition, motor skills can be classified into gross and 
fine according to the size of the muscles involved (Matheis and Estabillo, 2018).

Another classification of motor skills considers the relative importance of the cognitive 
elements required for skill execution. Although some motor tasks are commonly compared with 
cognitive tasks, their boundaries cannot be clearly demarcated. For example, throwing a ball 
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appears to be a simple motor task. However, it requires cognitive 
processing although the degree of cognitive involvement may vary 
depending on target presence, distance, size, etc. Thus, cognitive 
elements are present in all motor tasks (Leisman et al., 2016).

The distinction between cognitive and motor skills is a broad 
concept, which can be  defined in several ways. For example, 
according to Schmidt and Wrisberg (2004), a cognitive task is one 
in which decision making is maximized; conversely, a motor task is 
one in which decision making is minimized. Other researchers have 
defined motor skills as a set of learned movements that together 
produce the smooth and efficient movements required to master a 
specific task (Zeng et al., 2017; Papale and Hooks, 2018). Compared 
with motor skills, cognitive skills require more information 
processing, advanced cognition, decision making, and attention. 
One key characteristic of cognitive tasks is that they take longer 
than motor tasks because they need time for decision making. 
Kosinski (2008) argued that compared with simple motor tasks, not 
only reaction times but also response times slow down when 
performing cognitive tasks. Thus, although previous researchers 
attempted to distinguish between the two tasks, their hypotheses 
lacked concrete empirical evidence (Schmidt and Wrisberg, 2004; 
Stoodley, 2012).

Different tasks recruit different regions of the brain. While both 
motor and cognitive tasks are controlled and executed primarily by 
multiple regions, including the frontal lobe and cerebellum, the 
primary sensorimotor cortex participates in processing complex 
bimanual motor tasks (Kermadi et al., 2000). The supplementary 
motor area (SMA) in the frontal lobe is responsible for transforming 
a motion sequence into a time sequence, bimanual coordination, 
and motor learning in complex motor tasks (Seitz et al., 1990; Shima 
and Tanji, 1998; Meyer-Lindenberg et al., 2002). In addition, the 
inferior frontal gyrus is involved in controlling the internal timing 
of motor task planning (Rao et al., 1993). In terms of task difficulty, 
the primary motor cortex (M1) is more activated during complex 
motor tasks than during easy motor tasks (Buetefisch et al., 2014). 
Buetefisch et  al. (2014), with the use of functional magnetic 
resonance imaging (fMRI) to measure changes in M1 activation 
while performing finger motor-control tasks, observed significantly 
increased M1 activation with increasing task accuracy. In addition, 
Boecker et al. (2002) noted a positive correlation between the degree 
of premotor cortex (PMC) activation and the difficulty of finger-
tapping tasks. Shibasaki et al. (1993) identified a significant increase 
in the activation of auxiliary motor areas and the PM in case of 
multi-finger cooperative taps. A study on eye- and hand-tracking 
movements revealed that the cerebellum was not active during 
solitary hand movements or simple-task eye movements but was 
significantly activated during coordinated eye–hand tracking (Miall 
et  al., 2001). Therefore, the recruitment of the cerebellum is 
associated with both cognitive and motor tasks; however, the 
functional subregions of the cerebellar lobes may play varying roles 
depending on the task (Stoodley, 2012).

These previous neuroimaging studies did not identify distinctive 
neurophysiological characteristics between motor and cognitive tasks, 
but their findings suggest that motor and cognitive tasks may involve 
different patterns of brain activity. Therefore, the present study aimed 
to investigate neurophysiological differences underpinning motor vs. 
cognitive skills by measuring the brain activity during the performance 
of simple motor, complex motor, and cognitive tasks using fMRI.

2. Materials and methods

2.1. Participants

Thirty healthy collegiate participants were initially recruited via 
an online advertisement posted at the university website, all of whom 
participated in the study. However, the results of five participants 
were contaminated; thus, only the data of 25 participants (11 women, 
25.8 ± 3.5 years old) were used for final analysis. All participants were 
right-handed and were novices or had minimal experience in 
Gomoku. None of them had a history of neurological disease or 
psychiatric disorders. All participants provided written informed 
consent. As compensation, each participant received a cash prize of 
50 USD upon completion of their participation. This research was 
approved by the Institutional Review Board of Kyungpook National 
University (2022–0032) and conducted in accordance with the 
Declaration of Helsinki and following a confidentiality agreement.

2.2. fMRI scanning

Scanning was performed at the Daegu–Gyeongbuk Medical 
Innovation Foundation Medical Device Development Center. Brain-
imaging data were acquired using a 3.0 T magnetic resonance system 
(MAGNETOM Skyra; Siemens Healthcare, Erlangen, Germany) and a 
64-channel head and neck coil. T1 structural data were acquired using 
a 3D IR-prepared fast spoiled gradient-echo sequence (BRAVO, 
TR = 8.5, TE = 3.3, TI = 450, flip of view = 220 mm), with an in-plane 
resolution of 1 mm isotropic. Echo-planar images were obtained using 
the following parameters: TR = 3,000 ms, TE = 30 ms, view flip = 220 mm, 
FOV = 230 mm, matrix = 64 × 64, and slice thickness = 4 mm.

2.3. Experimental task

For the experiment, stimuli were developed using 
two-dimensional images of Gomoku, the traditional game of five 
stones. When presented with the stimulus on their turn (black stone) 
to place the stone, the participants were instructed to locate the best 
spot to win the game. The stimuli included three types of tasks 
depending on the relative cognitive–motor element of the task: (1) 
simple motor task (SMT), (2) complex motor task (CMT), and (3) 
cognitive task (CT). A total of 48 task trials (16 trials for each of the 
three task types) were presented in a randomized order 
(Supplementary Figure S1). The SMT was designed to have a 
minimized cognitive element and required the participants to place 
the Gomoku stone on either side of four consecutive black stones, 
creating five in a row. For the CMT, the participants were presented 
with an image of the Gomoku board with four black stones already 
placed in a row among other stones (total number of stones: 25–35) 
and asked to place a black stone to make five in a row. The CMT was 
designed in such a way that it required greater cognitive effort than 
the SMT but an equal motor load. The CT necessitated the participants 
to locate the most favorable spot in the Gomoku stone to create five in 
a row, with 25–35 stones already placed on the board. Without a 
motor element, the CT was designed to induce maximal cognitive 
effort by not including four black stones in a row. Owing to limited 
body movement within the fMRI scanner, the participants were 
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instructed to imagine the actual physical placement of the stone after 
deciding where to place the stone during the SMT and CMT, whereas 
the CT only required them to make decisions about where to place the 
stone. The task was run using E-Prime 2.0 Professional software 
according to the protocol depicted in Supplementary Figure S1.

2.4. Procedure

Upon arrival to the laboratory, the participants received general 
information on the study, including the experimental paradigm and the 
potential risk of participation, after which they voluntarily provided 
written informed consent. Later, the participants practiced playing 
Gomoku on a computer to familiarize themselves with the game. Before 
entering the fMRI scanner, the participants removed all metal objects 
from their bodies and changed into comfortable clothes. The participants 
lied down on the scanner in a supine position, with their head cushioned 
to reduce movement and both head and body immobilized within the 
chamber. The participants were shown experimental stimuli via 
MRI-compatible goggles (VisuaStim, Resonance Technology, Inc., 
Northridge, CA, United States) connected to a Hewlett-Packard portable 
workstation (screen-resolution 800 × 600, refresh rate 60 Hz). The 
participants performed a single session of 48 trials, including SMT, CMT, 
and CT tasks randomly presented 16 times each. The E-Prime log-file 
automatically saved the stimulus presentation order as it was randomized 
for each participant to later sort out the task types. The fMRI result files 
were then classified and categorized according to this order for analysis. 
The fMRI scanning time was 19 min 18 s, and T1 neuroimaging 
generation took 6 min 2 s. Overall, the experiment required approximately 
25 min 20 s per participant.

2.5. Data analysis

Image preprocessing and statistical analysis of the fMRI data were 
performed using the statistical parametric mapping tool box version 12 
(SPM8)1 implemented in MATLAB R2019a (MathWorks, Inc., Sherborn, 
MA, United  States). Functional images were preprocessed using 
conventional preprocessing pipelines: slice-timing correction, head 
motion correction, spatial realignment, coregistration to the 3D 
anatomical dataset, spatial normalization to the stereotactic Montreal 
Neurological Institute space, and spatial smoothing using a Gaussian 
kernel. The full width at half-maximum of the Gaussian kernel was 8 mm. 
A high-pass filter of 128 s was applied using the voxel-by-voxel method to 
remove low frequency drifts in the signal. To obtain parameter images of 
the contrasts of each condition, the first-level individual analysis of the 
preprocessed fMRI data used a general linear model with a boxcar 
hemodynamic response function. The estimated motion correction 
parameters were included as additional covariates. Subsequently, these 
first-level contrasts were included in the second-level random effect 
analysis, which involved a one-sample t-test. From the perspective of the 
exploratory and interpretative nature, the SPM{t}s were thresholded at 
uncorrected p<0.005 for multiple comparisons across the whole brain. 

1 http://www.fil.ion.ucl.ac.uk/spm/

Finally, the results of the brain activation maps were projected onto 
T1-weighted anatomical images.

3. Results

To determine different neuroanatomical areas activated by the three 
Gomoku tasks (i.e., SMT, CMT, and CT), we  first determined the 
activated areas for each of the three tasks separately. Activation clusters 
surviving a voxel-level threshold of p < 0.005 are presented in Figure 1 and 
Supplementary Table S1. Specifically, the SMT engaged significant 
bilateral activation of the fusiform gyrus (BA19), lingual gyrus (BA18), 
middle occipital cortex (BA19), superior parietal cortex (BA7), precentral 
(BA6), and supplementary motor area (BA6). The brain regions activated 
during the CMT were bilateral fusiform gyrus (BA18), lingual gyrus 
(BA18), middle occipital cortex (BA18, BA19), superior parietal cortex 
(BA7), percentral (BA8, BA9), supplementary motor area (BA6), superior 
frontal cortex (BA6), caudate, thalamus, and insula. The CT was 
associated with significant activation of the fusiform gyrus (BA18) lingual 
gyrus (BA 18), middle occipital cortex (BA18, BA19), superior parietal 
cortex (BA7), precentral (BA8, BA9), supplementary motor area (BA6), 
superior frontal cortex (BA6), caudate, thalamus, and insula.

3.1. CMT minus SMT contrast

The participants exhibited significantly higher activation during the 
CMT relative to that during the SMT in the right dorsolateral prefrontal 
cortex (DLPFC; BA 9; x = 48, y = 26, z = 35, t = 3.16, p < 0.005, cluster 
size = 5 voxels), right posterior parietal cortex (PPC; BA 40; x = 48, y = −64, 
z = 35, t = 3.09, p < 0.005, cluster size = 6 voxels), right precentral gyrus 
(PMC; BA 6; x = 51, y = −4, z = 32, t = 3.73, p < 0.005, cluster size = 48 
voxels), and the left superior frontal cortex (SFC; BA 46; x = −45, y = 29, 
z = 23, t = 3.26, p < 0.005, cluster size = 8 voxels) (Figure 2; Table 1).

3.2. CT minus SMT contrast

The analysis of the CT minus SMT revealed higher activation in the 
left caudate (x = 7, y = −9, z = 8, t = 3.14, p < 0.005, cluster size = 7 voxels), 
right medial prefrontal cortex (mPFC; BA 9, 10; x = 12, y = 56, z = 20, 
t = 2.91, p < 0.005, cluster size = 12 voxels), and the right postcentral gyrus 
(primary somatosensory cortex; BA 1, 3; x = 54, y = −19, z = 53, t = 3.75, 
p < 0.005, cluster size = 9 voxels) (Figure 3; Table 1). These brain regions 
were relatively more engaged by the CT than the SMT.

3.3. CT minus CMT contrast

The participants did not exhibit any significant differences in 
cerebral activation during CT performance after subtraction of CMT 
data (uncorrected: p < 0.005, cluster 5).

4. Discussion

This study aimed to determine the neurophysiological substrates 
underlying cognitive and motor skills by investigating the differences 
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in brain activation. To this end, we observed the relative activation 
patterns in various brain regions for three types of tasks (SMT, CMT, 
and CT).

The CMT minus SMT contrast demonstrated activations in 
DLPFC, PPC, precentral gyrus, and SFC. The DLPFC is responsible 
for working memory (e.g., visuospatial information), motor 

FIGURE 1

The activated regions during performance of the three tasks (uncorrected: p < 0.005, cluster 5).

FIGURE 2

The CMT minus SMT contrast (uncorrected: p < 0.005, cluster 5). Regions circled in blue represent activated areas by CMT performance after 
subtraction of the SMT: ①dorsolateral prefrontal cortex (R); ② posterior parietal cortex (R); ③ premotor cortex (R); and ④ superior frontal cortex (L).
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planning, cognitive flexibility, and decision making (Petrides, 2000; 
Seo et al., 2007; Kaplan et al., 2016). Furthermore, the PPC is closely 
associated with visuospatial attention, decision making, and 
planned movement (Petersen and Posner, 2012; Yang et al., 2022). 
Specifically, the precentral gyrus, where the PMC is located, is 
mainly responsible for motor control, voluntary movement, motor 
preparation, motor sensation, and spatial sensation (Chen et al., 
1995; Saito et  al., 2019), whereas the SFC contributes to higher 
cognitive functions, particularly working memory and action 

selection (Courtney et  al., 1998; Rushworth et  al., 2004; 
Boisgueheneuc et al., 2006).

Accordingly, higher cerebral activation was observed during the 
CMT than that during the SMT, which was associated with increased 
visuospatial attention, working memory, and motor planning. The 
participants probably found the CMT more difficult than the SMT as 
a higher number of stones (25–35 for CMT vs. 4 for SMT) were placed 
on the grid. More optional spots to place the stone necessitates a greater 
cognitive effort to simultaneously evaluate and compare various 

TABLE 1 Regional cerebral activation in the contrast SMT < CMT and SMT < CT (uncorrected: p < 0.005, cluster 5).

Region Cluster size Coordinates (mm) Brodmann area Peak T

x y z

SMT < CMT contrast

Dorsolateral prefrontal cortex R 5 48 26 35 BA 9 3.16

Posterior parietal cortex R 6 48 −64 35 BA 40 3.09

Precentral gyrus R 48 51 −4 32 BA 6 3.73

Superior frontal cortex L 8 −45 29 23 BA 46 3.26

SMT < CT contrast

Caudate L 7 −9 5 8 3.14

Medial prefrontal cortex R 12 6 56 20 BA 9, 10 2.91

Primary somatosensory cortex R 9 54 −19 53 BA 1, 3 3.75

FIGURE 3

The CT minus SMT contrast (uncorrected: p < 0.005, cluster 5). Regions circled in blue represent activated areas by CT performance after subtraction of 
the SMT: ⑤ caudate (L); ⑥ medial prefrontal cortex (R); and ⑦ primary somatosensory cortex (R).
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options (i.e., visuospatial attention and working memory) to eliminate 
the wrong options and select the right spot to make five in a row (i.e., 
decision making) and to plan and execute the response (i.e., movement 
planning and execution). Furthermore, such cognitive processes might 
have been more strenuous considering the time limit (12 s) for 
performing the task, which might have impacted the functional 
activation of the recruited regions. Consistent with our findings, 
previous studies have also reported activation of the DLPFC during 
complex Gomoku tasks (Chen et al., 2003) and of the PPC during the 
use of selective or spatiotemporal attention (Behrmann et al., 2004). 
Yee et al. (2010) observed that the SFC was activated during tasks that 
involved the working memory for shape identification.

The activation of the PMC observed during the CMT in this study 
suggests that the participants made decisions on the spot using motor 
imagery to intentionally imagine their hands moving although no 
physical stones were used in the experiment. To mentally place a stone 
on the Gomoku grid during the CMT, the participants needed to use 
motor imagery to precisely control the direction of movement across a 
grid packed with black and white stones and ensure that the stone was 
placed in the intended coordinates. This process might have generated 
a motor sensation, thus activating the PMC. Buccino et  al. (2001) 
considered the PMC to be associated with finger movements, and 
Ochiai et al. (2005) identified that it played a crucial role in controlling 
hand movements; together, these studies support our findings.

Interestingly, although the motor responses (mentally performed) 
required for the CMT and SMT were identical (i.e., placing a black 
stone), there was a higher activation of the brain regions responsible 
for motor planning and execution in the CMT. This finding suggests 
that the cognitive difficulty of the task not only affects stimulus 
processing but also neuronal activity related to motor responses.

The CT minus SMT contrast showed activation in the left caudate 
nucleus, right mPFC, and right S1. The caudate nucleus plays a key 
role in learning and performance. It is associated with learning, 
memory, feedback, reward, motivation, and emotion and helps 
process visuospatial information and control movement (Monchi 
et al., 2006; Grahn et al., 2008). The activation of the caudate nucleus 
during the CT but not during the SMT may indicate the recruitment 
of visuospatial working memory. Previous fMRI studies have reported 
caudate nucleus activation during route navigation tasks requiring 
visuospatial processing (Bohbot et al., 2007; Etchamendy and Bohbot, 
2007). During a virtual maze task, individuals who navigated using a 
response strategy that repeatedly followed a specific route to find the 
way and avoid wrong turns demonstrated higher caudate activity 
(Bohbot et al., 2007). The participants performing the CT in our study 
might have used a similar response strategy by applying visuospatial 
working memory to identify the best spot to place the Gomoku stone 
on the grid, thus contributing to caudate activation.

In addition, the caudate activation during the CT compared with 
the SMT might be associated with the feedback system. This activation 
could be explained because during the CT of the Gomoku game, the 
participants tried to identify the best positions and received feedback 
on the advantages and disadvantages of the available positions from 
their internal evaluation. In fact, multiple studies have reported that 
the caudate responds to feedback during learning and may be a critical 
moderator of feedback influence (Tricomi et  al., 2006; Bick 
et al., 2019).

The major roles of the mPFC in decision making include conflict 
monitoring (Botvinick et al., 2004), prediction (Alexander and Brown, 

2011), error detection (Holroyd et  al., 2002), and risk assessment 
(Bechara and Damasio, 2005). Gomoku is a strategic game that 
requires a high level of cognitive engagement; the players must think 
hard before placing their stones to reach the best decision and, ideally, 
win the game. Li et  al. (2019) reported mPFC activation during 
decision tasks, which supports our interpretation. Another 
explanation for mPFC activation during the CT may be related to 
error detection. Participants facing the Gomoku board had to identify 
the correct location for the next move by evaluating several 
possibilities. During a trial-and-error task performance, the mPFC 
gets activated while detecting and rectifying the errors (Zarr and 
Brown, 2016). Therefore, the greater mPFC activation during the CT 
compared with that during the SMT in this study may reflect more 
complex decision making and error detection processing.

The S1 has been linked primarily to the processing of sensory 
information from the body as well as motor planning and production 
(Kropf et al., 2018). A recent study highlighted the role of the S1 in 
encoding imagined movement in the absence of sensory information 
(Jafari et al., 2020). Therefore, the S1 activation observed during the 
CT in this study affirms its role in cognitive imagery and engagement 
in the absence of sensation or expected sensation during 
motor production.

One explanation for the minimized activation during the SMT is 
that the participants had a minimum cognitive load as four stones 
were already placed on the board, thus enabling quick and easy 
responses. Witt et al. (2008) found reduced activation of the M1, SMA, 
and cerebellum during a simple tapping task compared with a complex 
task, which reinforces this explanation. Similarly, Nachev et al. (2008) 
observed higher SMA activation with increasing task difficulty. Schlerf 
et al. (2010) found that cerebellar activation was positively correlated 
with task complexity. Furthermore, the “memory drum” theory may 
support our explanation that complex tasks require more information 
storage and brain processing (and hence more time) than simple tasks 
that do not require the information-processing step, thus allowing a 
quick response (Henry and Rogers, 1960; Klapp, 2010).

This study has several limitations. In contrast to our initial 
prediction, no differences were observed between the CMT and 
CT. This could be attributed to the similar patterns of Gomoku stones 
presented in the CMT and CT despite the differences in the number 
of stones. Therefore, the participants performing the two tasks might 
have used similar strategies when searching for the optimal spot and 
making the corresponding decisions. Furthermore, as this experiment 
was conducted in an fMRI chamber, the motor tasks could not 
be  performed externally. Thus, during the SMT and CMT, the 
participants were instructed to imagine placing a stone in an 
appropriate location, and during the CT, they were instructed to only 
strategically explore which location was appropriate for placing a 
stone without movement imagery. As the actual motor action did not 
occur, the characteristics of the motor task might not have fully 
appeared in the fMRI results; conversely, motor imagery might have 
naturally occurred even during the CT. Furthermore, due to the 
limited availability of participants and resources, only 30 participants 
were initially targeted, and ultimately, the data from 25 participants 
were used for analysis. A small sample size can potentially impact the 
reliability and generalizability of the conclusions drawn from the 
study. Therefore, in future studies, this study should be replicated with 
more participants to ensure that the results are consistent. Additionally, 
we recruited participants with minimal experience in Gomoku and 
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familiarized them with the task for the experiment. However, we did 
not assess the degree of mastery of the task among the participants. 
Therefore, in future studies, additional measures such as a pre-test 
could be  included to assess participants’ baseline skill levels and 
ensure that all participants have a similar level of experience with the 
task. Lastly, since this study has an exploratory nature, we analyzed the 
results using uncorrected value of ps to ensure that potentially 
important effects are not overlooked and to better understand the 
direction and magnitude of differences. In future studies, 
we recommend investigating the effects with a more conservative 
criterion using a corrected value of p.

In conclusion, we investigated the differences in brain activity 
during cognitive and motor tasks using fMRI. In the CMT minus SMT 
contrast, we  found significant activation in the DLPFC, PPC, 
precentral gyrus, and SFC, which reflected increased visuospatial 
attention, working memory, and motor planning. In the CT minus 
SMT contrast, we  observed significant activation in the caudate 
nucleus, mPFC, and S1, which are regions responsible for visuospatial 
working memory, error detection, and cognitive imagery, respectively. 
The present findings suggest that caution should be  exercised in 
adopting traditional classification of cognitive and motor tasks, which 
simply focuses on the extent of decision making and motor control 
involved in task performance.
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