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Sensorineural hearing loss is typically caused by damage to the cochlear hair cells 
(HCs) due to external stimuli or because of one’s genetic factors and the inability 
to convert sound mechanical energy into nerve impulses. Adult mammalian 
cochlear HCs cannot regenerate spontaneously; therefore, this type of deafness 
is usually considered irreversible. Studies on the developmental mechanisms of 
HC differentiation have revealed that nonsensory cells in the cochlea acquire the 
ability to differentiate into HCs after the overexpression of specific genes, such 
as Atoh1, which makes HC regeneration possible. Gene therapy, through in vitro 
selection and editing of target genes, transforms exogenous gene fragments 
into target cells and alters the expression of genes in target cells to activate 
the corresponding differentiation developmental program in target cells. This 
review summarizes the genes that have been associated with the growth and 
development of cochlear HCs in recent years and provides an overview of gene 
therapy approaches in the field of HC regeneration. It concludes with a discussion 
of the limitations of the current therapeutic approaches to facilitate the early 
implementation of this therapy in a clinical setting.

KEYWORDS

hair cell regeneration, gene therapy, Atoh1, inner ear, sensorineural hearing loss

1. Introduction

Deafness is the most common neurological disorder in humans, which has seriously affected 
the normal life of human beings. According to the World Hearing Report published by the 
World Health Organization, almost 1.5 billion people worldwide have varying degrees of hearing 
loss, and 430 million people are at a level of severe hearing loss that requires rehabilitation 
(Chadha et al., 2021). Deafness can be categorized as conductive, sensorineural, and mixed 
deafness (Cunningham and Tucci, 2017). The more common type of deafness is sensorineural 
deafness caused by death or functional loss of cochlear hair cells (HCs). HCs are the most critical 
cells for sound perception and transmission in the inner ear sensory cells, and their function is 
to convert the mechanical signals of sound coming in from the environment into electrical 
signals that the nervous system can perceive (Deans, 2021). HCs are the most critical cells in the 
mammalian inner ear sensory epithelium. Studies have shown that (Fujioka et  al., 2015) 
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compared with nonmammals (birds and reptiles), HCs cannot 
regenerate spontaneously in mammals; thus, HC damage often results 
in permanent hearing loss.

Gene therapy involves transferring an external normal or 
therapeutic gene, via a vector, to a target cell in the body, causing 
the target cell to express the relevant gene or to modify the 
pertinent gene as a therapeutic approach. It has now become a 
potential treatment for genetic deafness. In several animal models, 
gene therapy has been used to transfer several genes such as Syne4 
(Taiber et al., 2021), Tmc1 (Marcovich et al., 2022), and Clarin-1 
(Dulon et al., 2018) moved into the cochlea and has significantly 
improved the degree of hearing impairment in the study animals. 
During the developmental differentiation and maturation of inner 
ear HCs, there is also the regulation of multiple genes 
(Bermingham et al., 1999; Hertzano et al., 2004; Ikeda et al., 2015; 
Hou et al., 2019; Ding et al., 2020; Jen et al., 2022) and signaling 
pathways (Benito-Gonzalez and Doetzlhofer, 2014; Waqas et al., 
2016; Ebeid and Huh, 2017; Bai et al., 2021). By interfering with 
these, the normal differentiation of HCs can be  restored, and 
support cells (SCs) can be  stimulated to re-differentiate and 
produce HCs (Menendez et al., 2020). The aim is to treat hearing 
loss associated with HC damage. In this review, we highlight how 
gene therapy can promote hair cell regeneration as a way to 
alleviate the hearing loss in patients and provide an outlook for 
future research in this area.

2. HC development–related 
transcription factors

During inner ear development, many transcription factors, 
including Atoh1, are involved in the proliferation and differentiation 
of HCs (Figure 1). In a mouse model of inner ear development, Atoh1 
was first expressed in the basal progenitor HCs at embryonic stage (E) 
13.5 d, and gradually increased until the cochlear spiral matured at 
E17.5, and gradually decreased after postnatal (P) 0 d. After P7, Atoh1 
expression could not be measured in the spiral (Lumpkin et al., 2003; 
Cotanche and Kaiser, 2010; Cai et al., 2013). In contrast, the change of 
Atoh1-related downstream targeting factor Gfi1 was consistent with 
the change of Atoh1, which started to be expressed at E12.5 and also 

gradually decreased in expression with the end of embryonic stage 
(Wallis et al., 2003). Conversely, Pou4f3 and Barhl1 were detected in 
cochlear basal HCs only at E13.5 and E14.5, respectively, and 
continued to be expressed after birth (Xiang et al., 1997; Hou et al., 
2019; Figure 2).

2.1. Atoh1

Atoh1, also known as Math1, is a helix–loop–helix (bHLH) family 
transcription factor with a coding sequence of 1.053 kb, encoding a 
protein of size 17.9 kDa. Atoh1 was the first transcription factor 
identified in differentiated HC progenitors and is essential for HCs 
growth and differentiation (Bermingham et  al., 1999). In Atoh1 
mutant mice, all inner ear sensory regions do not differentiate to 
produce HCs (Pan et  al., 2011). Further studies revealed that the 
dependence of HCs on Atoh1 diminishes as sensory cells in the 
cochlea develop and mature (Chonko et al., 2013). However, it is not 
the case that the HCs are unaffected by Atoh1 after cochlear growth, 
as Atoh1 deficiency also disrupts the standard hair bundle structure of 
the auditory system and eventually leads to the delayed death of HCs 
(Cai et  al., 2013; Cheng et  al., 2016). In contrast, the enhanced 
expression of Atoh1 promotes the normal development of HCs and 
improves hearing (Izumikawa et al., 2005; Luo et al., 2022). Thus, the 
entire auditory system, from the developmental to mature stages, is 
inseparable from the regulation of Atoh1.

2.2. Atoh1 downstream targeting factors 
Pou4f3, Gfi1, and Barhl1

Due to the importance of Atoh1 in HCs, identifying the 
downstream targeting factors of Atoch1 is crucial to investigate 
developmental mechanisms. Atoh1 target groups were identified in 
mouse cerebellum and cochlea development was studied using 
genome-wide Atoh1 sequencing methods (Klisch et  al., 2011; Cai 
et al., 2015). The direct Atoh1 target genes Pou4f3, Gfi1, and Barhl1 are 
associated with the normal differentiation and regeneration of HCs 
(Wallis et al., 2003; Zhong et al., 2018; Chen et al., 2021). The Atoh1 
target group has been identified in the cochlea.

FIGURE 1

Schematic diagram of HC development process. Regulatory factors Atoh1 and Wnt signaling pathways are necessary for presensory cells to 
differentiate into initial HCs. Atoh1 downstream targeting factors (Pouf4, Gfi1, Barhl3) and Foxg1 play essential roles in nascent HCs maturation and 
long-term maintenance. At the same time, Notch signal pathway can inhibit the expression of Atoh1 in presensory cells and regulate the differentiation 
of HCs.
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Pou4f3, a Pou family transcription factor, is the dominant 
nonsyndromic deafness 15 (DFNA15) deafness-causative gene 
(Vahava et al., 1998) and a downstream target of Atoh1 activation 
(Ikeda et al., 2015). During HC differentiation, there is a feed-forward 
synergy between Atoh1 and Pou4f3, with Atoh1 first stimulating 
Pou4f3 expression, which releases Atoh1-related elements in a closed 
state to activate a series of HC-specific enhancers (Yu et al., 2021). Gfi1 
is a zinc-finger transcription factor. Studies have shown that Gfi1 
expression is regulated by Pou4f3 (Hertzano et  al., 2004). Gfi1 
represses neuronal gene expression early in the development of HCs, 
and in the absence of Gfi1, cochlear maturation is stalled (Matern 
et al., 2020). Barhl1 is a BarH-like homologous domain transcription 
factor explicitly expressed in all HCs in the cochlear (Bulfone et al., 
2000). Mice lacking Barhl1 developed severe age-related hearing loss. 
Further studies have found that HC death in Barhl1-null mice begins 
after 6 days of life and progresses slowly over several months (Li et al., 
2002), suggesting that Barhl1 may be  involved in the terminal 
differentiation and long-term maintenance of HCs.

In conclusion, Atoh1 is a crucial transcription factor in the 
formation of HCs, and Atoh1 mutants lose the ability to generate HC 
progenitors; Pou4f3 and Gfi1, the genes downstream of Atoh1, are 
required for the late developmental maturation of progenitors into 
HCs, and delayed degeneration of HCs occurs in Pou4f3 and Gfi1 
mutants; Barhl1 is associated with the long-term maintenance of HCs. 
In Barhl1 mutants, HCs mature but eventually die within a 
certain period.

2.3. Foxg1

Foxg1, a member of the FOX family, is known to regulate ATP 
synthesis and metabolism in mitochondria (Pancrazi et al., 2015). 

Foxg1 is essential for proper development and formation of the 
inner ear. In Foxg1-null mice, severe inner ear malformations, 
including shortened cochleae with multiple rows of HCs and 
supporting cells and reduced or even absent cristae have been 
reported (Pauley et al., 2006; Hwang et al., 2009). Mechanistically, 
deletion of Foxg1 causes inhibition of Notch, Wnt, IGF, and EGF 
signaling pathways, production of HCs, and induction of their 
subsequent apoptosis (He et al., 2019). In addition, Foxg1 regulates 
auditory degeneration through the regulation of autophagy. In the 
Foxg1 downregulated group, the autophagic pathway was 
significantly inhibited, and reactive oxygen species levels were 
significantly increased, ultimately leading to the apoptosis of HCs 
(He et al., 2021). Similarly, Foxg1 downregulation also considerably 
increased the sensitivity of HCs to lipopolysaccharide-induced 
inflammation and accelerated the apoptosis of HCs under 
inflammatory conditions (He et al., 2020).

3. Gene therapy promotes the 
regeneration of HCs

3.1. Gene therapy targets for the 
regeneration of HCs

Due to the critical role that individual genes play in the 
differentiation and development of HCs, developmental failure 
during HC differentiation occurs after the deletion of relevant 
genes. Therefore, inducing re-differentiation to generate new 
HCs by reprogramming HC-related genes in the inner ear SCs is 
a potential way to improve HC-related hearing impairment 
(Costa et  al., 2015; Ni et  al., 2016; Shibata et  al., 2020). HCs 
regenerate mainly through two pathways: one activates 

FIGURE 2

Changes in gene expression with age in a mouse model of inner ear development. During mouse embryonic cochlea development, Atoh1 and its 
downstream target transcription factors Pou4f3, Gfi1, and Barhl1 were successively expressed, with Atoh1, Pou4f3, and Gfi1 decreasing in expression 
after birth as the cochlea matured, and Barhl1 continuing to be expressed.
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non-sensory cell activation to re-enter the cell cycle and further 
divide and differentiate into HCs; the other directly induces 
non-sensory cells to transdifferentiate into HCs without mitosis 
(Figure 3).

3.1.1. HCs proliferative regeneration
Cell cycle inhibitors are critical for maintaining cells in a 

quiescent state after mitosis, and therefore activation of non-sensory 
cells to re-enter the cell cycle requires regulation of the corresponding 
inhibitors. P27Kip1 (p27), a member of the Cip/Kip family of cell 
cyclin-dependent protein kinase inhibitors, is significantly 
upregulated in dormant cells (Bencivenga et al., 2021) and has been 
shown to be  a common cell cycle inhibitor for sensory and 
non-sensory cells in the inner ear (Chen and Segil, 1999; Löwenheim 
et al., 1999). Knocking down p27 in isolated mouse cochlear cells can 
effectively activate the proliferation of SCs in cochlea to re-enter the 
cell cycle, and mitotically generated SCs retain the ability to 
redifferentiate into HCs (Löwenheim et al., 1999; White et al., 2006; 
Ono et al., 2009; Maass et al., 2013). Further studies revealed that in 
p27 knockout mice, more than just SCs broke out of cell cycle 
quiescence, HCs also gained some proliferative capacity (Walters 
et al., 2014), and similar effects were achieved using Retinoic acid to 
inhibit p27 (Rubbini et al., 2015). Combined with p27 knockdown, 

the transdifferentiation of Atoh1 to produce HCs is not limited to the 
embryonic period and enables the regeneration of HCs in the mature 
mouse cochlea (Walters et al., 2017). Unfortunately, the production 
of HCs by mitotic re-differentiation of SCs does not function properly 
in mammals, but p27 remains a potential target for the regeneration 
of cochlear HCs.

3.1.2. HCs transdifferentiating regeneration
Atoh1, the first HC development–related transcription factor to 

be identified, plays an irreplaceable role in HC regeneration. In ex vivo 
experiments in normal rats and guinea pigs, Atoh1 overexpression 
enabled nonsensory cells of the cochlea to acquire the ability to 
produce new HCs (Kawamoto et al., 2003; Shou et al., 2003). In a 
guinea pig model of deafness generated by ototoxic drug-induced HC 
death, Atoh1 was injected into the cochlea of deaf animals via an 
adenoviral vector to increase its expression in nonsensory cells, 
showing that new HCs were produced at the original site of cochlear 
trauma. Hearing was restored to some extent in deaf animals as 
measured based on the auditory brainstem response (ABR) thresholds 
(Izumikawa et  al., 2005). The results showed that new HCs were 
produced at the original site of trauma in the cochlea and that deaf 
animals had some hearing recovery as measured using the 
ABR thresholds.

FIGURE 3

Gene therapy promotes HCs regeneration. HCs regenerate mainly through two pathways, direct transdifferentiation of SCs or proliferative 
differentiation of SCs, the difference between the two is whether mitosis is performed or not. The genes related to the growth, development, and 
maturation of HCs are transferred to the target cells by gene vector so that the non-sensory cells in the cochlea can differentiate into HCs and realize 
the regeneration of HCs.
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In contrast, in a model of aminoglycoside-induced profound 
deafness, although Atoh1 gene therapy induced the conversion of 
nonsensory cells in the cochlea into HCs, the resulting HCs failed to 
mature fully and did not improve hearing in the treated animals 
(Atkinson et al., 2014). This finding suggests that a combination of 
gene therapy modalities is required to maximize hearing function in 
patients. In the Mouse embryonic stem cells cultured in vitro, various 
transcription factors (Six1, Atoh1, Pou4f3, and Gfi1) reprogrammed 
mouse embryonic fibroblasts and expressed the corresponding HC 
markers. The resulting HCs that were induced were morphologically 
and physiologically similar to and susceptible to ototoxic drugs as in 
the case of primary HCs (Costa et al., 2015; Menendez et al., 2020). 
Similarly, the overexpression of Gfi1, Pou4f3, and Atoh1 in human 
fibroblasts resulted in cells expressing some markers of HCs (Duran 
Alonso et  al., 2018). In drug-treated mouse cochlear sensory 
epithelial cells, the damage caused by HC death can be reversed by 
the cotransfection of Pax2 and Atoh1, with Pax2 promoting the 
proliferation of SCs and Atoh1 promoting the regeneration of HCs 
(Chen et al., 2013). In addition, HC-like cells were generated 4.1-fold 
more efficiently after cotransfection with Atoh1 and Gfi1 than with 
Atoh1 alone (Lee et  al., 2020); Atoh1 and Ikzf2 overexpression 
induced the transformation of SCs into cochlear outer HCs in the 
adult mouse cochlea (Sun et al., 2021). The expression of Atoh1, Gfi1, 
and Pou4f3 increased the potency of HC transformation in aged 
animals (Iyer et al., 2022).

Wnt and Notch pathways play an essential role in cell proliferation 
and differentiation, including regulating HC differentiation in the 
cochlea (Ni et  al., 2016; Waqas et  al., 2016; Wu et  al., 2016; 
Samarajeewa et al., 2019). Disruption of the Rbpsuh gene in neonatal 
mice or treatment of mouse inner ear cells with γ-secretase inhibitor 
resulted in inhibition of Notch/RBP-J pathway signaling, which in 
turn led to downregulation of Hes5 expression and upregulation of 
Atoh1 expression, ultimately producing ectopic HCs (Yamamoto et al., 
2006; Mizutari et al., 2013; Ren et al., 2016; Luo et al., 2017). Using 
siRNA to downregulate Hes1/Hes5 can also achieve Atoh1 upregulation 
and increase the efficiency of conversion of HCs by SCs (Du et al., 
2013; Jung et al., 2013). Adenovirus carrying human Myc and Cre 
recombinase genes was injected into the cochlea of adult mice, and an 
increase in HC numbers was observed along with the inhibition of the 
Notch pathway (Shu et  al., 2019). The expression patterns of the 
hypermethylated 1 (HIC1) transcriptional repressor and Prox1 genes 
do not overlap with Atoh1 and related downstream genes, and studies 
confirm that both have a repressive effect on Atoh1 and are responsible 
for the decrease in Atoh1 expression in postnatal mice, whereas 
knockdown of HIC1 or Prox1 reverses the repression of Atoh1 
expression and ultimately promotes the differentiation of HCs 
(Kirjavainen et  al., 2008; Abdul-Aziz et  al., 2021). Meanwhile, an 
increase in Atoch1 expression was induced by the Atoch1 enhancer or 
small activating RNA to regulate HC regeneration (Luo et al., 2022; 
Zhang et al., 2022).

Moreover, recent studies on Foxg1 have demonstrated its potential 
as a new target for the regeneration of HCs using gene therapy. In mice 
with Foxg1 was knocked out in the inner ear SCs, HC numbers were 
significantly increased compared to those in normal mice, and the 
survival time was greatly increased (Zhang Y. et  al., 2020; Zhang 
S. et al., 2020).

In conclusion, with a clear understanding of the mechanism of 
developmental differentiation of HCs, the regeneration of HCs can 

be achieved by interference with the relevant genes and pathways, thus 
reversing hearing loss caused by HC damage.

3.2. CRISPR/Cas9 gene editing system

As the third generation of gene editing technology after zinc-
finger nucleases (ZFNs) and transcription activator-like effector 
nucleases (TALENs), the CRISPR/Cas system has the advantages of 
clear targeting, short RNA sequences, and simultaneous operation of 
multiple genetic loci, of which the type II CRISPR/Cas9 system is the 
most widely applied (Bhatia et al., 2023; van der Oost and Patinios, 
2023; Wang and Doudna, 2023). Cas9 protein with nucleic acid 
endonuclease function and single guide RNA (sgRNA) shear the 
target genome to generate double-strand breaks (DSB), which in turn 
enables knockdown or knock-in of the target gene by Homology-
directed repair (HDR) or Non-homologous end joining (NHEJ) to 
achieve knockdown or knock-in of target genes (Figure 4). Previous 
studies have used the CRISPR/Cas9 system to establish transgenic 
mouse models of deafness to investigate the importance of target 
genes for the development and maintenance of normal hearing in the 
inner ear HCs (Li et al., 2018, 2019; Zhu et al., 2018; Cui et al., 2020; 
Zhang L. et al., 2020; Tu et al., 2021; Xue et al., 2022). CRISPR-Cas9 
technology is now also showing great potential in clinically blocking 
dominant and recessive mutations in deafness and improving hearing 
impairment (György et al., 2019; Farooq et al., 2020; Ding et al., 2021).

Beethoven deaf mice are deafened by a point mutation (T into A) 
in the Tmc1 gene at locus 1,235, causing hearing impairment 
associated with reduced HCs in the inner ear and successfully 
targeting the Tmc1 gene by the lipid-mediated entry of the 

FIGURE 4

CRISPR/Cas9 gene editing system. The gRNA-Cas9 complex enters 
the cell and identifies the target gene corresponding to the PAM and 
shears it into a DSB. NHEJ causes the target gene shift mutation to 
achieve gene knock-out. HDR, on the other hand, repairs the target 
gene according to the exogenous template DNA and completes the 
gene knock-in.
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Cas9-gRNA complex into the mouse cochlea, resulting in a shift 
mutation and eventual loss of function due to a random insertion–
deletion, which improves the survival of HCs while improved the 
hearing of mice (Gao et al., 2018). Efficient knockdown of the Htra2 
gene associated with apoptosis by transfection of three gRNAs into in 
vitro cochlear explants and in vivo scala medium via the CRISPR/Cas9 
system improved hearing loss caused by neomycin-induced hair cell 
apoptosis (Gu et al., 2021). In addition, CRISPR-Cas9 knockdown of 
Kcnq4 and myosin VI (MYO6) mutant genes have been shown to 
rescue inherited hearing impairment (Noh et  al., 2022; Xue 
et al., 2022).

Although the CRISPR/Cas9 system can accurately and 
efficiently edit target genes, it also has limitations in hearing 
damage rescue studies. The presence of a short DNA sequence 
called the pro-spacer adjacent motif (PAM) near the complementary 
region of the gRNA and the target gene. The PAM sequences are 
mainly used to identify targets, and the presence or absence of 
PAM sequences in target nucleotides is a critical factor in the 
precise targeting of the CRISPR/Cas9 system (Manghwar 
et al., 2019).

3.3. Gene delivery vectors

The two main types of vectors for gene therapy are viral vectors 
and non-viral vectors, namely, viral vectors including adenovirus 
(AdV), adeno-associated virus (AAV), lentivirus, and retroviruses; 
and nonviral vectors including electroporation, liposomes, 
nanoparticles, and exosomes (Cring and Sheffield, 2022). The 
choice of gene therapy vector is significant, as it needs to deliver 
the exogenous gene safely and effectively to the cells of the inner 
ear without causing a robust immune response and to sustain 
its action.

AdVs were the first gene delivery vectors to be used; they are now 
used in various fields for HC regeneration (Syyam et al., 2022). In vivo 
or in vitro experiments involving the injection of AdVs carrying 
different target genes into target cell tissues can effectively transduce 
nonsensory cells into HCs, with SCs being the main ones transduced 
(Kawamoto et al., 2003; Shou et al., 2003; Izumikawa et al., 2005; 
Yamamoto et al., 2006; Chen et al., 2013; Atkinson et al., 2014; Shu 
et  al., 2019; Lee et  al., 2020). However, AdVs have a significant 
immunogenic effect, and their role in gene therapy is somewhat 
limited. In contrast, AAVs have a much lower immunoreactivity and 
have gradually become the vehicle of choice for gene therapy in 
different fields. AAVs have demonstrated their safety and efficacy in 
gene therapy for the regeneration of HCs. Injecting AAV8 in normal 
neonatal and adult mice did not cause damage to HCs in the inner ear 
or hearing loss (Kang et al., 2020). In addition, AAV-mediated gene 
delivery effectively ameliorates apoptosis and hearing loss of HCs in a 
drug-induced mouse model of deafness in the long term (Brigande 
et al., 2009; He et al., 2020; Gu et al., 2021; Xu et al., 2021; Xue et al., 
2022). The results of this study are summarized below. Recent studies 
have shown that AAV-inner ear, a variant of AAV, can more safely and 
efficiently transduce Atoh1 into SCs and may be the best vehicle for 
future gene therapy to combat hearing loss (Tan et al., 2019; Tao et al., 
2022). In addition, lentiviruses and retroviruses can also be used to 

deliver HC regeneration–related genes; however, their safety profile 
needs to be improved (Costa et al., 2015; Menendez et al., 2020).

Other nonviral gene delivery methods have also been used to 
regenerate HCs. Hes1 siRNA delivered by propylene-co-glycolate 
nanoparticles can reduce cochlear Hes1 mRNA while upregulating 
Atoh1 mRNA expression and, in doing so, promote the ability of SCs 
to acquire redifferentiated HCs (du et  al., 2013). In addition, 
electroporation was influential in transducing plasmids encoding 
target genes such as Tub and Znf532 into the epithelial progenitor cells 
of the ear, activating the regeneration of HCs mediated by genes such 
as Atoh1 (Brigande et al., 2009; Xu et al., 2021).

4. Summary and perspectives

HCs in the cochlea, as key members of the auditory conduction 
system, transform incoming mechanical signals into electrical signals for 
the body to perceive. They do not regenerate spontaneously in mammals, 
resulting in the associated hearing impairment being poorly treated. An 
exploration of the developmental maturation mechanisms of HCs 
reveals that the HC regulatory gene Atoh1 and its downstream targeting 
factors activate the ability of nonsensory SCs to differentiate into HCs. 
Emerging gene therapies can deliver external DNA or RNA into target 
cells via vectors to alter the gene expression of target cells and improve 
relevant functions. After addressing congenital hearing impairment, 
gene-based therapies can be  used to treat other types of hearing 
impairment with the help of HC regeneration mechanisms (Table 1).

Many challenges remain in inducing regeneration of HCs in clinical 
settings based on gene therapy. First, the growth and development of 
HCs are regulated by multiple genes and pathways, and a single gene 
alone cannot bring about the differentiation of SCs into fully functional 
mature HCs. Second, the choice of vectors for gene delivery is also 
essential, as it is necessary to deliver the gene to the target cells efficiently 
and accurately without inducing a robust immune response in the body. 
Finally, enhancing the efficiency of HCs regeneration while ensuring 
high targeting requires innovation in multiple steps of gene therapy. 
Recent studies using the CRISPR/Cas9 system in combination with AAV 
vectors have shown great advantages (Kang et al., 2020; Zhao et al., 2020).

In conclusion, HC regeneration–based gene therapy shows immense 
potential in treating sensorineural hearing impairment. It is expected to 
be used in a clinical setting after further research on the mechanism of 
HC regeneration and optimizing targeted gene delivery methods.
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