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Objective: The multi-subject brain–computer interface (mBCI) is becoming a key

tool for the analysis of group behaviors. It is necessary to adopt a neural recording

system for collaborative brain signal acquisition, which is usually in the form of a

fixed wire.

Approach: In this study, we designed a wireless group-synchronized neural

recording system that supports real-time mBCI and event-related potential (ERP)

analysis. This system uses a wireless synchronizer to broadcast events to multiple

wearable EEG amplifiers. The simultaneously received broadcast signals are

marked in data packets to achieve real-time event correlation analysis of multiple

targets in a group.

Main results: To evaluate the performance of the proposed real-time

group-synchronized neural recording system, we conducted collaborative signal

sampling on 10 wireless mBCI devices. The average signal correlation reached

99.8%, the amplitude of average noise was 0.87 µV, and the average common

mode rejection ratio (CMRR) reached 109.02 dB. The minimum synchronization

error is 237 µs. We also tested the system in real-time processing of the

steady-state visual-evoked potential (SSVEP) ranging from 8 to 15.8Hz. Under

40 target stimulators, with 2 s data length, the average information transfer rate

(ITR) reached 150 ± 20 bits/min, and the highest reached 260 bits/min, which

was comparable to the marketing leading EEG system (the average: 150 ± 15

bits/min; the highest: 280 bits/min). The accuracy of target recognition in 2 s was

98%, similar to that of the Synamps2 (99%), but a higher signal-to-noise ratio (SNR)

of 5.08 dBwas achieved. We designed a group EEG cognitive experiment; to verify,

this system can be used in noisy settings.

Significance: The evaluation results revealed that the proposed real-time

group-synchronized neural recording system is a high-performance tool for

real-time mBCI research. It is an enabler for a wide range of future applications

in collaborative intelligence, cognitive neurology, and rehabilitation.
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1. Introduction

In recent years, mBCI and collaborative intelligence have

gained great attention in the field of brain science (Czeszumski

et al., 2020; Gao et al., 2021). Moreover, implementing a

collaborative acquisition system, as a key tool for collaborative

intelligence, is a fundamental problem in generalized BCI (Babiloni

and Astolfi, 2014; Perdikis et al., 2020; Zhang et al., 2020;

Bhattacharyya et al., 2021). Collaborative adaptive learning of

AI requires human–human and human–machine collaboration in

a synchronous manner with real-time access to relevant event

information (Shenoy et al., 2014). Therefore, humans andmachines

can cooperate in an adaptive (Müller et al., 2017) and dynamic and

effective way (van den Bosch et al., 2019). There are many examples

of how the multi-brain works, for example, studies on predicting

marital relationships through neural synchronization in multiple

brains (Li et al., 2022) and effective interaction between teachers

and students (Maksimenko et al., 2018). These investigations assist

researchers in comprehending social cognition (Konvalinka and

Roepstorff, 2012) and exploring the concept of the “Social Brain”

(Minagawa et al., 2018). In addition, some collaborative approaches

have demonstrated an mBCI that fused event-related potential

(ERP) data for collective decision-making (Wang and Jung, 2011).

To support the development of collaborative mBCI

applications, there is an increasing demand for an integrated

system that encompasses multiple-target signal acquisition,

synchronized triggering, and user-friendly configuration. When

designing this system, we should consider the following: First, in

non-laboratory mBCI experiments, external noise can interfere

with the acquisition of system data, leading to a reduction in the

signal-to-noise ratio (SNR) of EEG data and a decrease in data

reliability. The desired mBCI system should provide high-quality

EEG signals to guarantee its reliability and robustness when facing

diverse ambient noise. Second, the traditional fixed-linked EEG

devices are connected by cables to form a multi-subject acquisition

system (Barraza et al., 2019). This fixed-linked system imposes

limitations on subjects’ range ofmotion and activities, consequently

affecting their overall user experience and restricting the wider

application of mBCI. Therefore, wireless-connected mBCI systems

will be more favorable and offer significant advantages in future

applications. Third, event-triggered synchronous signal acquisition

is crucial for mBCI systems, as EEG signals gathered from different

BCI devices require strict synchronization for further correlation

analysis. For example, hybrid EEG and EMG synchronous

acquisition (Artoni et al., 2018) and event-related potential (ERP)

mechanisms with up to 100 classifications (Xu et al., 2020) have

been implemented. This research highly requires low latency,

synchronized phase (Xu et al., 2018), and time alignment of

the EEG data. Time-space synchronization necessitates a few

milliseconds or even <1ms (Luck, 2014). Moreover, asynchronism

may lead to incorrect estimates, such as time-domain correlation

(Bowyer, 2016) and imaginary part correlation (Ayrolles et al.,

2020). Traditional synchronization methods employ a wired

trigger box as an event source for distributing synchronization

signals, and some methods employ multi-device timestamps.

Typically, there are two common synchronization methods:

wired hardware synchronization and software synchronization.

Hardware synchronization involves inputting a synchronization

signal into a digital port (David Hairston et al., 2014). Pulse signals

are typically generated by serial/parallel ports or sensors. For

instance, audio signals are employed for synchronization (Pérez

et al., 2021), and clock signals are sent to two wired acquisition

devices (Chuang et al., 2021). On the other hand, software

synchronization relies on programs that do offline calibration by

aligning the data from multiple sources with timestamps in some

protocols, such as the LSL (lab streaming layer) framework (Reis

et al., 2014) or video frame synchronization (Raghavan et al., 2018).

In this study, we developed a wearable real-time group-

synchronized EEG acquisition system to overcome the

aforementioned challenges of an mBCI system. The proposed

system integrates a light-based event trigger, wireless EEG

acquisition devices, an analysis system, and an ERP stimuli

system. Up to 10 wireless EEG acquisition devices can be group-

synchronized by the event trigger, freeing the limitations of

subjects’ range of motion and activities. In addition, we optimized

the wireless communication channels and the data packet protocol.

The EEG acquisition subsystem achieved an average noise

amplitude of 0.87 µV, a CMRR of 109.02 dB, a higher SNR,

and a comparable ITR with the Synamps2 EEG system from the

market-leading company Neuroscan. Finally, the effectiveness

of the proposed mBCI system was verified in a multi-subject

cognitive experiment, demonstrating its potential in research on

social interaction and decision-making in cognitive neurology.

2. Materials

2.1. System architecture

The architecture of the proposed mBCI system is illustrated

in Figure 1. The mBCI hardware system features a wireless trigger

for data synchronization, a Wi-Fi router for wireless network

connectivity, 10 wearable compact wireless amplifiers (A1–A10)

at a 1 kHz sampling rate and a host computer for recording and

analysis purposes. The system utilizes the light as the trigger source

to send events simultaneously to all the wireless EEG amplifiers.

EEG Ag/AgCl electrodes (PO6, PO4, POz, PO3, PO5, O1, Oz, and

O2), along with one reference and one ground, are linked to the

forehead area, as shown in Figure 1. Furthermore, we designed

a group EEG cognitive experiment to verify that this system is

effective and can be used in noisy settings.

The stimulus display shows real-time calculation results,

stimulus signals, and optical synchronization signals, which are

generated by a steady stimulus-producing host computer. A light

sensor trigger is employed instead of alternative sensors, such as

audio, to reduce latency and efficiency. The synchronizer processes

the trigger signal and uses a dedicated 2.4G channel to transmit the

output to the amplifiers, which differs from the channel between

the recorder analysis server and the client Ax. The interference

may occur due to adjacent channel interference from the neighbor’s

wireless local area network channels in the 802.11 band devices.

To ensure minimal interference between different channel signals,

we processed the individual channels. The protocol of each device

enables simultaneous marking of the received trigger signals (to
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FIGURE 1

The proposed mBCI system implemented on 10 amplifiers.

indicate different events or sequences), as shown in Figure 2A(a)

red box.

Raw EEG data packed together with the synchronized

trigger event are wirelessly sent to the recording host computer

(acquisition server) via TCP/IP socket. The host computer receives

data packets from the devices and parses them according to

the predefined data protocol. The recorder and analysis perform

processing functions, such as filtering, data saving, and real-

time decoding.

2.2. Software architecture

The software architecture is divided into four parts: trigger,

recorder, analysis, and display of stimuli. The trigger is independent

of the acquisition system and does not require an added

hardware trigger box for connectivity. To ensure complete data are

transmitted wirelessly, a TCP connection links the acquisition and

recording software. Different algorithmic microservices acquire

potential data from different devices over different ports when

the data need to be simultaneously analyzed. TCP is used where

reliable transmission is necessary at the transport layer, whereas

UDP is used for communication where high-speed transmission

and real-time performance are required. Because the quantity of

data is minimal and resides under wired local area networks or

local hosts, we used a UDP connection between display and analysis

software. The UDP packet header is 8 bytes, with relatively low

overhead compared with the 20-byte packet header in TCP. In

addition, using UDP packets allow for lower connection latency

and network traffic by reducing the three-way handshake. In this

way, the results can be timely feedback to the display. Using

a 40ms packet transfer (35 bytes/ms, 1,400 bytes per packet),

we maintained each maximum packet size within the maximum

transmission unit (MTU) range of 1,500 bytes, thereby facilitating

optimal TCP and UDP transfers. In brief, TCP is more intricate,

with a higher volume of header data, which guarantees wireless

communication reliability. Conversely, UDP saves network traffic

by eliminating the requirement for packet loss retransmission,

resulting in improved real-time performance.

We designed the application layer protocol, as shown in

Figure 2A(a). A frame header (48 59 3C, 3 bytes) is used to locate

different nodes. An index (from 00 00 to FF, 2 bytes) is used by the

node to verify the data integrity. Each channel of EEG data consists

of 3 bytes, while an additional 3 bytes are allocated for trigger data,
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FIGURE 2

The mBCI system software architecture and processing flow. (A) Software featured with individual connection, run-time configuration and custom

protocol. (B) The software processing flow.

which serves as event number for different events. Similarly, 3 bytes

are assigned for battery information. Each packet contains 35 bytes,

with a transmission rate of 1,400 bytes every 40ms. The entire

system can be run-time configured by updating the JSON file that

defines the IP, port, channel, sample rate, and other variables. This

feature allows for easy configuration updates while the system is

running. In addition, the server and client Ax can be configured

and updated by internet users, allowing upload data or reporting of

results to some network infrastructure, as shown in Figure 2A(b).

Based on the task design and stimulation software, the stimulus

with trigger can be light, audio, button, serial/parallel port, and so

on, as shown in Figure 2A(c).

According to the software processing flow (refer to

Figure 2B), we prioritized server and client operations to

secure efficient acquisition and recording. We designed the

recording part as a TCP server. Once turned on, each device

(client Ax) automatically connects with the server, registers,

and awaits the start acquisition command. Upon receiving

the command, the client Ax sends the EEG data to the

server. To further enhance data reliability, the recording unit

opens an additional server port, awaiting a TCP connection

from the analysis component. Once initiated, the analysis

unit connects with the recording unit and establishes a

UDP connection with the stimulus display. Additionally,
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the analysis part can operate independently without any

online requirements.

To efficiently synchronize data, the display stimulus unit emits

light. When detecting a sudden flash, the light trigger sends the

synchronization signals to the devices through an independent

channel. The synchronization signals can be marked in the data

protocol packets of each device. Client Ax sends data/trigger to

the recording TCP server every 1ms. The recording TCP server

sends to the analysis unit after packetizing every 40ms. This

process is repeated in subsequent rounds based on the experimental

paradigm design.

3. Methods and experiments

We used a three-step method to evaluate the system’s

performance. The first step involved evaluation of hardware

performance, the second involved evaluating ERP signal qualities,

and the last involved conducting group cognition experiments.

3.1. Evaluation of hardware performance

We evaluated the hardware’s performance based on three key

parameters: data correlation coefficient, CMRR, and noise. In noisy

settings, external industrial frequency and wireless interferences

often cause common mode noise, which can disturb the acquired

device data. In cases where physiological signals are weak, CMRR

serves as a critical metric for demonstrating the ability to suppress

common mode signals.

3.1.1. Synchronization test
We used Pearson’s correlation coefficient, as described by

Rodgers and Nicewander (1988), to estimate the correlation

between two waves in our study. The coefficient is defined

as the quotient of covariance and standard deviation between

two variables:

ρX,Y =
cov(X,Y)

σXσY
=

E [(X − µX) (Y − µY )]

σXσY
(1)

The abovementioned equation defines the overall correlation

coefficient. For multi-channel data, we established the mutual

covariance matrix using this equation.

A light-trigger method was applied to test synchronization

strategies by employing a signal generator and wireless trigger unit.

Specifically, the signal generator sent out a stimulus signal, 10-Hz

sine with 10 mVpp, as shown in Figure 3A. The signals were sent

to each amplifier using a high-performance cable and lasted for

120min. Throughout the continuous operation, we recorded and

monitored the stability of signals using GUI software and inspected

the output waveform of 10 devices every half an hour from an

oscilloscope. Furthermore, the spacing between trigger occurrences

was measured.

The trigger-sender contains an optical sensor. The wireless

trigger-sender simultaneously sends the signal to the trigger-

receiver of each EEG device, as shown in Figure 3A. In the

experiment, the signal source and the 10 devices were positioned

on opposite sides.

Time differences were measured to estimate interference

caused by the spatial transmission between the trigger

sender and receiver unit, as well as to examine time delays

between each transceiver protocol. The end-to-end delay is

the delay between the two probes, as shown in Figure 3B,

including the static delay and the dynamic delay. We

defined two types of delays, as shown in Figure 3C. The

minimum synchronization error is the minimum value

of the dynamic delay among the values obtained from

repeated experiments.

3.1.2. CMRR test
The CMRR indicates the rejection ability of the common

mode signal in the differential amplifier. The calculation method

is as follows:

CMRR = 10× log10

(

Vd

Vcm

)2

= 20× log10

(

Vd

Vcm

)

(2)

where Vd represents the voltage amplification factor of

the differential mode signal and Vcm represents the voltage

amplification factor of the common mode signal. To measure the

root mean square of the input noise, we short-circuited each input

channel with the reference electrode. We employed this approach

in the following experiments of hardware evaluation. To carry out

the CMRR test, we connected all input channels and REF port to the

positive output of the waveform generators, while connecting GND

to the negative output. The waveform generators transmitted a 10-

Hz sine wave with 500 mVpp through high-performance cable. We

calculated the noise by shorting each input channel and the REF

port with no signal.

We proposed the novel mBCI system, each wearable compact

amplifier weighs 56 ± 4 g, and the size is 59.3 × 47.4 ×

22.7mm. The average noise amplitude is 0.87 µVrms @2–

45Hz, and the average CMRR of all the tested devices except

abnormal A4 is 109.03 dB @10Hz, as shown in Figure 4. This

wearable compact system allows a 10m distance between users

by hardware-based synchronization among 10 users. The receiver

in each amplifier receives triggers/markers from the wireless

trigger sender.

Typically, the noise evaluated in such cases is the input

reference noise (Bolatkale et al., 2014). To overcome the motion

and the high-frequency thermal noise of the components, we

applied a filter that allowed signals from 2 to 45Hz. One of the

devices (A4) had a negligible deficit.

3.2. Functionality evaluation

For the functionality of the system, we selected the

SSVEP method as the key indicator. SSVEP is capable of

detecting the periodic synchronization of the brain with

an external flickering visual stimulus delivered at a fixed

frequency, making it an ideal tool for assessing synchronization
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FIGURE 3

The mBCI system synchronization test. (A) The architecture of synchronization test. (B) The test of end-to-end delay. (C) The process of

synchronization test and two types of the delays defined.

FIGURE 4

The device CMRR (dB) @10Hz; noise (µVrms) @2–45Hz. In this study, based on the mBCI 10 devices (A1–A10), the bandpass filters (2–45Hz) for

noise calculation from original EEG signals were in Chebyshev type I filter order. Evaluations were performed at 1 KHz sampling rates.

accuracy and reliability. We assessed both the phase and

frequency accuracy of EEG data recorded at the millisecond

level. To compare the proposed system with the Synamps2

EEG system from the market-leading company Neuroscan,

Inc., we designed both forty-targets and single-target SSVEP

spelling experiments.

3.2.1. SSVEP method
The method was previously described for visual spellers using

the sampled sinusoidal stimulus method in a monitor stimulus

(Manyakov et al., 2013; Chen et al., 2014). The modulation of the

screen brightness represents a stimulus sequence corresponding to

the frequency f .
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s(f , i) =
1

2
×

{

1+ sin
[

2π f
(

i/Refresh Rate
)]}

(3)

where sin() generates a sine wave and i represents the frame

index in the stimulus sequence. represents the Refresh Rate of the

screen (the monitor or display).

We followed the method (Chen et al., 2015a,b; Wong et al.,

2020) and applied filter bank canonical correlation analysis

(FBCCA). This method is widely used to detect the frequency of

SSVEP. The SNR and classification analysis can be used to evaluate

SSVEP data (Chen et al., 2015a,b; Liu et al., 2020; Ladouce et al.,

2022). In this paper, the SNR can be defined as follows:

SNR = 20 log10
y(f )

1
2n ·

n=4
∑

k=1

y(f − 1f · k)+ y(f + 1f · k)

(4)

where y(f ) represents the spectrum calculated by fast Fourier

transform, and 1f represents the frequency resolution.

The recognition accuracy and ITR were defined (Chen et al.,

2015a,b; Wang et al., 2017). The ITR represents the output

information per second or minute. The calculation formula is

as follows:

ITR = 60 ·

(

log2N+ Plog2P + (1− P)log2
1− P

N − 1

)

/T (5)

TheN is defined as the number of commands that can be output

by the system. The accuracy of target recognition (P) affects the

feasibility and reliability of the BCI communication system. Single-

target selection time (T) is often defined as the time required for the

BCI system to output a single command. This study refers to visual

gaze duration in SSVEP experiments.

3.2.2. SSVEP experiments
During SSVEP experimentation, recordings of data were

independently conducted using both the proposed device and

Synamps2 in separate sessions. Initially, subjects wore a wet

electrode EEG cap and the impedance was ensured <20 k. The

experiment sequence was as follows: initial preparation -> System

A -> System B -> Rest -> System B -> System A -> End. In the

crossover experiment, we randomly selected the first system. To

ensure that the participants remained in a good state throughout

the experiment, the total duration could not exceed 90min. The

same stimulation screen, stimulus unit, EEG cap, and trigger sender

shown in Figure 5 were used during data acquisition, while different

systems were switched via a hardware connector.

In the forty-targets and single-target SSVEP spelling test,

EEG data were recorded at a 1,000Hz sampling rate, using the

reference electrode, the ground electrode at the position shown

in Figure 5. The Synamps2 amplifier sends raw data/trigger to the

recording unit (another host computer) using a wire connection.

The BLueBCI amplifier wirelessly sends it to the recording unit

via TCP/IP socket. The device in the proposed system is named

as BLueBCI.

3.2.2.1. Forty-targets SSVEP online analysis

Wedesigned a forty-targets SSVEP spelling board scenario with

a display frequency ranging from 8–15.8Hz, as shown in Figure 6.

The scheme of SSVEP trail is shown in Figure 7.

The frequency value of each character in the matrix can

be represented:

f (kx, ky) = f0 + 1f × [(ky − 1)+ (kx − 1)× 10],

kx ∈ [1 4], ky ∈ [1 10]
(6)

where kx and ky represents the row index and column index,

respectively. In this study, f0 was 8Hz and 1f was 0.2 Hz.

We collected all forty-targets SSVEP data from seven healthy

subjects (four males and three females, aged 27 ± 5 years).

All participants were either students or staff members from the

university and were situated 100 cm away from a monitor during

the experiment. The participants had a normal or corrected-to-

normal vision and had signed consent papers.

3.2.2.2. Single-target SSVEP o	ine analysis

The forty-targets SSVEP experiment features certain

limitations. First, peripheral scintillations are aliased, which

affects the subjects’ vision and reduces the SNR. This may lead

to inaccuracies in the SNR measurements. Second, the low

scintillation frequency results in insufficient response at high

frequencies. These factors constrain the extent to which the

system’s performance can be fully evaluated.

A supplementary experiment was carried out. We designed

a single-target SSVEP spelling board scenario with frequencies

of 12Hz and 30Hz. The experimental procedure was similar to

the forty-targets experiment. The target was set in a circular area

positioned at the center of the screen. As there was only one target,

we removed the cue period from each trail. Blocks spanned 75 s

and comprised 15 trials, with each trial lasting 4 s of stimulation

followed by 1 s of rest.

All single-target SSVEP data were acquired from nine healthy

subjects (one male and eight females with an age of 26 ± 1 years).

All participants were either students or staff members from the

university and were situated 100 cm from the monitor during

the experiment. Participants had a normal or corrected-to-normal

vision and had signed consent papers.

3.3. System evaluation in group cognition
task

Mental fatigue was associated with increased power in theta

(θ) and parietal alpha (α) EEG rhythms. Sleepiness is typically

characterized by an increase in theta and alpha activity, with a

decrease in the beta band (Balandong et al., 2018).

In cognitive science, frequency domain features are widely used

to assess mental fatigue or sleepiness (Eoh et al., 2005). Brain

rhythms are generally divided into five sub-bands: δ : 0.5–4Hz; θ

: 4–8Hz; α : 8–13Hz; β : 13–25Hz; and γ : 25–40Hz. One of the

classic formulas is as follows:

F1 =
Eθ + Eα

Eβ

(7)

where the total frequency band power:

E =

NFFT
∑

n=1

(

F(n)

NFFT

)2

(8)
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FIGURE 5

The comparison scheme between BLueBCI and Synamps2 amplifier.

FIGURE 6

Forty targets of BCI spelling board. (A) A board layout with 26 letters, 10 numbers, and four non-alphanumeric keys (space, comma, dot, and

backspace) arranged in four rows and 10 columns. The upper is used to display the input characters. (B) Encoding the frequency and initial phase of

each target using joint frequency and phase modulation (Chen et al., 2014).

where F(n) denotes the results of the signal X(n) at frequency n.

Quick and reliable signal acquisition is vital for large-scale

applications, especially for the classroom cognitive application. To

achieve this, we used dry electrodes to collect EEG data from the

occipital area in noisy settings. In this group cognition test, the data

were acquired from 10 healthy subjects, consisting of nine students

and one teacher. The mBCI scenario is shown in Figure 8.

Estimating the mBCI application test was constructed. The

teaching process was divided into four parts. This process was as

follows: Initially, all subjects prepared EEG cap for 10min before

class, Period 1 (Guide 2min), Period 2 (Online teaching 27min),

and Period 3 (Offline teaching 49min), as shown in Figure 8. There

was no break from 10:00 to 11:20 AM. Before the online teaching,

2min of guide (1-0-Contrast-G) was used as the control group.

During Period 2, the process included closing the eyes for 2min

(1-1-close), opening the eyes for 2min (1-1-open), playing the

teaching video at 1x speed for 10min (1-1-oT10), playing the video

at 2x speed for 5min (1-2-oT20), playing the video at 1.5x speed

for 6min (1-3-oT15), and then playing the video at 1x speed for

2min (1-4-oT10). During Period 3, the process included opening

the eyes for 2min (2-0-open), closing the eyes for 2min (2-0-close),

followed by offline teaching for 45 min (2-1-1).
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FIGURE 7

The scheme of SSVEP trail. (A) Each block consisted of 40 trails. Each trial was divided into three periods: cue, stimulus, and idle period. The cue was

given 1 s (a red box around the target). The subjects followed the cue target, and then, all the targets started flashing at the same time for 4 s. At the

end of each trial, the participants had a 1-s idle period. (B) Trigger started at the end of the cue and the beginning of the stimulus. During the 4-s

flashing, subjects were asked to avoid eye-blinking while flashing. The real-time SSVEP EEG data were analyzed. During the 1-s idle period, the EEG

feedback was analyzed using the FBCCA method, and then, the updating result was presented in the input field above, and then, the next trial was

followed.

FIGURE 8

The mBCI scenario for education application.

4. Results and discussion

4.1. Comparison of synchronization
performance

We delivered a light input from an optical sensor and used an

oscilloscope to detect two types of delays. One oscilloscope probe is

used to test the output of the optical sensor, and the other probe

is used to test the TTL signal output from the trigger-receiver

unit before entering the microcontroller unit IO port, as shown in

Figure 3B.

We measured the time difference between the probes using an

oscilloscope. We found a static delay of∼4ms and a dynamic delay

of roughly 0.9ms over the course of the 30-min recording period,

as shown in Figure 3B. The static delay and dynamic delay observed

at the edges of the square wave indicated that time drifted from

synchronous sampling, as shown in Figure 3B.

This result suggests that the data recorded by the 10 amplifiers

were not precisely aligned. The static delay variation is <1 µs,

which is almost constant over time. The static delay can be

subtracted from the recorded data, while the dynamic delays can

potentially lead to errors in the analysis of brain activity below the

1 ms level.

Furthermore, to assess the synchronization performance, we

conducted an experiment to calculate the dynamic delay between

the signals. We took the last 50,000 points (1,000Hz by 50 s)

with the trigger and used the Butterworth 50Hz notch filter. After

aligning the trigger, we analyzed the correlation of 40,000 points
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FIGURE 9

Estimating dynamic delay and correlation. (A) The plot of 80 consecutive segments of A1 first channel. (B) The plot of eight-channel signals from 10

devices. (C) The mutual covariances of each device’s first channel.

data. To assess the cumulative phase error of individual device,

we have analyzed the signals of one channel. We split the 40,000

points of A1 first channel into 80 consecutive segments (one

segment every five cycles, 1 k sample rate, 100 points per cycle).

These 80 segments’ points are drawn in Figure 9A. The enlarged

part of the figure shows that the deviation is in the range of

0.5 ms. To evaluate the phase shift between multiple devices, the

signals from 8 channels of 10 devices were analyzed. The signals

of 8 channels from 10 devices were plotted simultaneously in

Figure 9B. This showed the waves are well synchronized and have

a 0.5 ms dynamic delay. The mutual covariances of each device’s

first channel were shown in Figure 9C. The average correlation

reached 99.93%.

After 30 repeated experiments, the minimum synchronization

error was 237 µs and the average was 0.9ms. The causes of the

minimum synchronization error would refer to the cumulative

“time delay” of the electronic system in the wireless transceiver

process, including the baseband protocol resolution time delay, the

crystal clock difference of all the subsystems, and micro-control-

unit command sequence time difference.

Among all EEG systems, Emotiv is the most commonly used

wearable system in research studies (Roy et al., 2019), whereas Brain

Products, EGI, BIOSEMI, and g.Tec are the most frequently used

desktop systems in hyperscanning studies (Barraza et al., 2019).

In particular, for hyperscanning setup types, a wireless wearable

system can overcome limitations on subjects’ range of motion

and adapt to the experimental paradigm design (Xu et al.,

2021). While a wired fixed-linked system is widely used, it can

be quite inconvenient and time-consuming when conducting

hyperscanning experiments. In addition, it is complicated to

acquire simultaneous data with multiple devices. It suggests that

wireless wearable setups with a moderate number of channels

(8/16/32) can be the most suitable for the mBCI system.

According to our literature review, some related work

for the mBCI application are listed in Table 1. Several wired

trigger boxes are able to distribute a SYNC signal to different

devices simultaneously, performing a hardware-based trigger

synchronization method, such as, g.TRIGbox (by g.Tec), USB2

Receiver (by BIOSEMI), and Clock Sync box (by EGI). The systems

from Brain Products, EGI and BIOSEMI adopt parallel interfaces

of the host computer for hardware-based trigger synchronization

since the hardware interrupt level of the parallel interface has a

high priority. This can result in a faster response of processing, such

as the device from g.Tec, which reaches a synchronization delay of

51.22 ms. Synchronization delay of a wireless system from Emotive

adopting audio/video data is 162.69, while the proposed system

achieves a far smaller synchronization delay of<1 ms by exploiting

light signal and customized data protocol.
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TABLE 1 Comparison between the proposed and other commercial EEG acquisition system.

Devices Brain
productsa

EGIa BIOSEMIa g.Tec

g.USBampb,c
Emotiv
EPOCc,d

The
proposed

Hyperscanning

setup types

Fixed-linked Fixed-linked Fixed-linked Fixed-linked Wireless wearable Wireless wearable

Channels number 32/64 128 64 16 14 8/16/32

Device number 2 2 2 4 9 10

Synchronization

delay

Not mentioned Not mentioned Not mentioned 51.22ms 162.69ms <1 ms

Trigger

synchronization

method

Wired TTL

Software: LSL

protocol

Wired TTL

Clock Sync box

Wired USB receiver Wired USB

(g.TRIGbox)

Software: LSL

protocol

Wireless

audio/video data

Software: LSL

protocol

Wireless light signal

Software:

customized data

protocol

aBy Barraza et al. (2019).
bBy Bilucaglia et al. (2020).
cBy Wang et al. (2019).
dBy Poulsen et al. (2017).

FIGURE 10

Key performance comparison in the online forty-targets SSVEP experiments. (A) Spectrum diagram. (B) SNR based on the FBCCA method. The

asterisks indicate significant di�erence by paired t-tests (*p < 0.8, **p < 0.6, ***p < 0.4). (C) Classification accuracy. (D) ITR. We estimated by data

lengths ranging from 0.2 to 4 s, with 0.2-s intervals.

4.2. SSVEP performance comparisons

In this section, we present a comparative result of the mBCI

devices with temporal and spatial analyses. Each participant had

individual REF and GND channels. The channels were connected

to the individual amplifiers. In the acquisition software, the EEG

data with the triggers can be viewed separately and stored in

different files.

The raw SSVEP data underwent several filtering steps. Firstly,

we extracted the 4-s stimulated data by the trigger event (the
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FIGURE 11

Typical temporal and spatial characteristics. (A) Temporal analysis at 250 points per second. (B) Unary linear fitting graph of similarity and 1,000

sampling points. (C) Spectral analysis, left: fundamental (12Hz) to fifth harmonic (24, 36, 48, and 60Hz), right: fundamental (30Hz) to second

harmonic (60Hz). (D) SNR analysis for single-target SSVEP.

FIGURE 12

Typical fatigue cognition characteristics. (A) Temporal, spatial diagram. (B) Each subject F1 During 1-1-oT10 to 2-1-1. (C) F1 diagram During

1-0-Contrast-G to 2-1-1, the black line represents the collaborative result. (D) During 1-3-oT15, the F1 value with the interval 1min.
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sampling rate of both devices was 1,000Hz, and 4-s data were 4,000

points per trial). Secondly, any trail data with an amplitude of

>100 µV were removed, after which the data were downsampled

to 250Hz. Thirdly, the data were processed by Chebyshev type

I bandpass filter, which has a stopband of 3–6Hz, a passband

of 6–65Hz, and a stopband of 65–75Hz. This was to eliminate

environmental noise. Following data preprocessing, the EEG signal

was stored as three-dimensional data with channel × time points

× blocks.

4.2.1. Forty-targets SSVEP
In the forty-targets SSVEP experiment, we focused on the

data resulting from the stimulus frequencies of 8, 9, 10, 11, 12,

13, 14, and 15Hz. The comparison spectrum diagram plot was

drawn between the two devices, as shown in Figure 10A. The

comparison data between one device of the mBCI system and the

Synamps2 device showed obvious SSVEP fundamental frequency

and harmonic response.

We compared 11 sets of BLueBCI data and 13 sets of Synamps2

data by analyzing frequencies of 8, 9, 10, 11, 12, 13, 14, and 15Hz.

Paired t-tests showed that there was no significant difference in

classification accuracy and ITR between the mBCI system device

and the Synamps2 device (p = 0.820 and 0.656, respectively).

However, t-tests of SNR showed there was some difference between

them, as depicted by the asterisks in Figure 10B.

The results show that the average SNR of BLueBCI (5.08± 2.03

dB) is higher than that of Synamps2 (4.66 ± 1.76 dB), as shown in

Figure 10B. Based on the 0.2-2 s data, the resulting peak accuracy

for BLueBCI is slightly lower than that for Synamps2. With 2 s data

length, the accuracy of target recognition was 98%, similar to that

of Synamps2 (99%), as shown in Figure 10C. Based on the 0.2-2.2 s

data, the ITR of BLueBCI was lower than that of Synamps2. But the

ITR performance of the BLueBCI and the Synamps2 tends to be

identical after 2.2 s. With 2 s data length, the average ITR reached

150 ± 20 bits/min, and the highest reached 260 bits/min (data

length: 1 s), which was comparable to Synamps2 (the average: 150

± 15 bits/min, the highest: 280 bits/min), as shown in Figure 10D.

4.2.2. Single-target SSVEP
In the single-target SSVEP experiment, we obtained averaged

data for each device at each frequency from all subjects to eliminate

time-space and phase differences caused by multiple subjects.

The averaged data were plotted in Figure 11A. Linear fitting

was conducted to evaluate the similarity and sampling points as

shown in Figure 11B. Firstly, in terms of 12Hz, the similarity

remained nearly constant with an average of 86% as sampling

points increased. Secondly, in terms of 30Hz, the similarity showed

a significant negative correlation with the increase in sampling

points. This observation suggests that the similarity gradually

decreased with increasing frequency, possibly due to insufficient

data or multi-subject inconsistent time-space and phase response

to a high-frequency stimulus. Our results imply that this approach

can be useful for screening individuals for efficient interaction and

remain a potential area for further study.

Among the nine subjects, 20 sets of 12 Hz-target and 21 sets

of 30 Hz-target were collected by Synamps2; 19 sets of 12 Hz-

target and 19 sets of 30 Hz-target were collected by BLueBCI.

In Figure 11C, the data by BLueBCI (green line) and Synamps2

(blue line) showed obvious fundamental frequency and harmonic

responses, among which the 4th and 5th harmonic responses in

Synamps2 12-Hz stimulation were obvious, while the BLueBCI

exhibited better performance. However, in the 12-Hz stimulus,

the fundamental and second harmonic responses for BLueBCI

were higher than that for Synamps2. In the 30-Hz stimulus, the

fundamental frequency and second harmonic frequency were lower

than that of Synamps2. We compared frequency responses SNR of

12Hz and 30Hz, respectively, as shown in Figure 11D. The 12Hz

and 24Hz SNR of BLueBCI were higher (p = 0.230 and 0.847,

respectively) than Synamps2. There was no significant difference

in the fifth frequency (60Hz, p = 0.856). However, for the 36Hz

and 48Hz SNR for BLueBCI were significantly lower (p = 0.048

and 0.009, respectively) than Synamps2. For the 30-Hz stimulus,

the fundamental frequency and the second harmonic response

(60Hz) SNR for Synamps2 were higher (p = 0.137 and 0.065,

respectively) than those of BLueBCI. This implied that there were

some minor defects in acquisition and processing. Simulated IIR

filtering was carried out (notch 50Hz) on the raw Synamps2 data,

which revealed a gap in the 36–60Hz region of the spectrum,

confirming the same phenomenon detected in the BLueBCI data.

This approach can be amethod for assessing hardware performance

and be a guide for further optimization and system design.

4.3. Group cognition result and discussion

The contrast group data were obtained from the following

periods: 1-0-Contrast-G, 1-1-close, and 2-0-close. Both FFT and

temporal characteristics were evident in periods 1-1-close and

2-0-close, as depicted in Figure 12A, indicating the validity of

the raw data from the quick and simple wearable mBCI system.

During the 1-0-Contrast-G period, the fatigue value was used in

the performance comparison between online and offline teaching.

The data collected by the A4 and A9 amplifiers were removed

due to hardware defects during the evaluation. The data were

then downsampled to 250Hz and filtered by a 50-Hz notch and

Chebyshev type I bandpass filter with a passband from 6 to 65Hz.

First, in the hardware performance results, we found that the

CMRR was abnormally low and the noise was higher than other

devices, as shown in Figure 4 (the device CMRR). Second, due to

the abnormal movement of the caps during the experiment, the low

and abnormal high-frequency data were filtered.

As shown in Figure 12D, the overall F1 score increased over the

6-min period, indicating a rise in fatigue cognition. Additionally,

during the 1-1-oT10 to 2-2-1 stage, there were variations in

fatigue levels among subjects, as depicted in Figure 12B. Paired t-

tests revealed that subjects A1, A5, and A10 showed a significant

difference (p < 0.03) in fatigue levels compared with the

collaborative result, while the fatigue levels of subjects A2, A3,

and A8 were consistent (p > 0.22) with the collaborative result.

Moreover, there was a significant difference between 1-1-oT10 and

2-1-1 periods (p = 0.04). The collaborative results showed that the
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fatigue level decreased during the initial stage of 1-1-open to 1-1-

oT20 but subsequently increased from 1-1-oT20 to 2-2-1, as shown

in Figure 12C. It revealed an apparent trend of increasing the

fatigue level across multiple subjects with personality differences.

These outcomes were consistent with the previous fatigue detection

research (Eoh et al., 2005).

In future, this wearable mBCI system can be utilized for real-

time and rapid multi-subject EEG recording with synchronous

collaborative computing. As demonstrated in this multi-subject

experiment, it serves as a basic tool for exploring cognitive

neuroscience or other multi-subject applications.

5. Conclusion

The mBCI system forms the basis for group-cognitive

applications. When acquiring brain signals from multiple subjects,

it is essential to deploy a wearable, user-friendly, reliable, and

sturdy neural recording system with high-performance and

synchronization abilities. This cutting-edge wearable mBCI system

combines inputs from up to 10 users. First, in terms of

SSVEP performance, it results in a higher SNR than NeuroScan

Synamps2, with comparable ITR and accuracy. Second, it

leverages millisecond-parallel neuro-recording and offers superior

portability than other hyperscanning systems. Moreover, the mBCI

signal correlation attains 99.8%, with minimal synchronization

errors (237 µs). Regarding hardware performance, the average

noise amplitude is 0.87 µV, and the average CMRR reaches

109.02 dB. Each wearable compact device weighs just 56 ± 4 g

and measures a mere 59.3 × 47.4 × 22.7mm. In evaluating

its suitability for multi-subject teaching applications, preparation

required <10min. Group-cognitive assessment findings not only

reveal individual variations but also offer insights into group EEG

fatigue cognitive neurology.

Evaluation results indicate that the proposed mBCI system is

a highly efficient tool for real-time research and the system will

facilitate various applications in the fields of swarm intelligence and

cognitive neurology.
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