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Introduction: The visual stimulus-specific responses in the primary visual cortex

(V1) undergo plastic changes after associative learning. During the learning

process, neuronal ensembles, defined as groups of coactive neurons, are well

known to be related to learning and memory. However, it remains unclear what

e�ect learning has on ensembles, and which neuronal subgroups within those

ensembles play a key role in associative learning.

Methods: We used two-photon calcium imaging in mice to record the activity

of V1 neurons before and after fear conditioning associated with a visual cue

(blue light). We first defined neuronal ensembles by thresholding their functional

connectivity in response to blue (conditioned) or green (control) light. We defined

neurons that existed both before and after conditioning as stable neurons.

Neurons which were recruited after conditioning were defined as new neurons.

The graph theory-based analysis was performed to quantify the changes in

connectivity within ensembles after conditioning.

Results: A significant enhancement in the connectivity strength (the average

correlation with other neurons) was observed in the blue ensembles after

conditioning. We found that stable neurons within the blue ensembles showed

a significantly smaller clustering coe�cient (the value represented the degree of

interconnectedness among a node’s neighbors) after conditioning than they were

before conditioning. Additionally, new neurons within the blue ensembles had

a larger clustering coe�cient, similar relative degree (the value represented the

number of functional connections between neurons) and connectivity strength

compared to stable neurons in the same ensembles.

Discussion: Overall, our results demonstrated that the plastic changes caused

by conditioning occurred in subgroups of neurons in the ensembles. Moreover,

new neurons from conditioned ensembles may play a crucial role in memory

formation, as they exhibited not only similar connection competence in relative

degree and connectivity strength as stable neurons, but also showed a significantly

larger clustering coe�cient compared to the stable neurons within the same

ensembles after conditioning.

KEYWORDS

associative learning, V1, two-photoncalcium imaging, graph theory, ensemble, functional

connectivity

1. Introduction

Associative learning is a form of learning that enables organisms to understand

the relationships among various environmental events and make predictions about the

outcomes of their interaction with the environment. In the classic associative learning

paradigm, animals are trained to combine neutral sensory stimuli (e.g., visual, auditory,

and olfactory stimuli) with an aversive (e.g., foot shock and air puff) or an appetitive event
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(e.g., sugar water). Experiments that utilized extracellular

electrophysiological recordings of single or multiple units found

that individual neurons exhibited increased firing rates in response

to learning-related stimuli (Segal et al., 1972; Berger et al., 1976; Jun

et al., 2017). However, these electrophysiological recordings cannot

track the same neuron before and after learning over a long-term

period. Intracellular calcium recordings in vivo made it possible

to track the activity of hundreds of neurons in the same site over

days (Hamel et al., 2015). By using this method, Henschke et al.

(2020) observed a selective enhancement of the representation

in neurons when repeated visual stimuli were associated with a

reward. Also, Jurjut et al. (2017) found that learning improved

neural discriminability, sharpened orientation tuning, and led

to higher contrast sensitivity in the V1 neurons. Recent studies

mainly focused on the impact of learning on individual neurons.

Considering learning and memory relied on multi-neuronal

coactivation, we believe that understanding how these neurons

work cooperatively is crucial in exploring the neuronal mechanism

for associative learning.

A group of coactivated neurons was typically regarded as

ensembles in associative learning (Hebb, 2005; Buzsáki, 2010).

Tonegawa et al. (2015) found that activation of the cfos-tagged

neurons, which was active during the fear conditioning, could

induce freezing behavior in mice. Yuste and Bonhoeffer (2001)

identified the ensembles in the visual cortex by selecting neuronal

pairs with significant similarity from vectors which represented

neuronal activity during visual stimulation (Carrillo-Reid et al.,

2015) and found that optogenetic activation of these ensembles

elicited learning-related behavioral responses such as licking

(Carrillo-Reid et al., 2019). They also identified visually evoked

and spontaneous ensembles and found that stable neurons in the

ensembles were more connected than neurons that were eventually

lost in long-term recordings (Pérez-Ortega et al., 2021). These

results suggest that stable neurons may play an important role in

associative learning. It remained unclear whether new connections

were formed in neuronal ensembles after learning.

We combined fear conditioning with in vivo two-photon

calcium imaging to the same group of neurons before and after

fear conditioning. Based on functional connectivity, we identified

neuronal ensembles in which neurons were coactivated in response

to two different visual stimuli (e.g., conditioned light: blue light;

control light: green light), quantified the dynamic changes of

the ensembles, and performed graph theory-related analysis on

ensembles. Subgroups of neurons were identified as stable, lost,

and new ensembles. We found that the new neurons which were

recruited in the ensembles after conditioning may play an essential

role in associative learning.

2. Materials and methods

2.1. Animals and surgery

All experimental procedures were approved by the Animal

Ethics Committee of School of Basic Medical Sciences at

Fudan University. Experiments were performed using wild-type

(C57BL/6) male mice (n = 8), purchased from the Slac Laboratory

Animal Co. (Shanghai, China), and aged 8–12 weeks after birth.

The mice were housed in an environment with sufficient water

and food. All the animals were maintained on a 12-h/12-h light–

dark cycle.

Before surgery, mice were anesthetized with isoflurane (2% for

induction and 1% for maintenance). After induction, the scalp

was removed and mice were mounted on a stereotaxic apparatus,

and three craniotomies (∼1mm in diameter) were made over the

right V1 (3.2mm posterior to bregma and 2.1mm lateral, 3.2mm

posterior to bregma and 2.5mm lateral, and 3.6mm posterior to

bregma and 2.3mm lateral). Then, virus AAV2/8-hSyn-GCaMP6s

(Taitool Bioscience Co., LTD, Shanghai, China) was injected using

Nanoject (Drummond scientific company, Broomall, USA) at

depths of 0.25 and 0.4mm, respectively. For per injection site, 25

nL of the virus was injected at 20-sec intervals, for a total volume of

100 nL. After each injection, the pipette should be left in place for

5–10min to prevent backflow. The wound was cleaned and sutured

after completing the injections. Then, mice were returned to the

home cage.

After 6 weeks, the mice were anesthetized and a 2.5mm

diameter craniotomy was executed above the right V1 (3.3mm

posterior to bregma and 2.3mm lateral). A coverslip was implanted

above the craniotomy and sealed with VetBond (3M Animal Care

Products, St. Paul, USA), followed by fixation of the titanium head

bar on the skull using dental cement (Super Bond C&B, Japan).

After surgery, a dose of (0.1 mg/kg body weight) dexamethasone

sodium phosphate (Quanyu Biotechnology Animal Pharmaceutical

Co., LTD, Shanghai, China) was injected intramuscularly every

other day, and a dose of (5 mg/kg body weight) ceftiofur

sodium (Quanyu Biotechnology Animal Pharmaceutical Co., LTD,

Shanghai, China) was injected intraperitoneally for 5 days. The

mice recovered in the home cage for 2 weeks before two-

photon imaging.

2.2. Histochemistry

Animals were deeply anesthetized with overdose isoflurane

and perfused with 0.9% saline, followed by 4% paraformaldehyde

using a perfusion pump. The brains were post-fixed in 4%

paraformaldehyde at 4◦C overnight and then transferred to 30%

sucrose. Brains were then embedded and frozen until sliced. Brain

tissues were sectioned into 30-µm-thick coronal slices using a

freezing microtome (Leica CM 1950, Leica, Wetzlar, Germany).

The slices were washed with Tris-buffered saline 5 times and

covered with coverslips. Fluorescent images were obtained by

fluorescence imaging microscope (A1R, Nikon, Tokyo, Japan) and

analyzed in ImageJ software 1.48v (NIH) and NIS-Elements AR

software ver. 4.30.01 (Nikon, Tokyo, Japan).

2.3. Fear conditioning

Fear conditioning was carried out using a conditioning

chamber (17 × 17 × 25 cm) (Ugo Basile Biological Research

Apparatus, Italy) and operated with ANY-maze software (Version

6.33; Stoelting Co., Wood Dale, IL). The software enabled the

measurement of freezing response as an indicator of fear memory

formation. One day prior to the conditioning session, the mice

were placed in the conditioning chamber (context A) and were
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permitted to explore freely for 300 sec. On the conditioning day,

the mice were again placed in context A and explored freely

for 180 sec. Subsequently, three blue light stimuli (5 µW/mm2)

that were co-terminated with a foot shock (0.75mA, 2 sec) were

presented (CS1, CS2, and CS3) followed by a 210-sec inter-trial

interval. The freezing level was detected by ANY-maze during the

blue light stimulation, and the baseline of the freezing level was

calculated during the period of 150–180 sec of exploration. On

the day after conditioning, the mice were used for the two-photon

imaging experiment.

2.4. Two-photon imaging and visual
stimulus

A two-photon imaging experiment was performed before and

after conditioning. The mice were anesthetized with isoflurane, and

the head was fixed in place under a two-photon microscope using a

titanium head bar. V1 calcium signal was recorded using Olympus

FluoView FVMPE-RS upright two-photon laser-scanning system

(Olympus, Tokyo, Japan). The stimulation light was delivered by an

LED light source. The LED was positioned 8 cm from the left eye of

the mouse, with a light intensity of approximately 5µW/mm2. Blue

light and green light were presented six times each in a randomized

order, each for a duration of 1 s, followed by a 10-s inter-trial

interval. The entire imaging device was enclosed by a blackout

fabric to prevent light leakage into the imaging photomultiplier

(PMT). The calcium indicator (GCaMP6s) was excited using a

laser at a wavelength of 920 nm. Images were acquired at 30Hz.

During the recording, mice were anesthetized with isoflurane (2%

for induction and 0.5–1% for maintenance) and placed on a heating

pad to maintain body temperature.

For the second recording on the day after conditioning, the

location of such target region was attempted to align with the

previous area for each mouse. The procedure of the second

recording was identical to the first recording.

2.5. Pre-process on two-photon image

We use the Suite2p algorithm on python (Pachitariu et al.,

2017) to pre-process the two-photon data for analysis. Motion

calibration and region of interest (ROI) identification were

performed by suite2p on images acquired during recordings.

The calcium signal of each ROI was obtained by extracting the

fluorescence intensity of the corresponding region.1F/F0 = (Fraw –

F0)/F0, (Fraw represents the raw signal of the ROI and F0 represents

the average intensity of the ROI signal). To improve the signal-to-

noise ratio, we applied a smoothing operation to the calcium signal

using a window length of 7 frames.

2.6. Analysis trials from calcium signal and
responsive neuron detection

To analyze the response of neurons, we first aligned the

response (1F/F0) to the time of stimulus onset. Then, we calculated

the average responses with a 2-sec window before the onset (−2

sec from onset to onset) as baseline responses. We also defined

an after-stimulus period as a 4 sec window following the stimulus

onset. A neuron was considered light-responsive if the maximum

1F/F0 during the after-stimulus period was more than two times

the standard deviation above the baseline responses and the time of

decay-half-peak should be over 10 frames in more than 50% of the

trials. According to the responses to blue and green light, neurons

can be divided into four groups: blue-responsive, green-responsive,

both-responsive, and neither-responsive neurons. The proportion

of neurons in each group was calculated.

2.7. Definition of neuronal ensembles

After obtaining the calcium signal for each neuron, we

used a semi-automatic algorithm to identify the neurons in the

same location in the two recordings. Pearson’s correlation was

calculated between each pair of identified neurons within each

trial, resulting in a correlation matrix of each trial for all neurons.

By averaging all six correlation matrices by the color of stimuli,

mean correlation matrices were produced for both blue and

green stimuli in recordings before and after conditioning as well.

In short, these matrices are named as blue-before-conditioning,

green-before-conditioning, blue-after-conditioning, and green-

after-conditioning matrices, respectively. A threshold value was

settled for eachmouse with their ranked 95% correlation coefficient

from the blue-before-conditioning and green-before-conditioning

matrices. Therefore, pairs of neurons with correlations above the

threshold were considered to have functional connections (Bassett

and Sporns, 2017). These functional connections represented the

synchronous activity between neurons.

After thresholding the averaged correlation matrix and

excluding the isolated neurons which have no connections with

all other neurons, we performed a clustering analysis by ward

linkage based on Euclidean distances on each connectivity matrix.

A contrast index was implemented to detect the optimal number of

subgroups for clustering (Beggs and Plenz, 2004). The subgroup of

the cluster with the highest mean value was selected to represent

the ensemble in that condition. For each color of the stimuli,

neurons co-existing in the ensembles of both recordings were

marked as stable neurons. Neurons that only existed in the before-

conditioning ensembles were defined as lost neurons. Neurons that

only existed in the after conditioning were defined as new neurons.

2.8. Analysis of neuronal network in the
ensembles

Neurons in the ensembles and their correlation-based

thresholded connectivity were defined as a network of nodes and

edges. The binary adjacency matrix which represented all edges

between all nodes resulted in an unweighted and undirected

graph (Bullmore and Sporns, 2009). Using graph theory-based

approaches, both local and global connectivity were assessed. Local

connectivity characterized each node of the network, in other

words, assessing the connectivity of each neuron in the ensembles.
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We first investigated the graph measured relative degree. The

degree quantifies the number of edges connected to that node

(Rubinov and Sporns, 2010). The relative degree is the value of

the degree divided by the number of nodes in such networks,

therefore, reflects the importance and the strength of such nodes in

connectivity within the network. Second, we assessed the clustering

coefficient (CC) of each node, which implicated the fraction of the

node’s neighbors which are also neighbors of each other (Watts and

Strogatz, 1998).

CC =
2ti

ki(ki − 1)
(1)

ti =
1

2

∑
j,h∈N

aijaihajh (2)

where ti represents the number of triangles around a node i in

the network of N, j h are neighbors with node i and they are also

connected, and ki is the degree of node i.

Third, we also determined the strength of connectivity which

averaged the correlation value of each node to all other nodes

in the ensembles or in the global population (Liu et al., 2019).

The connectivity strength reflected the intensity of information

transmission between neurons.

Two complementary measures of global connectivity were

included in the analysis: global efficiency and small-worldness.

The average inverse shortest path length, which is the minimum

number of edges required to connect any pair of nodes

in a network, is computed as the global efficiency (Latora

and Marchiori, 2001), which is implied as a measure of

network integration (Achard and Bullmore, 2007). Small-worldness

describes the effect of a network on how it clustered than random

networks which have similar characteristic path lengths (Watts and

Strogatz, 1998). It calculates the ratio of the clustering coefficient

and global efficiency in comparison with random networks. The

small-world organization is commonly thought on reflecting an

optimal balance of functional integration and segregation (Sporns

and Honey, 2006).

Neurons in ensembles but had no functional connections with

other neurons in the same ensembles were nodes without a degree.

Hence, such neurons were excluded in graph theory-based analysis

which accounts for the degree.

All network analysis steps were performed in MATLAB using

the Brain Connectivity Toolbox (Rubinov and Sporns, 2010) and

custom-written scripts.

2.9. Statistical analysis

For the statistical analysis, non-parametric tests such as

the Mann–Whitney test and Wilcoxon signed-rank test were

performed if the data distribution failed to pass the Kolmogorov–

Smirnov test; otherwise, parametric tests such as repeated-measures

one-way ANOVA, independent sample t-test, paired-sample t-test,

and one sample t-test were applied. All tests were performed with

GraphPad prime (9.0.0). Group data are expressed as mean ±

SEM. The median, quarterlies, and 95% of confidence interval were

illustrated in the box charts. The 95% confidence interval and the

level of significance (p < 0.05) were applied for all analyses.

3. Results

3.1. The proportion of neurons in mouse V1
responding to conditioned light increased
after conditioning

To investigate the dynamic change in mouse VI neurons after

associative learning, we performed two-photon calcium imaging

of neurons from V1 layer 2/3 in anesthetized mice before and

after fear conditioning (Figure 1A). We injected the virus AAV2/8-

hSyn-GCaMP6s into mouse V1 (Figure 1B). 6–8 weeks after the

virus injection, we recorded the neuronal activity in response to

blue (conditioned light) and green light (control light) on Day 1

(Figure 1C). OnDay 2, mice were placed in a conditioning chamber

and presented with three pairs of CS-US stimuli. A single trial was

consisted of a 30-sec blue light and a 2-sec foot shock terminating

simultaneously (with 210-sec inter-trial interval). On Day 3, we

recorded the same groups of neurons as those recorded on Day 1

(Figure 1A). The percentage of freezing time evoked by blue light in

CS2 and CS3 was significantly larger than that in CS1 (Figure 1D).

No significant differences were found between CS1 and the baseline

(Figure 1D).

To further explore the effects of associative learning on

the plasticity of V1 neurons, we identified the neurons that

existed in both Day 1 and Day 3 and defined them as common

neurons (Figures 1E–G). We then extracted the calcium signals

of individual neurons and analyzed their responses to light

(details in method, Figure 1H). According to the responses to

blue and green light, neurons can be divided into four groups:

blue-responsive, green-responsive, blue-and-green-responsive, and

not-responsive neurons. We found that the proportion of blue-

responsive neurons increased significantly after conditioning

(Figure 1I). No significant differences were found between the

proportion of green-responsive, blue-and-green-responsive, and

not-responsive neurons before and after conditioning. These

results showed that associative learning leads to a selective

increase in the proportion of neurons responding to the

conditioned light.

3.2. Analysis of neuronal populations based
on functional connectivity

Owing to the dynamic changes of ensembles in associative

learning, we first identified the ensembles in V1 neurons. First,

we calculated the correlation coefficient between neurons to

construct correlation matrices for each trial (Figure 2A). The

averaged correlation matrix, calculated by averaging six trials for

each mouse, was used to quantify the connectivity for all four

conditions (green-before-conditioning, blue-before-conditioning,

green-after-conditioning, and blue-after-conditioning; Figure 2B).

We added the distribution of connectivity coefficients for both

green-before-conditioning and blue-before-conditioning (red in

Figure 2C) and identified the correlation coefficient at the

ranked 95% as the unified threshold for all four conditions.

As a result, a total of 5% of the connections in blue-before-

conditioning and green-before-conditioning were defined as
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FIGURE 1

Two-photon imagining before and after conditioning. (A) Experimental setup: the first calcium imaging recordings were made 1 day before the fear

conditioning of the mice, and the second calcium imaging recording was made 1 day after conditioning. (B) Left: schematics of injecting virus

AAV2/8-hSyn-GCaMP6s in V1. Right: expression profile of GCaMP6 in V1. Scale bar: 1mm. (C) Schematics of calcium imaging of anesthetized mice

given light stimulation. (D) Percentage of freezing during conditioning when light stimulation was given three times. Baseline: 2.0 ± 1.2%, CS1: 5.5 ±

2.6%, CS2: 28.6 ± 9.5%, CS3: 52.5 ± 11.1%; one-way repeated measures ANOVA, F = 18.78, p < 0.001; Tukey’s multiple comparisons tests: p = 0.04

in CS1 vs. CS2, p = 0.004 in CS1 vs. CS3; p = 0.007 in CS2 vs. CS3; n = 8 mice. (E) Examples of the same recording sites before and after

(Continued)
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FIGURE 1 (Continued)

conditioning. Scale bar: 50µm. (F) The common regions of interest (ROIs) based on the Suite2P algorithm in the recording site in E. Black circles

represented the ROIs existed in both recording sites; yellow circles represented the ROIs only existed in single recording sites; red circles represented

the example ROI in (H). (G) The number of common neurons that existed in both Day 1 and Day 3, n = 136 ± 19 neurons in each mouse, n = 8 mice.

(H) The original calcium signal of the same neuron was recorded before and after conditioning. Each trail (rectangle with dashed lines) included a

2-sec window before light, a 1 sec window in light, and a 3 sec window after light; each mouse was given six blue light stimuli and six green light

stimuli randomly on each day, and the neuron was marked red in (F). (I) The percentage of various types of responding neurons before and after

conditioning. Blue-responsive neurons before conditioning: 4.4 ± 1.2%, blue-responsive neurons after conditioning: 12.5 ± 4.0%,

blue-and-green-responsive neurons before conditioning: 6.0 ± 2.1%, blue-and-green-responsive neurons after conditioning, green-responsive

neurons before conditioning: 12.2 ± 3.4%, green-responsive neurons after conditioning: 7.3 ± 1.8%, not-responsive neurons before conditioning:

77.4 ± 6.1%, not-responsive neurons after conditioning: 69.9 ± 8.5%; n = 12 recording sites from eight mice for each conditions. Wilcoxon

signed-rank test, p = 0.027 in blue-responsive neurons before conditioning vs. blue-responsive neurons after conditioning. Mean ± SEM was drawn

in the histogram. *p < 0.05, **p < 0.01, and ***p < 0.001.

functional connections (connections in blue-before-conditioning

are shown in Figure 2D).

We then excluded neurons with no connection with other

neurons, i.e., isolated neurons, from the correlation matrix (34

isolated neurons in Figure 2E). To define the coactive neurons

(defined as the ensemble in our manuscript), we calculated

the distances between neurons with their correlation coefficient.

Therefore, a dendrogram was constructed to quantify the linkage

between neurons in which we can separate neurons into clusters

by their closeness in distance with each other (Figure 2F left). To

optimize the number of clusters in such a neuronal population,

we calculated the contrast index which compared the inner and

outer cluster contrast and picked out the value which suggested

the highest differences among clusters (Figure 2F right). Finally, the

cluster of neurons that had the largest mean correlation was chosen

to be the ensemble for each condition (the chosen cluster formed

by 18 neurons in Figure 2G). Hence, we transformed this cluster as

a graph in Figure 2H which the neurons were represented as circles

and their functional connections were represented as edges.

By following this procedure, we identified all the ensembles

associated with blue or green light before and after conditioning.

In 48.9± 3.8% neurons were in blue-before-conditioning ensemble

(blue light-evoked neurons before conditioning), and 49.6 ± 3.4%

neurons were in green-before-conditioning ensemble (green light-

evoked neurons before conditioning) (Figure 2I). Similarly, 47.4 ±

3.5% neurons were in blue-after-conditioning ensemble (blue light-

evoked neurons after conditioning) and 49.3 ± 3.9% neurons were

in green-after-conditioning ensemble (green light-evoked neurons

after conditioning). No significant difference was found among

these four conditions by independent sample t-tests. We found

a 49.4 ± 4.9% overlapping rate between blue-before-conditioning

ensembles and green-before-conditioning and a 43.7 ± 5.6%

overlapping rate between blue-after-conditioning ensembles and

green-after-conditioning (Figure 2J).

3.3. A significant enhancement in
connectivity strength in blue ensembles
after conditioning

We next performed graph theory-based analysis to quantify the

changes in connectivity within ensembles after conditioning. The

relative degree (the normalized number of functional connections

between neurons), the clustering coefficient (the degree of

normalized interconnectedness among a neuron’s functionally

connected neurons in an ensemble, see formulas 1 and 2 in

Methods for definition), and connectivity strength (the averaged

correlation value of each neuron to all other neurons in the

ensembles) (Newman, 2009) were calculated to quantify local

connectivity in the ensembles. The global efficiency (the inverse

of the average of the shortest path length between any pair

of neurons in the ensemble, a measure of integration which

quantifies parallel information transfer in the ensemble, see

Methods for details) and small-worldness (a representation of

the balance of functional integration and segregation within

an ensemble, see Methods for details) were calculated to

quantify global connectivity in the ensembles. We found that

there was no significant change in relative degree between

blue-before-conditioning and blue-after-conditioning ensembles

(Figure 3A). Similarly, there was no significant change in

relative degree between green-before-conditioning and green-after-

conditioning ensembles (Figure 3A). The clustering coefficient

remained unchanged after conditioning using either blue or green

stimuli (Figure 3B). Interestingly, connectivity strength increased

significantly in blue-after-conditioning ensemble comparing to

blue-before-conditioning ensemble (Figure 3C).

With regard to global connectivity, no significant difference was

found in neither global efficiency (Figure 3D) nor small-worldness

after conditioning among all four ensembles (Figure 3E). Further

analysis was needed to explore the learning-related plasticity in

subgroups of neurons within each ensemble.

3.4. Conditioning induced di�erent
changes in three neuronal types in the
ensembles

We defined neurons that existed in both before-conditioning

and after-conditioning ensembles as stable neurons. Stable neurons

in before-conditioning and after-conditioning ensembles were

defined as stable-before-conditioning and stable-after-conditioning

neurons, respectively. Neurons in before-conditioning ensembles

that were not present in after-conditioning ensembles were defined

as lost neurons, whereas neurons in after-conditioning ensembles

that were not present in before-conditioning ensembles were

defined as new neurons (Figure 4A).

In before-conditioning ensembles, we did not find the

significant difference in the fraction of stable and lost neurons using

either blue or green condition (Figure 4B). In after-conditioning

ensembles, the fraction of new neurons was significantly smaller
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FIGURE 2

Identification of ensembles. (A) For each trial, Pearson’s correlation was calculated between each pair of identified neurons and formed correlation

matrices within one mouse. (B) Average correlation matrices, respectively, for both color and conditions. (C) Left: blue-before-conditioning

correlation matrix distribution; middle: green-before-conditioning correlation matrix distribution; right: accumulated blue-before-conditioning and

green-before-conditioning correlation matrix distribution. A ranked 95% correlation coe�cient was picked up as the threshold for functional

connection. (D) An example of blue-before-conditioning average functional connectivity matrix after applying the threshold. (E) Exclude isolated

neurons that had no connection with all other neurons. (F) Clustering survived neurons with ward linkage and contrast index. (G) Find the cluster

(Continued)
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FIGURE 2 (Continued)

which has the highest mean correlation value as an ensemble. (H) An example graph of such ensemble. (I) The proportion of neurons in di�erent

ensembles. No significant di�erences were found in each comparison between pairs of conditions by paired-sample t-test; n = 12 recording sites

from eight mice. (J) Overlapping rates between blue-before-conditioning and green-before-conditioning ensembles, and overlapping rates of

between blue-after-conditioning and green-after-conditioning ensembles; n = 12 recording sites from eight mice. Mean ± SEM was drawn in the

histogram.

FIGURE 3

Learning led to enhanced connections of neurons within the ensembles but did not change the configuration of ensembles. (A–C) Comparison of

the relative degree, clustering coe�cient, and connectivity strength of neurons in the four conditions: blue-before-conditioning (n = 756),

green-before-conditioning (n = 791), blue-after-conditioning (n = 660), and green-after-conditioning (n = 756). Relative degree: neurons in

blue-before-conditioning ensembles: 0.185 ± 0.006, neurons in blue-after-conditioning ensembles: 0.217 ± 0.009, neurons in

green-before-conditioning ensembles: 0.149 ± 0.005, neurons in green-after-conditioning ensembles: 0.210 ± 0.009. Clustering coe�cient:

neurons in blue-before-conditioning ensembles: 0.560 ± 0.011, neurons in blue-after-conditioning ensembles: 0.565 ± 0.012; neurons in

green-before-conditioning ensembles: 0.535 ± 0.011, neurons in green-after-conditioning ensembles: 0.529 ± 0.012. Connectivity strength:

neurons in blue-before-conditioning ensembles: 0.511 ± 0.007, neurons in blue-after-conditioning ensembles: 0.534 ± 0.006; neurons in

green-before-conditioning ensembles: 0.538 ± 0.007, neurons in green-after-conditioning ensembles: 0.534 ± 0.006; Mann–Whitney test, p =

0.014 in neurons in blue-after-conditioning ensemble vs. neurons in blue-before-conditioning ensemble. (D, E) Comparison of global e�ciency and

small-worldness in the before and after conditions by paired-sample t-test in both light stimuli, respectively. Global e�ciency:

blue-before-conditioning ensembles: 0.509 ± 0.034, blue-after-conditioning ensembles: 0.505 ± 0.054; green-before-conditioning ensembles:

0.460 ± 0.032, green-after-conditioning ensembles: 0.495 ± 0.062; small-worldness: 2.719 ± 0.200, blue-after-conditioning ensembles: 2.403 ±

0.429; green-before-conditioning ensembles: 3.196 ± 0.361, green-after-conditioning ensembles: 3.417 ± 0.791; n = 12 recording sites from eight

mice. *p < 0.05, **p < 0.01, and ***p < 0.001. Mean ± SEM was drawn in the histogram. The median, quarterlies, and 95% of confidence interval

were illustrated in the box charts.
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FIGURE 4

Di�erent neuron subgroups in the ensembles. (A) Schematic diagram of di�erent kinds of neurons of an ensemble, red circles represent stable

neurons, gray circles represent lost neurons, and yellow circles represent new neurons. (B) The proportion of three types of neurons under two

colors of light stimulation. Blue condition: lost neurons: 46.3 ± 5.7%, stable-before-conditioning neurons: 53.7 ± 5.7%, new neurons: 32.5 ± 6.0%,

stable-after-conditioning neurons: 67.5 ± 6.0%; green condition: lost neurons: 38.9 ± 6.5%, stable-before-conditioning neurons: 61.1 ± 6.5%,

stable-after-conditioning neurons: 57.8 ± 6.1%, new neurons: 42.2 ± 6.1%. Paired-sample t-test, p = 0.012 in new neurons in blue ensembles vs.

stable-after-conditioning neurons in blue ensembles, n = 12 recording sites from eight mice. (C, D) Comparison of the relative degree of three types

(Continued)
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FIGURE 4 (Continued)

of neurons in the blue ensembles and green ensembles. In blue ensembles: stable-before-conditioning neurons, 0.204 ± 0.009, n = 386; lost

neurons, 0.165 ± 0.007, n = 370; stable-after-conditioning neurons, 0.196 ± 0.010, n = 386; new neurons, 0.247 ± 0.015, n = 274; Mann–Whitney

test, p = 0.004 in stable-before-conditioning neurons vs. lost neurons. In green ensembles: stable-before-conditioning neurons, 0.157 ± 0.006, n =

425; lost neurons: 0.139 ± 0.006, n = 366; stable-after-conditioning neurons, 0.190 ± 0.012, n = 425; new neurons, 0.236 ± 0.014, n = 331;

Mann–Whitney test, p = 0.048 in lost neuron vs. stable-before-conditioning neurons; Mann–Whitney test, p = 0.002 in new neurons vs.

stable-after-conditioning neurons. (E, F) Comparison of the clustering coe�cient of three types of neurons in the blue ensembles and green

ensembles. In blue ensembles: stable-before-conditioning neurons, 0.583 ± 0.016, n = 386; lost neurons, 0.536 ± 0.016, n = 370;

stable-after-conditioning neurons, 0.532 ± 0.016, n = 386; new neurons, 0.611 ± 0.018, n = 274; Wilcoxon signed-rank test, p = 0.023 in

stable-after-conditioning neurons vs. stable-before-conditioning neurons; Mann–Whitney test, p = 0.004 in new neurons vs.

stable-after-conditioning neurons. In green ensembles: stable-before-conditioning neurons, 0.204 ± 0.009, n = 425; lost neurons, 0.165 ± 0.007,

n = 366; stable-after-conditioning neurons, 0.196 ± 0.010, n = 425; new neurons, 0.247 ± 0.015, n = 331; (G, H). Comparison of the connectivity

strength of three types of neurons in the blue ensembles and green ensembles. In blue ensembles: stable-before-conditioning neurons, 0.527 ±

0.009, n = 386; lost neurons, 0.495 ± 0.009, n = 370; stable-after-conditioning neurons, 0.525 ± 0.009, n = 386; new neurons, 0.547 ± 0.010, n =

274; Mann–Whitney test, p < 0.001 in stable-before-conditioning neurons and lost neurons. In green ensembles: stable-before-conditioning

neurons, 0.580 ± 0.009, n = 425; lost neurons, 0.482 ± 0.009, n = 366; stable-after-conditioning neurons, 0.563 ± 0.008, n = 425; new neurons,

0.497 ± 0.010, n = 331; Mann–Whitney test, p < 0.001 in stable-before-conditioning neurons vs. lost neurons; Wilcoxon signed-rank test, p < 0.001

in stable-after-conditioning neurons vs. stable-before-conditioning neurons; Mann–Whitney test, p < 0.001 in new neurons vs.

stable-after-conditioning neurons. (I) The connectivity strength across subgroups of blue ensembles before and after conditioning. Among lost

neurons: 0.504 ± 0.010, n = 370; among stable-before-conditioning neurons: 0.541 ± 0.009, n = 386; among stable-before-conditioning and lost

neurons: 0.509 ± 0.009, n = 386; one-way repeated measures ANOVA, F = 4.477, p = 0.012; Tukey’s multiple comparisons tests: p = 0.017 in

connectivity strength among lost neurons vs. connectivity strength among stable-before-conditioning neurons, p = 0.045 in connectivity strength

among stable-before-conditioning and lost neurons vs. connectivity strength among stable-before-conditioning neurons. Among

stable-after-conditioning neurons: 0.541 ± 0.009, n = 386; among stable-after-conditioning and new neurons: 0.509 ± 0.010, n = 362; among new

neurons: 0.589 ± 0.010, n = 274. One-way repeated measures ANOVA, F = 17.25, p < 0.001; Tukey’s multiple comparisons tests: p = 0.001 in

connectivity strength among stable-after-conditioning neurons vs. connectivity strength among stable-after-conditioning and new neurons, p =

0.025 in connectivity strength among stable-after-conditioning neurons vs. connectivity strength among new neurons, p < 0.001 in connectivity

strength among stable-after-conditioning and new neurons vs. connectivity strength among new neurons. (J) The connectivity strength across

subgroups of green ensembles before and after conditioning. Among lost neurons: 0.507 ± 0.009, n = 366; among stable-before-conditioning

neurons: 0.594 ± 0.009, n = 425; among stable-before-conditioning and lost neurons: 0.567 ± 0.009, n = 425; one-way repeated measures ANOVA,

F = 23.63, p < 0.001; Tukey’s multiple comparisons tests: p < 0.001 in connectivity strength among lost neurons vs. connectivity strength among

stable-before-conditioning and lost neurons, p < 0.001 in connectivity strength among lost neurons vs. connectivity strength among

stable-before-conditioning neurons. Among stable-after-conditioning neurons: 0.575 ± 0.008, n = 425, among stable-after-conditioning and new

neurons: 0.544 ± 0.009, n = 425; among new neurons: 0.517 ± 0.010, n = 331. One-way repeated measures ANOVA, F = 10.30, p < 0.001; Tukey’s

multiple comparisons tests: p = 0.027 in connectivity strength among stable-after-conditioning neurons vs. connectivity strength among

stable-after-conditioning and new neurons, p < 0.001 in connectivity strength stable-after-conditioning neurons vs. connectivity strength among

new neurons. Wilcoxon signed-rank test, p < 0.001 in connectivity strength among stable-after-conditioning neurons vs. connectivity strength

among stable-before-conditioning neurons. Mean ± SEM was drawn in the histogram. The median, quarterlies, and 95% of confidence interval are

illustrated in the box charts. *p < 0.05, **p < 0.01, and ***p < 0.001.

than that of stable-after-conditioning neurons in blue ensembles.

However, no difference was found between the fraction of new and

stable-after-conditioning neurons in green ensembles. These results

suggested that fear conditioning altered the constitution change of

stable, new, and lost neurons in the blue ensembles in comparison

with green ensembles.

Relative degree, clustering coefficient, and connectivity strength

were calculated to evaluate local connectivity among four distinct

groups of neurons (lost, stable-before-conditioning, stable-after-

conditioning, and new). In the blue ensembles, the stable-before-

conditioning neurons had larger relative degree than the lost

neurons (Figure 4C). No significant difference was found either

between stable-before-conditioning to stable-after-conditioning

neurons or compared between stable-after-conditioning neurons

and new neurons. In the green ensembles, the stable-before-

conditioning neurons had larger relative degree than the lost

neurons (Figure 4D). No significant result was found between

stable-before-conditioning and stable-after-conditioning neurons.

Additionally, new neurons had a larger relative degree than stable-

after neurons.

Our analysis further revealed that in blue ensembles, stable-

before-conditioning neurons exhibited a significant larger

clustering coefficient compared to lost neurons (Figure 4E).

However, a decline of the clustering coefficient occurred after

conditioning for stable neurons. Conversely, new neurons

displayed a higher clustering coefficient than stable-after-

conditioning neurons. On the contrary, no significant differences

in clustering coefficient were found among lost, stable-before-

conditioning, stable-after-conditioning, and new neurons in the

green ensembles (Figure 4F).

In both blue and green ensembles, the connectivity strength

was significantly larger in stable-before-conditioning neurons

than in lost neurons (Figure 4G). In the green ensembles,

a significantly smaller connectivity strength in stable-after-

conditioning neurons than in stable-before-conditioning neurons

was observed (Figure 4H). Additionally, new neurons were even

weaker than stable-after-conditioning neurons in the connectivity

strength (Figure 4H). In the blue ensembles, there was no

significant difference between stable-before-conditioning and

stable-after-conditioning neurons (Figure 4G). New neurons in

blue ensembles had similar connectivity strength compared to

stable-after-conditioning neurons (Figure 4G).

We also calculated the connectivity strength among lost,

stable-before-conditioning, stable-after-conditioning, and new

neurons in blue and green ensembles, respectively. In the blue

ensembles, the connectivity strength among lost neurons was

significantly smaller than that among stable-before-conditioning

neurons (Figure 4I). Similarly, the connectivity strength among

lost and stable-before-conditioning neurons was also significantly

smaller than that among stable-before-conditioning neurons. The
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connectivity strength among stable-before-conditioning neurons

and connectivity strength among stable-after-conditioning

neurons showed no significant change. After conditioning, the

connectivity strength among new neurons was significantly higher

than that among stable-after-conditioning neurons and among

stable-after-conditioning and new neurons. The connectivity

strength among stable-after-conditioning and new neurons was

significantly lower than that among stable-after-conditioning

neurons. In the green ensembles, we found that connectivity

strength among lost neurons was significantly lower than that

among stable-before-conditioning neurons and that among

stable-before-conditioning and lost neurons (Figure 4J). The

connectivity strength among stable-before-conditioning neurons

was significantly larger than that among stable-after-conditioning

neurons. Moreover, after conditioning, the connectivity strength

among stable-after-conditioning neurons was significantly higher

than that among stable-after-conditioning and new neurons and

that among new neurons.

In summary, poor functional connectivity was observed in

lost neurons (in comparison with stable neurons) in both blue

and green ensembles. Stable neurons had either similar or

weaker connectivity after conditioning in both blue and green

ensembles. The new neurons, however, exhibited different local

connectivity properties between blue and green ensembles. To be

more specific, new neurons in blue ensembles exhibited not only

similar relative degree and connectivity strength as the stable-after-

conditioning neurons, whereas new neurons in green ensembles

show larger relative degree and smaller connectivity strength

than stable-after-conditioning neurons. In addition, new neurons

in blue ensembles demonstrated a significantly larger clustering

coefficient and intra-subgroup connectivity strength compared to

stable-after-conditioning neurons, whereas new neurons in green

ensembles showed a similar clustering coefficient and weaker

intra-subgroup connectivity strength compared to stable-after-

conditioning neurons. These results indicated that new neurons

in the blue (conditioned) ensembles may play an essential role

in learning.

3.5. Conditioning enhanced the
connectivity strength between new
neurons and all recorded neurons in blue
ensembles

To capture the change in connectivity in all recorded neurons,

we analyzed the connectivity strength between stable, lost, new

neurons, and all neurons in the recording site before and after

conditioning. Lost neurons in both blue and ensembles had

smaller connectivity strength with all neurons after conditioning

(Figure 5A). Lost neurons in the green ensembles had a significantly

larger change in connectivity strength with all neurons compared

to those in blue ensembles. New neurons in both blue and

green ensembles had significantly larger connectivity strength

with all neurons after conditioning (Figure 5B). New neurons in

blue ensembles had larger connectivity strength with all neurons

than that in green ensembles. Interestingly, for stable neurons,

a significant increase in connectivity strength with all neurons

after conditioning was observed in the blue ensembles (Figure 5C).

Conversely, a significant decrease in connectivity strength in stable

neurons with all neurons after conditioning was observed in the

green ensembles. Hence, the relative connectivity strength of stable

neurons in green ensembles decreased significantly more than the

stable neuron in the blue ensembles. Compared to the results within

the ensembles, connectivity strength calculated in all neurons

exhibited a similar trend to those calculated in ensembles.

4. Discussion

In our study, after visual-cued fear conditioning, we found

that the proportion of neurons that responded only to blue

(conditioned) light was significantly increased. However, after

defining the ensembles based on functional connectivity, we found

no significant difference in local and global connectivity properties

except a significant enhancement of connectivity strength in the

blue ensembles after conditioning. By classifying subgroups of

neurons in the ensembles, we observed a differentiated functional

shift within the blue and green ensembles, respectively. For stable

neurons, a significant decline in the clustering coefficient was only

observed in the blue ensembles. At the same time, a significant

decrease in connectivity strength was only found in the green

ensembles. For lost neurons, significantly weaker performances

were illustrated in all parameters compared with stable-before-

conditioning neurons in blue ensembles, but lost neurons in

green ensembles exhibited significant differences compared with

stable-before-conditioning neurons only excluding the clustering

coefficient. Most importantly, we found that neurons newly

recruited to the blue ensembles demonstrated similar performance

in relative degree and connectivity strength and a higher clustering

coefficient compared to the stable-after-conditioning neurons.

Otherwise, new neurons in green ensembles showed a higher

relative degree but a lower connectivity strength compared to the

stable-after-conditioning neurons, whereas a similar performance

in clustering coefficient. Moreover, not only new neurons in

blue ensembles underwent an enhancement of connectivity

strength throughout the whole population after conditioning,

but a significant increase in connectivity strength improvement

compared to green ensembles was also observed. These results

implied that new neurons in the conditioned ensembles may play

an essential role in memory formation.

Since the research of Wiesel and Hubel in the 1960s, the

plasticity and stability of visual cortex neurons have been the

subject of continuous investigation (Wiesel and Hubel, 1963;

Mrsic-Flogel et al., 2007; Wandell and Smirnakis, 2009; Hengen

et al., 2013; Lütcke et al., 2013; Clopath et al., 2017). Recent

experiments have demonstrated that less than half of the neurons

remain active in recordings up to 46 days under two-photon

calcium imaging (Pérez-Ortega et al., 2021). In our study, changes

in the identity of neurons in the ensembles after conditioning

were also observed. We found that 46.3 ± 5.7% of neurons in

the blue ensembles and 38.9 ± 6.5% of neurons in the green

ensembles were lost (Figure 4B). Consistently, we also found that

the connectivity strength of the lost neurons was significantly

lower than that of the stable neurons in both blue and green

ensembles (Figures 4E, H). One of the functions of ensembles is
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FIGURE 5

Lost neurons lost, new neurons gained, and stable neurons in green ensembles decreased more than stable neurons in blue ensembles increased in

connectivity strength of ensembles. (A) Changes in global connectivity strength of lost neurons before and after conditioning. Lost neurons in blue

ensembles: −0.027 ± 0.008, n = 370; lost neurons in green ensembles: −0.087 ± 0.007, n = 366. One sample t-test, p < 0.001 in lost neurons in blue

ensembles; one sample t-test, p < 0.001 in lost neurons in green ensembles; Mann–Whitney test, p < 0.001 in lost neurons in blue ensembles vs. lost

neurons in green ensembles. (B) Changes in global connectivity strength of new neurons before and after conditioning. New neurons in blue

ensembles: 0.141 ± 0.008, n =274; new neurons in green ensembles: 0.081 ± 0.010, n = 331. One sample t-test, p < 0.001 in new neurons in blue

ensembles; one sample t-test, p < 0.001 in new neurons in green ensembles; Mann–Whitney test, p = 0.001 in new neurons in blue ensembles vs.

new neurons in green ensembles. (C) Changes in global connectivity strength of stable neurons before and after conditioning. Stable neurons in blue

ensembles: 0.045 ± 0.006, n = 386, stable neurons in green ensembles: −0.016 ± 0.006, n = 425. One sample t-test, p < 0.001 in stable neurons in

blue ensembles; one sample t-test, p = 0.016 in stable neurons in green ensembles; Mann–Whitney test, p < 0.001 in stable neurons in blue

ensembles vs. stable neurons in green ensembles. The median, quarterlies, and 95% of confidence interval are illustrated in the box charts.
#represents the significant level compared to zeros #p < 0.05, ##p < 0.01, ###p < 0.001, and ***p < 0.001.

to maintain a stable state while continuously replacing individual

neurons (Mrsic-Flogel et al., 2007; Hengen et al., 2013; Lütcke et al.,

2013; Clopath et al., 2017). Based on the previous finding that

the participation of neurons in the ensembles may depend on the

stability of their dendritic spines (Yuste and Bonhoeffer, 2001), we

suspected that the connectivity strength may be correlated with the

strength of spines. Specifically speaking, transient spines in the lost

neurons were thin and cause the absence of neurons as time passed,

while stable neurons’ persistent spines were consistently thick and

maintained their existence across the recording period (Holtmaat

et al., 2005). Moreover, there was a significantly lower percentage

of blue new neurons compared to blue stable-after-conditioning

neurons (Figure 4B) and no significant difference in the green

ensembles, which may indicate that learning changed the natural

turnover of different types of neurons. Together with the findings

before, we believe that the flexibility of ensembles may help

with memory acquisition and the stability may contribute to

memory retention.

Several studies have demonstrated that after experiencing

associative learning, layer 2/3 neurons in V1 performed better

for task-related stimuli (Poort et al., 2015; Jurjut et al., 2017;

Pakan et al., 2018). In our experiments, we also found that the

proportion of V1 neurons responding to blue light (conditioned

light) was significantly increased after fear conditioning (Figure 1I).
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On the contrary, the proportion of V1 neurons responding to green

light (control light) did not change significantly (Figure 1I). In

addition, the blue ensembles gained a significant improvement in

connectivity strength after conditioning but not green ensembles

(Figure 3C). This implies that the mouse primary visual cortex

is capable of undergoing plastic changes not only in response to

grating orientation (Henschke et al., 2020) but also to color stimuli.

It is worth noting that the trend in the number of neurons that

respond exclusively to one type of light may not follow a similar

pattern in the case of neuronal ensembles. This discrepancy may

arise from variations in the definitions of neurons belonging to

ensembles vs. those that are considered responsive. Hence, further

research is necessary to investigate this topic in future.

According to Hebb’s theory, “neurons that fire together

wire together,” which means that when a group of neurons

was repeatedly activated together, they form a memory trace

through increased connectivity at their synapses (Hebb, 2005).

Therefore, the enhancement of functional connectivity of neurons

on average in learning-related ensembles may be caused by the

learning-related plasticity change, for example, their connections

in synapses. This implication was also supported by the significant

rise of connectivity strength in blue stable (Figure 5C) and blue

new (Figure 5B) neurons from which formed learning-related

ensembles together.

More importantly, new neurons that were newly recruited

to the learning-related ensembles also played an essential role

in memory formation. Similar to the recent findings that silent

synapses could become unsilent after Hebbian pairing, recruiting

new active connections into a neuron’s input matrix (Vardalaki

et al., 2022), new neurons in the current study were also

“silent” and shifted into “unsilent” neurons after learning. They

performed not only a powerful connectivity strength and a

noticeable connection within the ensembles (Figure 4E) but also a

significantly more densely clustering coefficient and significantly

larger intra-subgroup connectivity strength than stable-after

neurons (Figure 4D), that is to say, new neurons wired extensively

and strongly and connected more densely with their neighbors

compared to the stable-after neurons in learning-related ensembles.

Therefore, we suppose that there is a more centralized role of

the new neurons, and they may play in promoting information

transmission in the associative learning process.

One limitation of this study is that we were unable to directly

distinguish neuron types since GCaMP6s labels all neurons and

there is no current method to differentiate different types of

neurons. GABAergic interneurons are also very important in the

neural network-level regulation. For example, parvalbumin (PV)

interneurons could stabilize the cortical circuit while somatostatin

(SOM) interneurons couldmodulate the gain of pyramidal neurons

(Bos et al., 2020; Millman et al., 2020). Knowing neuronal types will

provide more information, and wemight consider such in future by

injecting AAV1-Syn-Flex-GCaMP6f into various transgenic mice

(e.g., PV-Cre, SOM-Cre, and VIP-Cre) (Lee et al., 2022).
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