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Background: Many studies of brain-behavior relationships rely on univariate 
approaches where each variable of interest is tested independently, which does 
not allow for the simultaneous investigation of multiple correlated variables. 
Alternatively, multivariate approaches allow for examining relationships between 
psychopathology and neural substrates simultaneously. There are multiple 
multivariate methods to choose from that each have assumptions which can affect 
the results; however, many studies employ one method without a clear justification 
for its selection. Additionally, there are few studies illustrating how differences 
between methods manifest in examining brain-behavior relationships. The purpose 
of this study was to exemplify how the choice of multivariate approach can change 
brain-behavior interpretations.

Method: We used data from 9,027 9- to 10-year-old children from the 
Adolescent Brain Cognitive DevelopmentSM Study (ABCD Study®) to examine 
brain-behavior relationships with three commonly used multivariate approaches: 
canonical correlation analysis (CCA), partial least squares correlation (PLSC), and 
partial least squares regression (PLSR). We examined the associations between 
psychopathology dimensions including general psychopathology, attention-
deficit/hyperactivity symptoms, conduct problems, and internalizing symptoms 
with regional brain volumes.

Results: The results of CCA, PLSC, and PLSR showed both consistencies and 
differences in the relationship between psychopathology symptoms and 
brain structure. The leading significant component yielded by each method 
demonstrated similar patterns of associations between regional brain volumes 
and psychopathology symptoms. However, the additional significant components 
yielded by each method demonstrated differential brain-behavior patterns that 
were not consistent across methods.

Conclusion: Here we show that CCA, PLSC, and PLSR yield slightly different 
interpretations regarding the relationship between child psychopathology and brain 
volume. In demonstrating the divergence between these approaches, we exemplify 
the importance of carefully considering the method’s underlying assumptions 
when choosing a multivariate approach to delineate brain-behavior relationships.
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1. Introduction

Studies investigating relationships between psychopathology and 
the brain have typically taken a univariate approach where each 
variable of interest is tested independently (Bzdok, 2017; Snyder et al., 
2017; Romer et al., 2018; Bzdok and Ioannidis, 2019; Kaczkurkin et al., 
2019; Moore et  al., 2019; Durham et  al., 2021). However, neither 
psychopathology symptoms nor brain regions are independent from 
one another. Multivariate analytical approaches attempt to address this 
by allowing for the simultaneous examination of multiple correlated 
variables in one model (McIntosh and Mišić, 2013; Xia et al., 2018; 
Kaczkurkin et al., 2020; Wang et al., 2020; Zhuang et al., 2020). The 
most commonly employed multivariate analytical approaches in the 
study of brain-behavior relationships are canonical correlation 
analysis (CCA), partial least squares correlation (PLSC) analysis, and 
partial least squares regression (PLSR) analysis. The primary difference 
between CCA and PLS methods is whether the approach aims to 
maximize the correlation (CCA) or the covariance (PLS) between 
variable sets (McIntosh and Mišić, 2013). Further, the primary 
difference between PLSC and PLSR is that PLSC is designed to identify 
associations between two sets of data while PLSR creates latent 
variables from one dataset to predict the values of another dataset 
(Krishnan et al., 2011). Multivariate methods such as CCA, PLSC, and 
PLSR can better capture brain-behavior relationships by directly 
accounting for the complex interrelationships between all variables in 
a single model estimation. A growing body of literature has employed 
these multivariate techniques to the study of psychopathology and 
neuroscience (Berman et al., 2014; Lin et al., 2018; Moser et al., 2018; 
Rodrigue et al., 2018; Stout et al., 2018; Kebets et al., 2019; Mihalik 
et  al., 2019; Supekar et  al., 2019; Kaczkurkin et  al., 2020; Wang 
et al., 2020).

Despite the differences between these three multivariate methods, 
much of the work around brain-behavior relationships using such 
approaches utilizes one method or another without an evident 
justification driving method selection, despite their conceptual and 
statistical differences. In CCA, the goal is to find a pair of linear 
transformations, one representing each set of variables, such that the 
variables are maximally correlated in the transformed (embedding) 
space (Hotelling, 1992). In PLSC, two datasets are correlated by 
identifying which data co-occurs and finding pairs of latent vectors 
with maximal covariance (Krishnan et al., 2011). Finally, PLSR, the 
only clearly predictive method among the three, fits a linear regression 
model by projecting each set of variables into a latent space and 
maximizing the covariance structures in these two spaces (Wold et al., 
2001; Krishnan et  al., 2011). Additionally, only CCA methods 
standardize the covariance matrix (i.e., whitening) across datasets, 
while PLS methods do not routinely apply this data preprocessing step 
(Yu and MacGregor, 2004; Jendoubi and Strimmer, 2019). Given the 
distinct properties of these different statistical tools, it is important to 
carefully consider which method is most appropriate to address the 
research question and study context at hand.

The aim of the current study is to demonstrate the differences in 
the interpretations of results across these three multivariate analytical 
approaches when applied to the study of brain-behavior relationships 

in children. To accomplish this, associations between 87 regional gray 
matter volumes (GMV) and four dimensions of psychopathology 
(general psychopathology, internalizing symptoms, ADHD symptoms, 
and conduct problems) were investigated using CCA, PLSC, and 
PLSR. Data for these analyses came from a large sample (N = 9,027) of 
9- to 10-year-old children from the Adolescent Brain Cognitive 
DevelopmentSM Study (ABCD Study®). The present analyses exemplify 
how the differences between alternative multivariate analytical 
approaches may influence research findings and their corresponding 
interpretations in the context of studying brain-behavior relationships.

2. Materials and methods

2.1. Participants

The current study used data from Wave 1 (release 4.0) of the 
Adolescent Brain Cognitive Development (ABCD) Study (Volkow 
et  al., 2018), which includes data from 11,876 children from 9 to 
10 years of age. The use of this dataset was approved by the Vanderbilt 
University institutional review board. Recruitment strategies for the 
ABCD Study are detailed elsewhere (Garavan et  al., 2018) and 
summarized in the supplement. For the present analyses, participants 
were excluded if they had missing data on variables included in the 
analysis or for failure to pass data quality assurance measures 
(N = 1,184) (see Supplementary material for more details). An 
additional 1,665 same-family participants were randomly excluded to 
control for non-independence between twins and siblings. The final 
sample size used for analysis was N = 9,027. A summary of the 
demographic characteristics of the sample can be found in Table 1.

2.2. Measure of psychopathology

Psychopathology symptoms were assessed with the Child 
Behavior Checklist (CBCL) for school-aged children (Achenbach, 
2009), which was completed by one parent or guardian of each 
participant. The CBCL consists of 119 items that describe emotional 
and behavioral problems rated with a 3-point scale [0 = not true (as far 
as you know), 1 = somewhat or sometimes true, and 2 = very true or 
often true]. The CBCL items that were included in the current study 
demonstrated strong internal consistency in the present sample 
(α = 0.94).

2.3. Hierarchical modeling of 
psychopathology dimensions

Psychopathology symptoms assessed with the CBCL were 
hierarchically modeled for the purpose of analysis. This was done to 
allow for investigations of multivariate associations between brain 
volume and both general and specific dimensions of psychopathology. 
The hierarchical modeling procedures used for the present analyses 
are described in detail in our prior work (Moore et  al., 2020). 
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Psychopathology factors were modeled using Mplus version 8.4.1 First, 
exploratory structural equation modeling (ESEM) was used to identify 
latent factors from 66 CBCL items, as was done previously (Moore 
et al., 2020). The exploratory analysis yielded 3 correlated dimensions 
of psychopathology (internalizing, ADHD, and conduct problems). A 
confirmatory bifactor analysis was then used to model these three 
symptom dimensions plus a general psychopathology factor that 
reflects the shared symptoms across all domains. All factors are 
orthogonal to each other (Lahey et  al., 2017). These factors met 

1 https://www.statmodel.com/

recommended standards for factor determinacy and construct 
reliability and showed adequate criterion validity (Moore et al., 2020). 
Additional details can be found in the original manuscript by Moore 
et al. (2020) and in the supplement.

2.4. Image acquisition, processing, and 
quality assurance

Procedures for image acquisition, image processing, and quality 
assurance have been described previously (Casey et al., 2018) and are 
summarized in the supplement. Briefly, 3 T MRI imaging occurred at 
all study sites and the ABCD Data Analysis and Informatic Center 
(DAIC) completed centralized processing and analysis procedures. 
Cortical surface reconstruction and subcortical segmentation were 
performed based on automated, atlas-based, segmentation procedures 
in FreeSurfer v5.3 (Fischl, 2012). The present analyses included 68 
cortical regions that were derived from the surface-based atlas 
procedure developed by Desikan et  al. (2006) in addition to 19 
subcortical regions that were derived by the automated labeling 
procedure developed by Fischl et al. (2002).

2.5. Statistical analysis

Using the dimensions of psychopathology originally identified by 
Moore et  al. (2020), we  examined associations between 
psychopathology and GMV by adopting a sequence of different 
multivariate models: CCA, PLSC, and PLSR (Figure 1). In the current 
study, a set of 87 regional gray matter volumes (68 cortical and 19 
subcortical) and a set of the four psychopathology dimensions 
(general psychopathology, conduct problems, ADHD, and 
internalizing) provided the input for our analyses. Variance inflation 
factor values are presented for all variables in Supplementary Table S1. 
The CCA, PLSC, and PLSR were performed using the scikit-learn 
program in Python.2 The two PLS approaches (PLSC and PLSR) 
maximize the covariance across variable sets (McIntosh and Mišić, 
2013) and thus, consider the whole covariance structure. PLSC is a 
correlational approach within that framework, while PLSR is a 
predictive approach (Krishnan et al., 2011). Alternatively, the CCA 
approach maximizes the correlations across the latent embeddings of 
the two variable sets and disregards the auto-correlation structure 
within each variable set, essentially using whitened data (Jendoubi and 
Strimmer, 2019). Thus, CCA linearly removes the covariance between 
brain regions and assumes that larger GMV in a certain region in an 
individual is completely independent from all other brain regions in 
the same individual. Using all three approaches, we examined how the 
relationships between GMV and psychopathology in children may 
differ or converge based on the method used. In each approach, 
permutation testing with 1,000 iterations was conducted to test the 
significance of four latent variables yielded by each analysis type. A 
component with a significant p-value suggests a strong coupling of 
associations between the psychopathology dimensions and regional 
brain volumes. The structure coefficient (rs), or the bivariate 
correlation between an observed variable and a synthetic variable, is 

2 https://scikit-learn.org/stable/index.html

TABLE 1 Summary of demographic characteristics of the sample for 
analyses of multivariate associations between brain volume and 
psychopathology (N  =  9,027).

Mean SD

Age (months) 118.92 7.41

N %

Gender

Female 4,317 47.82

Male 4,710 52.18

Race-ethnicity

Non-Hispanic White 4,627 51.26

Hispanic 1,932 21.40

Black/African American 1,336 14.80

Other 1,132 12.54

Household annual income

< $5,000 311 3.44

$5,000–$11,999 332 3.68

$12,000–$15,999 228 2.52

$16,000–$24,999 398 4.41

$25,000–$34,999 510 5.65

$35,000–$49,999 694 7.69

$50,000–$74,999 1,129 12.51

$75,000–$99,999 1,215 13.46

$100,000–$199,999 2,496 27.65

≥$200,000 937 10.38

Missing 777 8.61

Parental education

No degree 473 5.24

High school degree/GED 1,116 12.36

Some college 1,471 16.30

Associate’s degree 1,165 12.91

Bachelor’s degree 2,516 27.87

Master’s degree 1,737 19.24

Professional/Doctoral 

degree
549 6.08

The Race-Ethnicity category “Other” includes children identified by their parent as 
American Indian/Native American, Alaska Native, Native Hawaiian, Guamanian, Samoan, 
Other Pacific Islander, Asian Indian, Chinese, Filipino, Japanese, Korean, Vietnamese, Other 
Asian, Multi-Racial or Other Race.
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also reported for each significant component. Age, sex, race/ethnicity, 
and MRI manufacturer were treated as covariates in all analyses and 
were regressed out of the brain and psychopathology variables prior 
to applying the multivariate methods. Input variables were 
standardized prior to analyses. Sensitivity analyses were performed 
with intracranial volume (ICV) added as an additional covariate.

2.6. Comparison between models

To quantify each model’s statistical performance, we evaluated 
the explained variance for all the derived unique components of each 
method and found the significance of each method’s components 
using their calculated Pearson rho values. Through permutation 
analyses with 1,000 permutations, the significance of the correlation 
coefficients obtained from the components of the model in question 
are assessed by generating randomized permuted versions of the 
psychopathology factors, fitting the model with the resultant 
permuted versions of the psychopathology factors and the brain 
volume data, and then calculating the correlation coefficients and 
model scores of each component. The results are then compared to 
the original observed values from the original version of the model 
fitted with unpermuted data to compute p-values. The p-values are 
used to present the resulting significance of each component in every 

model, which helps create an apple-to-apple statistical comparison of 
the performance of each model.

3. Results

3.1. Canonical correlation analysis results

Of the four components tested, CCA yielded two significant 
components, with each representing different aspects of the 
relationship between GMV and psychopathology in children. The 
leading significant component (p < 0.001, rs = 0.159) primarily 
highlighted general psychopathology symptoms with conduct 
problems and ADHD symptoms making secondary contributions (see 
Figure 2; Supplementary Table S2). In terms of brain volume, the 
leading component was associated with a relatively global pattern 
across the brain (see Figure 2; Supplementary Table S3). The second 
component (p = 0.03, rs = 0.111) primarily extracted ADHD symptoms 
with internalizing symptoms making a secondary contribution (see 
Figure 2; Supplementary Table S2). For brain volume, the second 
component was associated with a mixed pattern across regional 
volumes in terms of direction of association (see Figure  2; 
Supplementary Table S3). When adding ICV as an additional 
covariate, we  found the results to be  largely consistent with the 

FIGURE 1

Multivariate approaches to understanding brain-behavior relationships. Two sets of variables, X and Y (in this case, brain volume and psychopathology 
symptoms), serve as the input data into the multivariate approach. Weight vectors (u and v) are identified that maximize the covariance or correlation 
between linear combinations of the brain and psychopathology variables. Brain scores for each individual are made by weighting the participant’s brain 
volume by the corresponding weight (Xu), and likewise for psychopathology variables (Yv). This yields a weighted score for each participant on each set 
of variables that can then be projected to a latent space to examine brain-behavior relationships.
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primary results both in terms of number of significant components 
and in the brain-behavior relationships demonstrated.

3.2. Partial least squares correlation 
analysis results

PLSC analysis also yielded two significant components of the four 
components tested. The leading significant component (p < 0.001, 
rs = 0.104) was again predominantly comprised of general 
psychopathology symptoms with secondary contributions by conduct 
problems and ADHD symptoms (see Figure 3; Supplementary Table S4). 
In terms of brain volume, the leading component was associated with 
a relatively global pattern across the brain, similar to the leading 
component found in CCA (see Figure 3; Supplementary Table S5). 
However, unlike the CCA results, the second component in PLSC 
(p < 0.05, rs = 0.084) was dominated by ADHD symptoms (see Figure 3; 
Supplementary Table S4) without much of any contribution from 
internalizing symptoms. Despite the difference in the representation of 
psychopathology symptoms between CCA and PLSC for the second 

component, in terms of brain volume, there were commonalities 
between the CCA and PLSC results for regions such as the caudal 
middle frontal, inferior parietal, superior temporal, middle temporal, 
inferior temporal, and posterior cingulate (see Figure  3; 
Supplementary Table S5). As can be seen in Figures 2, 3, PLSC also 
found brain associations in opposite directions than CCA. After adding 
ICV as an additional covariate, the results were largely consistent with 
the primary results both in terms of number of significant components 
and in the brain-behavior relationships observed.

3.3. Partial least squares regression analysis 
results

Finally, PLSR analysis yielded three significant components out 
of the four components tested. The leading significant component 
(p < 0.001, rs = 0.104) was again associated with primarily general 
psychopathology symptoms with secondary contributions from 
conduct problems and ADHD symptoms (see Figure  4; 
Supplementary Table S6). As with CCA and PLSC, PLSR also 

FIGURE 2

CCA analysis yields two significant components illustrating associated patterns of psychopathology and brain volume. All plotted values represent 
component loadings. (A) The leading significant component yielded by CCA included mostly general psychopathology symptoms with conduct 
problems and ADHD symptoms making secondary contributions. (B) The psychopathology pattern in panel A was associated with a relatively global 
pattern of regional volumes across the brain. (C) The second significant component yielded by CCA extracted primarily ADHD symptoms with 
internalizing symptoms making a secondary contribution. (D) The psychopathology pattern in panel C was associated with a mixed pattern of regional 
volumes across the brain. Regions which showed commonalities across the second significant components of all three multivariate approaches 
included the (1) caudal middle frontal, (2) inferior parietal, (3) superior, middle, and inferior temporal, and (4) posterior cingulate regions.
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showed a relatively global pattern across the brain (see Figure 4; 
Supplementary Table S7). The second component in PLSR 
(p  < 0.001, rs  = 0.096) diverged from both CCA and PLSC by 
extracting ADHD symptoms and general psychopathology 
symptoms as the primary contributors (see Figure  4; 
Supplementary Table S6). Commonalities that continued to 
be apparent in terms of brain volume for the second component of 
PLSR included caudal middle frontal, inferior parietal, superior 
temporal, middle temporal, inferior temporal, and posterior 
cingulate regions (see Figure 4; Supplementary Table S7), although 
the posterior cingulate finding was not bilateral in PLSR. In contrast 
to both CCA and PLSC, PLSR was the only multivariate method to 
extract a third component. The third component (p  < 0.05, 
rs  = 0.083) consisted primarily of general psychopathology 
symptoms and some conduct problems, with ADHD contributing 
in the opposite direction (see Figure 4; Supplementary Table S6). In 
terms of brain volume, the third component of PLSR was associated 
with some common regions with the other two methods, but also 
some unique findings, such as frontal regions and the lateral 

occipital region (see Figure 4; Supplementary Table S7). Finally, 
adding ICV resulted in largely consistent results both in terms of 
number of significant components and in the illustrated brain-
behavior relationships.

4. Discussion

The current study examined the commonalities and divergence in 
brain-behavior relationships derived from three different multivariate 
statistical approaches (CCA, PLSC, and PLSR) in a large sample of 
children (N = 9,027). The results of CCA, PLSC, and PLSR were 
characterized by both consistencies and differences across associated 
patterns of psychopathology symptoms and regional brain volumes. The 
leading significant component yielded by each method demonstrated 
similar patterns of associations between regional brain volumes and 
psychopathology symptoms. However, the additional significant 
components yielded by each method demonstrated differential brain-
behavior patterns that were not entirely consistent across methods.

FIGURE 3

PLSC analysis yields two significant components with different associations between patterns of psychopathology and brain volume. Plotted values 
represent component loadings. (A,B) The psychopathology pattern in panel A and the brain regions in panel B found for PLSC’s leading component are 
nearly identical to those found in CCA, with slight variations in the intensity of the brain region results. (C,D) The second significant component yielded 
by PLSC diverged from CCA by primarily extracting ADHD symptoms and not internalizing symptoms, while some commonalities in brain regions 
continued to be apparent in the (1) caudal middle frontal, (2) inferior parietal, (3) superior, middle, and inferior temporal, and (4) posterior cingulate 
regions. At the same time, additional brain regions in the PLSC second component results show an opposite pattern to those found in the CCA second 
component.
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FIGURE 4

PLSR analysis shows divergent results from CCA and PLSC, yielding three significant components with both common and unique associations between 
psychopathology and brain volume. Plotted values in all panels represent component loadings. (A,B) Again, an almost identical pattern (mostly general 
psychopathology, some conduct problems and ADHD symptoms) was associated with a global pattern across the brain in PLSR, as was also found in 
CCA and PLSC. (C) PLSR also pulled out a second significant component, but unlike CCA’s second component (which extracted ADHD and 
internalizing symptoms) or PLSC’s second component (which found ADHD symptoms alone), the second component in PLSR coupled ADHD 
symptoms and general psychopathology symptoms. (D) Again, a mixed pattern of regional volumes across the brain were found for the second 
component with some of the same common regions implicated: (1) caudal middle frontal, (2) inferior parietal, (3) superior, middle, and inferior 
temporal, and (4) posterior cingulate (although the posterior cingulate was unilateral in PLSR). (E) PLSR was the only multivariate method tested to 
extract a third component. The third component yielded by PLSR was predominantly influenced by general psychopathology symptoms with conduct 
problems making a secondary contribution while ADHD symptoms showed an inverse pattern. (F) The brain regions implicated in the third component 
in PLSR showed unique associations with frontal and lateral occipital regions.
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All three methods yielded a similar leading component suggesting 
a common pattern of psychopathology symptoms and associated 
brain volumes. In particular, the leading component in CCA, PLSC, 
and PLSR each extracted general psychopathology, ADHD symptoms, 
and conduct problems and found that these symptoms are inversely 
related to gray matter volumes across every region in the brain. This 
is consistent with prior univariate analyses demonstrating that general 
psychopathology is associated with a nearly global pattern of smaller 
gray matter volumes. Specifically, Durham et al. (2021) tested the 
association between psychopathology and each brain volume 
individually using the same ABCD Study dataset (N = 9,607) and the 
same psychopathology dimensions (general psychopathology, 
internalizing symptoms, ADHD symptoms, and conduct problems) 
(Durham et al., 2021). Following correction for multiple comparisons, 
this study found that greater general psychopathology scores were 
associated with smaller gray matter volumes in 54 out of 68 cortical 
regions and all 19 subcortical regions tested (Durham et al., 2021). 
This global pattern has also been shown in an independent sample of 
1,394 children, adolescents, and young adults. Using data from the 
Philadelphia Neurodevelopmental Cohort, psychopathology 
dimensions (general psychopathology, anxious-misery, psychosis, 
behavioral, and fear) were related to structural covariance networks 
derived with non-negative matrix factorization (Kaczkurkin et al., 
2019). Univariate analyses corrected for multiple comparisons 
demonstrated that general psychopathology was associated with 
smaller gray matter volumes in all brain regions (Kaczkurkin et al., 
2019). This demonstrates that multivariate and univariate approaches 
may show concordance in brain-behavior relationships, at least in the 
context of the leading component found in multivariate approaches, 
and that the pattern of these results replicates across datasets.

The advantage of multivariate methods over univariate approaches 
is the ability to simultaneously examine associations between two sets 
of correlated variables, which allows us to account for multiple 
comparisons in a single model and enables us to capture complex 
interrelationships between variables not readily revealed with 
univariate analyses. Thus, while the leading component of CCA, 
PLSC, and PLSR all identified the same brain-behavior pattern found 
with univariate analyses, the benefit of multivariate approaches comes 
from the ability to extract multiple components, revealing additional 
brain-behavior associations. This is also where we  start to see 
divergence between the methods in terms of interpretation. CCA, 
PLSC, and PLSR all extracted a second component, but the relative 
contributions of psychopathology symptoms to this component 
varied. The second component was strongly influenced by ADHD 
symptoms, but there was variability in the contribution of other 
symptoms to this profile depending on the method used. The second 
component reflected ADHD symptoms and internalizing symptoms 
in CCA, only ADHD symptoms in PLSC, and ADHD symptoms and 
general psychopathology symptoms in PLSR. Not surprisingly, there 
were both common and divergent patterns revealed in the brain 
regions implicated. Across approaches, we see similar patterns for the 
caudal middle frontal, inferior parietal, superior, middle, and inferior 
temporal, and posterior cingulate regions, likely due to the common 
contribution of ADHD symptoms to this component, which is 
consistent with prior research implicating these regions in ADHD 
(Sowell et al., 2003; Nakao et al., 2011; Yap et al., 2021). At the same 
time, a number of brain regions showed opposite patterns across the 
three methods for this component, which may be expected given the 

variations in the psychopathology symptoms represented. Thus, these 
results demonstrate that the relative contribution of psychopathology 
symptoms extracted from the data will have an impact the brain 
regions implicated, and what is extracted will vary based on the 
method chosen.

PLSR was the only multivariate method that extracted a third 
significant component. The third component yielded by PLSR 
primarily consisted of general psychopathology symptoms with 
conduct problems also contributing to this component. Interestingly, 
ADHD symptoms showed an inverse pattern, with ADHD symptoms 
not being strongly associated with the third component of PLSR. This 
component showed the opposite pattern seen previously in the second 
component in terms of the brain: we see smaller brain regions in the 
caudal middle frontal, inferior parietal, superior, middle, and inferior 
temporal, and posterior cingulate regions. This might be expected as 
ADHD was a strong driver of the second component and now ADHD 
is contributing in the opposite direction in this third component. 
Other brain regions implicated in the third component in PLSR were 
unique to this component, namely patterns in the frontal and lateral 
occipital regions. Thus, this illustrates that the number of components 
extracted will vary by multivariate method. The purpose in showing 
the findings of these three methods alongside each other is to illustrate 
that choice of approach matters and can greatly influence the brain-
behavior relationships that will be found and the interpretation of 
those patterns.

As one concrete example to underscore how each approach leads 
to different conclusions about brain-behavior relationships, we can 
consider the caudal-middle frontal region, an area that was implicated 
in the second component of all three methods (labeled as 1  in 
Figures 2–4). If we had taken a CCA approach, we would conclude 
that larger volume in the caudal-middle frontal region is associated 
with ADHD and internalizing symptoms. However, if we had chosen 
PLSC, we would conclude that larger volume in the caudal-middle 
frontal region is associated with ADHD symptoms (and not at all with 
internalizing symptoms). And finally, had we used PLSR, we would 
conclude that larger volume in the caudal-middle frontal region is 
associated with all four psychopathology symptom dimensions 
(internalizing, conduct problems, ADHD, and general 
psychopathology) but with ADHD and general psychopathology 
making the greatest contributions. While ADHD is a common 
denominator amongst the results in the example of the caudal-middle 
frontal region, the relative contributions of other psychopathology 
dimensions differ entirely based on the approach chosen. The take 
home point is that not enough researchers are aware of the differences 
in interpretation that can arise between different multivariate 
approaches; thus, our goal is to make this point more salient for those 
in our field.

The divergence between the results of these three multivariate 
approaches is related to the distinctive underlying assumptions of 
these methods. The purpose of this article is not to provide a 
comprehensive tutorial on the differences between multivariate 
methods – for methodical comparisons, see prior discussions (Helmer 
et al., 2021; McIntosh, 2021; Mihalik et al., 2022); instead, the purpose 
of this study is to increase awareness regarding the divergence in 
interpretation when using different methods and to encourage 
thoughtful consideration when choosing an approach. That being said, 
here we provide a brief overview of some of the primary differences 
between the methods that should be taken into consideration when 
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choosing an approach. As discussed in the introduction and methods, 
CCA results in components that standardize the covariance and 
maximize the correlation between the two sets of data; PLSC extracts 
components that account for the maximum covariance between the 
two sets; and PLSR results in components that reflect the predictive 
relationship of one set of data to another (McIntosh, 2021; Mihalik 
et al., 2022). Thus, while similar, these approaches are informed and 
driven by different philosophies around the nature of the data being 
analyzed (McIntosh, 2021). The underlying differences between CCA 
and PLS more broadly have important implications for neuroimaging 
research. As McIntosh (2021) notes in their comparison of CCA and 
PLS, CCA focuses on the unique contributions variables in one set 
make to the prediction of variables in the second set by removing 
redundancies, while PLS allows redundancies to remain with the 
assumption that these redundancies are a meaningful feature of the 
data. Thus, in the case of neuroimaging research, CCA will extract the 
unique contributions of brain regions in the association with 
symptoms while PLS tells us how the collective contribution of brain 
regions relate to symptoms (McIntosh, 2021). In other words, CCA is 
assuming the covariance structure between input variables is noise 
and should be removed to reflect the unique contributions between 
variable sets. In contrast, PLS assumes that the covariance between 
variables is meaningful signal that should be retained. Thus, when it 
comes to the question of which specific method to use, the decision 
should be informed by the goals of the particular research study and 
by whether the researcher intends to evaluate the collective 
contribution or the unique contributions of different variables within 
multivariate relationships. Importantly, there is no “right” answer – all 
methods are mathematically correct in their own way, they simply 
have different goals and assumptions. If the researcher is interested in 
the unique contributions brain regions have on psychopathology 
symptoms, then CCA would be appropriate. If the researcher believes 
that the covariance between brain regions may be meaningful, then 
PLS is appropriate. Regardless of which method is used, a clear 
justification needs to be made for choosing one over the other, which 
is not current practice in neuroimaging publications.

Beyond their underlying assumptions, multivariate approaches 
also have important limitations. While the limitations of each 
approach are beyond the scope of this paper, here we note several key 
issues to consider when using these approaches. For a more in-depth 
discussion of the limitations of multivariate models, we  refer the 
reader to comprehensive discussions on these topics (Helmer et al., 
2021; McIntosh, 2021; Mihalik et al., 2022). The first consideration is 
that it can be difficult to directly compare the reliability of different 
approaches to each other. It is well established that PLS-type 
approaches are biased toward the first principle component of the data 
which can create the appearance of greater reliability or stability 
between split half samples compared to CCA (Hastie et al., 2009; 
Helmer et al., 2021). Sample size is an additional critical consideration 
when using multivariate approaches. Recent work suggests that at 
least 50 samples per feature (i.e., input variables) are needed to obtain 
stable estimates for CCA (Helmer et al., 2021), which is much greater 
than that used by most published CCA studies and is especially 
relevant to brain-behavior studies where high dimensional brain 
features may be of interest. Importantly, the need for many samples 
per feature is not specific to CCA – all multivariate methods can 
be unreliable when there are insufficient sample sizes, illustrating the 
need for very large datasets to achieve reliable brain-behavior results 

(Bzdok and Yeo, 2017; Schulz et  al., 2020). Additionally, strong 
correlations among neurobiological variables need to be considered. 
Given the expected high correlations among brain regions, a few 
variance inflation factor values exceeded the standard cutoff of 10 
(James et al., 2013) in the current study, which could impact the CCA 
results. However, multicollinearity has been shown to be  less 
problematic in large samples compared to smaller ones (James et al., 
2013). In contrast, the PLS methods are largely robust to 
multicollinearity (Palermo et al., 2009; Wondola et al., 2020). Finally, 
it is important to note that the loadings of particular brain regions and 
psychopathology factors on the latent variables yielded by CCA/
PLSC/PLSR analysis may vary slightly across different algorithms and 
software platforms. Thus, in addition to choosing an approach based 
on an understanding of their underlying assumptions, researchers 
must also be aware of the limitations of these methods.

In sum, multivariate examination of brain-behavior relationships 
has increased in popularity (Berman et al., 2014; Lin et al., 2018; Moser 
et al., 2018; Rodrigue et al., 2018; Stout et al., 2018; Kebets et al., 2019; 
Mihalik et al., 2019; Supekar et al., 2019; Kaczkurkin et al., 2020; Bolt 
et al., 2021); however, many assume these methods to be interchangeable 
and the majority of studies adopting one of these multivariate 
approaches do not provide a clear reasoning or justification for method 
selection. Here we illustrate the congruence (and lack thereof) of three 
different multivariate approaches (CCA, PLSC, and PLSR) for 
investigating brain-behavior associations in a large sample of children. 
We provide the following take-aways or conclusions. First, the present 
findings demonstrate how these methods produce both convergent and 
divergent interpretations around brain-behavior relationships as a 
result of different underlying assumptions. Second, it is critical for 
those interested in studying brain-behavior relationships to make an 
informed a priori decision about which method they will use and 
provide a justification for the choice of that method. Third, the choice 
of approach will depend on the goals of the study, whether one 
considers the covariance between variables to be noise (CCA) or signal 
(PLS), and whether one wants to identify correlational relationships 
between two datasets (CCA, PLSC) or predict one dataset using 
another dataset (PLSR). Fourth and finally, this study highlights and 
exemplifies the importance of carefully considering the underlying 
assumptions and limitations when choosing a multivariate approach to 
delineate brain-behavior relationships.
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