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Introduction: Medical image segmentation is an important tool for doctors to 
accurately analyze the volume of brain tissue and lesions, which is important for 
the correct diagnosis of brain diseases. However, manual image segmentation 
methods are time-consuming, subjective and lack of repeatability, it needs to 
develop automatic and reliable methods for image segmentation.

Methods: Magnetic Resonance Imaging (MRI), a non-invasive imaging technique, 
is commonly used to detect, characterize and quantify tissues and lesions in the 
brain. Partial volume effect, gray scale in homogeneity, and lesions presents a 
great challenge for automatic medical image segmentation methods. So, the 
paper is dedicated to address the impact of partial volume effect and multiple 
sclerosis lesions on the segmentation accuracy in MRI. The objective function 
of the improved model and the post-processing method of lesion filling are 
researched based on the fuzzy clustering space and energy model.

Results: In particular, an energy-minimized segmentation algorithm is proposed. 
Through experimental verification, the AR-FCM algorithm can better overcome 
the problem of low segmentation accuracy of the RFCM algorithm for tissue 
boundary voxels and improve the segmentation accuracy of this algorithm. 
Meanwhile, a multi-channel input energy-minimization segmentation method 
with lesion filling and anatomical mapping is further proposed.

Discussion: The feasibility of the lesion filling strategy using post-processing can be 
confirmed and the segmentation accuracy is increased by comparison experiments.
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1. Introduction

In recent years, brain diseases are becoming more and more dangerous to human health, and 
their prevention and treatment are gradually becoming the most important concerns in the 
medical field. The number of patients with brain diseases such as cerebral thrombosis, cerebral 
infarction and multiple sclerosis accounts for 30% of the total number of human diseases (Feigin 
et al., 2021). Multiple sclerosis (MS) is one of the chronic autoimmune diseases of the central 
nervous system. It is characterized by the demyelination of axons in the cerebral cortex and other 
gray matter (GM) and white matter (WM) regions, forming focal inflammatory lesions 
accompanied by the production of symptoms such as pain, impaired mobility, and poor vision 
(Lassmann, 2018). According to research, the incidence of this disease has been increasing 
worldwide, and the number of patients with multiple sclerosis currently exceeds more than 2 
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million cases (Browne et al., 2014). In research and clinical practice, 
magnetic resonance imaging (MRI) is often used as the most important 
tool for the diagnosis of MS because of its high sensitivity, good imaging 
quality, and low radiation output, which can well detect MS plaques and 
quantify the number and volume of lesions (Filippi et al., 2016). In 
general, MRI sequences are divided into different categories, including 
T1-weighted, T2-weighted, proton density (PD), and fluid attenuation 
inversion recovery (FLAIR). MS lesions usually appear as areas of low 
signal intensity (low signal to normal white matter) on T1-weighted 
images and focal areas of high signal intensity (high signal) on 
T2-weighted images, reflecting tissue water content. Except for 
cerebrospinal fluid (CSF) suppression, FLAIR images have similar 
features to T2-w images (Poser et al., 1983). The identification of the 
number and volume of MS lesions is a critical process in diagnosis, and 
for the presence of white matter lesions, they are usually depicted 
manually by specialists in hospitals (Wang et  al., 2019). However, 
manual segmentation of MS lesions is very time consuming and there 
is a large variation in the depiction of different experts (Gva et al., 2020), 
in contrast, automated segmentation of MS lesions can save time and 
reduce the dependence on the observer. However, the presence of 
grayscale unevenness and noise in MRI, among others (Bajracharya and 
Rawal, 2015), make accurate segmentation a challenge.

Image segmentation is a common method for extracting tissues 
such as white matter, gray matter, and CSF from MRI images for 
quantitative brain tissue analysis (Dora et al., 2017). Over that last 
decades, many researchers focus on medical image segmentation, 
which has led to the rapid development of medical image techniques. 
Brain tissue segmentation methods can be broadly classified into five 
categories: manual segmentation, region-based segmentation 
methods, threshold-based segmentation methods, clustering-based 
segmentation methods, and methods with feature extraction and 
classification (Jiang et  al., 2022). In brain tissue segmentation, 
clustering methods are statistical techniques based on pixels or voxels 
and are usually processed for T1-weighted MR images. Among the 
clustering algorithms based on minimization objective functions, the 
most theoretically sound and most applied clustering method is the 
Fuzzy C-Means (FCM) algorithm. The FCM algorithm was proposed 
by Dunn et al. Although it has better segmentation performance than 
hard clustering methods, it has poor noise immunity and does not 
segment noisy MR images well (Tian et  al., 2021). To reduce the 
sensitivity of the FCM algorithm to noise, Pham proposed a new 
objective function for adding spatial context to the fuzzy c-mean 
algorithm (Pham, 2001). Its objective function includes a penalty term, 
which is similar to the Markov random field prior, and is consistent 
with the desired behavior of the affiliation function determined by the 
values of the fuzzy factor parameters thus improving it compared to 
the FCM algorithm, but is more sensitive to the boundaries of the 
organization (Dobson and Giovannoni, 2019). However, these classical 
segmentation methods also face some challenges when dealing with 
images in the presence of lesions, as the intensity of the lesion portion 
is usually similar to that of normal tissue (Zhao et al., 2018).

In order to handle brain MRI that contain both grayscale 
unevenness, noise, and MS focal regions, this paper presents 
anatomical mapping based on the RFCM algorithm, as well as a focal 
filling strategy using post-processing, which is applied to segment 
normal brain tissue on brain MRI images suffering from MS. It is 
demonstrated that the improved RFCM algorithm strategy improves 
the accuracy of brain MRI image segmentation.

2. Methods

2.1. Atlas Robust Fuzzy C-mean algorithm

The fuzzy clustering space model is an earlier method that uses 
penalty terms to achieve smoothing of images without being too 
sensitive to noise, but the model is less effective for segmentation of 
tissue boundary parts, which is due to the volume effect that can exist 
in magnetic resonance images, and the volume effect causes the 
boundaries of brain structures in images to become discontinuous and 
unclear (Wang et  al., 2018). To address this problem, an energy 
minimization algorithm based on anatomical mapping is proposed in 
this paper. The model links fuzzy clustering and statistical probability 
probability mapping by constructing a constraint term in the objective 
function of the fuzzy clustering space model, called the AR-FCM 
algorithm (Atlas Robust FCM, AR-FCM). This model inherits the 
advantages of the fuzzy clustering space model, uses statistical 
probability mapping to constrain the segmentation of brain tissue, and 
uses morphological mapping to redistribute voxels at tissue boundaries 
after segmentation to reduce the effect of partial volume effects. The 
flow of the method is shown in Figure 1 below.

2.2. S-Lesion Filling algorithm

From an image processing perspective, MS lesions can affect tissue 
segmentation, causing GM and WM to be classified in the wrong 
category. MS lesions may affect the estimation of segmentation 
parameters, leading to changes in tissue boundaries (Ma et al., 2010; 
Prados et  al., 2016), which can affect subsequent morphological 
studies, including atrophy measurements, tissue volume 
measurements, etc. Therefore, lesion filling is needed to reduce the 
negative impact that MS lesions may have on image analysis in order 
to improve tissue segmentation accuracy (Tian et al., 2022). Briefly, 
the lesion filling process uses WM image intensities to synthetically 
estimate filled WM lesions.

S-Lesion Filling (SLF) algorithm is a combined global and local 
method for filling WM lesions (Valverde et al., 2014; Makropoulos 
et al., 2018). The filling process of the lesions was performed by taking 
each axial slice that constituted the 3D image and calculating the mean 
and standard deviation of the NAWM tissue signal intensity. The 
calculated mean and standard deviation values are used to generate a 
normal distribution with a mean value equal to the calculated NAWM 
mean intensity and a standard deviation equal to half of the calculated 
NAWM standard deviation. The standard deviation was always fixed 
to half of the WM mean, independent of the data set used, and this 
value was chosen empirically to balance the accuracy of the method 
for 1.5 and 3 T images. The lesion voxel intensities of the current image 
slice were then replaced by random values of the generated 
distribution. The process is repeated until all image slices are 
completed. The flow of the algorithm is shown in Figure 2.

2.3. Lesion Filling and Atlas RFCM 
algorithm

Pathophysiological studies have shown that conventional 
magnetic resonance imaging has limited sensitivity to small 
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structural changes, both in lesions and normal gray and white 
matter (Fan et al., 2016; Weiskopf et al., 2021). This suggests that 
quantitative volumetric analysis of brain tissue and lesions directly 
from MRI images is not feasible and therefore requires extraction 
of brain structures such as cerebrospinal fluid, white matter, gray 
matter, and lesions using image segmentation techniques prior to 
quantitative analysis (Wang et al., 2014). Multiple sclerosis lesions 
are an autoimmune neurodegenerative disease whose main feature 
is the presence of white matter lesions (WM Lesion, WML), which 
are damaged white matter tissues associated with increased CSF 
levels. Some classical segmentation methods also face some 
challenges when dealing with images with lesions, because the 
intensity of the lesion part is often similar to that of normal tissue 
and the AR-FCM algorithm proposed in this paper does not 
segment the brain tissue with lesions well. In general, MS lesions in 

FLAIR sequences are less severe than CSF, exhibit high signal 
abnormalities in GM, and can be identified based on contrast (Pohl 
et al., 2007; Fransen et al., 2020). Based on this feature, lesion areas 
can be  processed using focal filling prior to segmentation, 
effectively reducing misclassification of CSF and white matter 
tissue. According to this strategy, an energy minimization 
algorithm based on lesion filling and anatomical mapping, namely 
the LFA-FCM algorithm (Lesion Filling and Atlas RFCM), is 
proposed in this paper. The method requires input T1-w images 
and FLAIR images, screening out focal regions on FLAIR images 
using the segmentation lesion method, and then using lesion filling 
to fill in and replace abnormal values in T1-w images to construct 
healthy brain MRI images, and finally completing the segmentation 
using the AR-FCM method. The flow of the method is shown in 
Figure 3.

FIGURE 1

Flowchart of energy minimization algorithm based on anatomical mapping.

FIGURE 2

Flow chart of lesion filling.
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2.4. Evaluation indicators

Three commonly used evaluation metrics are selected to measure 
the segmentation results of this method and other methods, namely 
Dice similarity coefficient (DSC), Volumetric similarity (VS), and 
Hausdorff distance (HD). These three metrics are chosen because the 
Dice coefficient is sensitive to the internal organization of the 
segmentation, while the Hausdorff distance is sensitive to the 
boundaries of the segmentation, and the volumetric similarity shows 
the overall segmentation effect.

The Dice similarity coefficient is an ensemble similarity measure 
function that is widely used to calculate the similarity of two samples 
and takes values in the range of [0,1]. In image processing, the Dice 
coefficient is mainly used to measure the accuracy of segmentation 
within a tissue. The Dice similarity coefficient is calculated by both the 
gold standard image (GT) and the computational segmentation mask 
(SEG) as follows:

 
DSC

SEG GT
SEG GT

=
∩
∪

2

 
(1)

The closer the Dice similarity coefficient is to 100 indicates that 
the segmentation results are closer to those of the expert manual 
segmentation. To make the results more accurate, the DSC value is 
multiplied by 100 in this paper.

Hausdorff distance is a measure describing the degree of similarity 
between two sets of points, and it is a defined form of distance between 
two sets of points. It is mainly used in image segmentation to measure 
the segmentation accuracy of the boundary. It is calculated by the 
distance (95th percentile) between the segmentation points in the gold 

standard image and the segmentation points in the segmentation 
mask as follows:

 
HD p p
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The closer the Hausdorff distance is, the better the segmentation 
is indicated.

The volume similarity is also calculated by both the gold standard 
image and the computed segmentation mask, and the more the value 
converges to 100, the better the segmentation effect:

 
VS GT SEG

GT SEG
= −

−
+

1
 

(3)

3. Results

In this paper, two sets of experiments were conducted, and the 
first set of experiments was selected to compare the AR-FCM 
algorithm with the RFCM algorithm, and the segmentation categories 
were set to three categories: CSF, gray matter and white matter, and 
the parameter settings of the two methods are shown in Table 1 below. 
The second group of experiments is to use RFCM algorithm, AR-FCM 
algorithm and LFA-FCM algorithm for brain tissue segmentation 
respectively, and the parameter settings of the three methods are 
shown in Table 2 below. The parameters of the AR-FCM algorithm as 
well as the LFA-FCM algorithm were required to be consistent in the 
experiment, which was to verify whether the strategy of increasing 

FIGURE 3

Flow chart of energy minimization algorithm based on lesion filling and anatomical mapping.
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lesion filling could improve the accuracy of tissue segmentation with 
the same parameters. Two experiments were done on the MICCAI 
2018 MRI brain segmentation challenge data set, and the hardware 
platform and software used for the experiments are shown in Table 3.

In Figure 4A, shows the original image, and Figure 4B,C show the 
results of AR-FCM and RFCM algorithm segmentation. Comparing 
the gold standard image and the result image obtained by the two 
algorithms, observing the part of the image (c) circled by green circles, 
we can see that many gray matter parts of the RFCM algorithm are 
divided into white matter, which leads to too low accuracy of gray 
matter segmentation and too high accuracy of white matter 
segmentation. On the contrary, the gray matter around CSF was 
preserved because AR-FCM used morphological maps to re-divide 
part of the volume of tissue after tissue segmentation. The second 
column from left to right is the result of segmentation of cerebrospinal 
fluid, gray matter and white matter for RFCM, and the third column 
from left to right is the result of segmentation of cerebrospinal fluid, 
gray matter and white matter for AR-FCM. The comparison between 
the second and third columns above shows that RFCM is less effective 
than AR-FCM in segmenting gray and white matter. Moreover, 
AR-FCM is better for the tissue segmentation between the boundaries 
and retains more details, which is achieved by using morphological 
mapping to re-divide some of the volume regions. The method in this 
paper improves the segmentation accuracy of the RFCM algorithm 
and requires only fewer iterations than the RFCM algorithm. However, 
the part circled in red in image (b) is incorrectly segmented as gray 
matter tissue, which is the presence of focal tissue in the data set used. 
It can be seen that the AR-FCM algorithm also does not segment the 
brain tissue with the presence of lesions better.

In addition, other examples in the data set are processed in this 
paper using the AR-FCM algorithm. Figure 5 shows the results of 
applying the energy-minimization segmentation algorithm based on 
anatomical mapping to other examples in the data set. The first and 
third rows are the T1-w images of the subject, and the second and 

fourth rows are the results of segmentation using the AR-FCM 
algorithm. The black part is CSF, the light gray part is gray matter, and 
the white part is white matter. Comparing the T1-w images with the 
segmented result images, it can be seen that the segmented parts of 
the brain tissue are more consistent with the structures shown in the 
T1 images. In addition, this method is stable and fully automated, 
which can yield satisfactory results in practical applications.

Table 4 shows the mean DSC, VS and HD values obtained by the 
RFCM algorithm for each subject, and Figure 6 show the results of the 
data visualization in the table, respectively. By comparing the average 
DSC, VS, and HD values obtained by the two clustering algorithms, 
AR-FCM and RFCM, the overall data shows that the average, as well 
as the values obtained by the AR-FCM algorithm are higher than 
those of the RFCM algorithm, which indicates that the overall 
performance of the AR-FCM algorithm is better than that of the 
RFCM algorithm. The red box plots in Figure 6A, through image (c), 
represent the AR-FCM segmentation results, and the gray box plots 
represent the RFCM segmentation results. It is found that both 
algorithms have higher segmentation accuracy for white matter 
compared to other tissues, while the AR-FCM algorithm has higher 
average DSC values for CSF, gray matter, and white matter, which 
indicates that the AR-FCM algorithm is more accurate for segmenting 
voxels within brain tissue, which is related to the statistical probability 
mapping as a constraint. The results in Figure  7 show that the 
AR-FCM algorithm segmented all three tissues to obtain higher 
Hausdorff distance values than the RFCM algorithm, and the 
AR-FCM algorithm segmented each tissue to obtain a minimum HD 
value greater than the RFCM algorithm obtained a maximum HD 
value. It indicates that the AR-FCM algorithm is more accurate for 
segmentation of boundaries, and verifies the feasibility of the strategy 
of post-processing and re-dividing some volume regions using 
morphological spectrograms in this paper. In terms of VS scores, the 
difference between the AR-FCM algorithm and the RFCM algorithm 
for CSF and GM tissue segmentation is not significant, but the 
AR-FCM algorithm has improved the average VS score for WM. In 
conclusion, AR-FCM is better than RFCM for segmentation of brain 
tissues in MRI images.

The results of the second group experiments with RFCM, 
AR-FCM and LFA-FCM are shown in Figure 8A. shows the gold 
standard image provided in the dataset,  Figure 8B–D show the brain 
tissue segmented using RFCM, AR-FCM, and LFA-FCM, respectively. 
Comparing image (a) with image (b), the regions circled in green 
belong to gray matter tissue in the gt image, while the RFCM 
algorithm classifies all these regions as white matter, which will result 
in large volume measurements of white matter tissue and small 
volume measurements of gray matter tissue. Observe image (c) and 
image (d), the regions circled in red in (c), which belong to white 
matter tissue in the gt image, and the AR-FCM algorithm incorrectly 
divides these regions into gray matter tissue. Image (d) shows the 
result of improved segmentation by the AR-FCM algorithm using 
lesion filling. It can clearly be seen that the incorrectly segmented gray 
matter tissue in image (c) is correctly segmented into normal white 
matter tissue after processing using focal filling, which indicates that 
the segmentation accuracy of white matter tissue with gray matter 
tissue can be improved using the post-processing focal filling strategy.

Figure 7 shows the segmentation results of other examples in the 
LFA-FCM algorithm segmentation dataset. The first and third rows are 
the T1-w images of the subjects, and the second and fourth rows are 

TABLE 1 RFCM and AR-FCM parameter setting table.

Methods q γ w β n thr

RFCM 2 - - 1 500 0.001

AR-FCM 2 0.025 1 - 200 0.001

TABLE 2 Parameter settings for RFCM, AR-FCM and LFA-FCM methods.

Methods q γ w β n thr

RFCM 2 – – 1 500 0.001

AR-FCM 2 0.025 1 – 200 0.001

LFAR-FCM 2 0.025 1 – 200 0.001

TABLE 3 Table of experimental software and hardware parameters.

Category Parameters

Operating system Windows 10

CPU Intel(R) Core(TM) i5-9400F CPU 2.90GHz

RAM 16GB

Simulation software Matlab 2019b
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the results of segmentation using the LFA-FCM algorithm. The black 
part is the CSF, the light gray part is the gray matter, and the white part 
is the white matter. From the above figure, it can be seen that the 
method segmented the brain tissue better, and it is almost consistent 
with the brain tissue structure demonstrated by the T1-w images.

The results of segmentation by the three methods were quantitatively 
analyzed. The results of the three methods to obtain the three index 
scores are shown in Table  5, and Figure  9 show the results of data 
visualization in the table, respectively. By the results shown,  Figure 9A, 
LFA-FCM obtained the highest DSC scores, especially the DSC values 
of segmented white matter tissue and gray matter tissue, and the worst 
results obtained in all seven sets of images processed were better than the 
best performance obtained by the other two methods. This is directly 
related to the operation of adding white matter filling before 

segmentation, indicating that lesion filling can effectively reduce the 
effect of T1-w multiple sclerosis lesions with low signal intensity on 
automatic brain tissue segmentation, thus improving the segmentation 
accuracy of the segmentation algorithm for white and gray matter 
tissues. As seen in Figure 9B,  the LFA-FCM algorithm is an overall 
improvement in the accurate measurement of the volume of each part of 
the brain tissue. Figure (c), shows the average HD values obtained by the 
three algorithms, and although the average Hausdorff distance calculated 
by RFCM is closer, the overall result is still worse than the performance 
of the other two methods. In particular, the CSF tissue is far better than 
on the other two methods. In Figure 9C,  the difference between the 
average Hausdorff distance calculated by the two methods, AR-FCM and 
LFA-FCM, is not significant, indicating that the white matter filling 
algorithm is not effective in improving the border tissue segmentation.

FIGURE 4

Segmentation results of AR-FCM and RFCM algorithms. (A) gt image, (B) AR-FCM, (C) RFCM, (D) cerebrospinal fluid, (E) gray matter, (F) white matter, 
(G) cerebrospinal fluid, (H) gray matter, and (I) white matter.
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4. Discussions

An anatomical atlas-based energy minimization algorithm (Atlas 
Robust FCM) is firstly proposed for problems such as offset fields and 
lesions in brain image segmentation. In the objective function of a 

fuzzy clustering space model, the constraints are constructed to link 
the fuzzy clustering and the statistical probability graph. Statistical 
probability mapping is used as a constraint to limit the over-
segmentation of brain tissue. After the brain tissue is segmented, the 
voxels of the volume part are redistributed using morphological 

FIGURE 5

Results of other examples of AR-FCM algorithm segmentation. (A) Subject 1, (B) subject 2, (C) subject 3, (D) subject 1 segmentation result, (E) subject 2 
segmentation result, (F) subject 3 segmentation result, (G) subject 4, (H) subject 5, (I) subject 6, (J) subject 4 segmentation result, (K) subject 5 
segmentation result, and (L) subject 6 segmentation result.

TABLE 4 Average DSC, VS and HD values for AR-FCM and RFCM.

Models Indicators CSF GM WM

RFCM DSC 76.33 ± 2.94 76.86 ± 1.78 80.67 ± 1.51

VS 89.95 ± 4.36 90.22 ± 3.87 90.46 ± 3.23

HD 4.06 ± 0.53 3.59 ± 0.27 3.23 ± 0.36

AR-FCM DSC 77.32 ± 2.09 78.21 ± 1.01 82.98 ± 1.56

VS 91.41 ± 3.07 91.34 ± 2.06 92.83 ± 4.11

HD 3.03 ± 0.23 3.05 ± 0.12 2.81 ± 0.42
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FIGURE 7

Results of other examples of LF-ARFCM algorithm segmentation. (A) Subject 1, (B) subject 2, (C) subject 3, (D) subject 1 segmentation result, (E) subject 
2 segmentation result, (F) subject 3 segmentation result, (G) subject 4, (H) subject 5, (I) subject 6, (J) subject 4 segmentation result, (K) subject 5 
segmentation result, and (L) subject 6 segmentation result.

A B C

FIGURE 6

Indicator data visualization results. (A) Average DSC values of AR-FCM and RFCM, (B) average VS values of AR-FCM and RFCM, and (C) average HD 
values of AR-FCM and RFCM.
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mapping, which resolves the unclear and discontinuous boundary of 
the target structure. It will lead to the problem that the model of 
fuzzy clustering space is not accurate when organize the boundary 
region of classification. The AR-FCM clustering algorithm is verified 
by comparison experiments to overcome the problem of low 
accuracy of RFCM clustering algorithm for boundary tissue 
segmentation and improve the segmentation accuracy of 
RFCM algorithm.

An energy minimization algorithm (Lesion Filling and Atlas 
FCM) based on lesion filling and anatomical mapping was proposed 
for brain tissues with lesions that were not well segmented by the 
AR-FCM algorithm. Based on the feature that MS lesions in FLAIR 
sequences are lighter than CSF and exhibit high signal abnormalities 
in GM, lesion regions are filtered out on FLAIR images using the 
lesion segmentation method (SLF). The T1-w images were coarsely 
segmented using a clustered segmentation algorithm, and only the 

FIGURE 8

RFCM, AR-FCM, and LFA-FCM segmentation results. (A) gt, (B) RFCM, (C) AR-FCM, and (D) LFA-FCM.

TABLE 5 Average DSC, VS and HD values for RFCM, AR-FCM and LFA-FCM.

Models Indicators CSF GM WM

RFCM DSC 76.33 ± 2.94 76.86 ± 1.78 80.67 ± 1.51

VS 89.95 ± 4.36 90.22 ± 3.87 90.46 ± 3.23

HD 4.06 ± 0.53 3.59 ± 0.27 3.23 ± 0.36

AR-FCM DSC 77.32 ± 2.09 78.21 ± 1.01 82.98 ± 1.56

VS 91.41 ± 3.07 91.34 ± 2.06 92.83 ± 4.11

HD 3.03 ± 0.23 3.05 ± 0.12 2.81 ± 0.42

LFA-FCM DSC 80.32 ± 2.53 81.73 ± 1.72 86.77 ± 1.46

VS 92.88 ± 2.36 94.17 ± 3.08 94.11 ± 3.13

HD 2.81 ± 0.21 3.01 ± 0.12 2.33 ± 0.43

A B C

FIGURE 9

Indicator data visualization results. (A) Average DSC values of RFCM, AR-FCM and LFA-FCM, (B) average VS values of RFCM, AR-FCM and LFA-FCM, and 
(C) average HD values of RFCM, AR-FCM and LFA-FCM.
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tissue with possible lesions was processed. Among the structures 
coarsely segmented out of T1-w, the part related to GM was selected 
and filtering conditions were set to filter out the overlapping region 
that met the conditions in the coarsely segmented brain tissue and the 
focal region. For this region, the abnormal values in the T1-w image 
are filled and replaced by using the lesion filling, and a healthy T1-w 
image is constructed, and finally the AR-FCM algorithm is used again 
to complete the segmentation. The average DSC, HD and VS scores of 
LFA-FCM are found to be higher than those of AR-FCM through 
comparison experiments, which indicates that the strategy of using 
post-processing lesion filling is indeed feasible and the segmentation 
accuracy is indeed improved.

Innovative improvements are made to solve the problems of partial 
volume effect, gray scale inhomogeneity, and sensitivity of the fuzzy 
clustering space model to tissue boundaries in magnetic resonance 
images. The specific improvements are based on the fuzzy clustering 
space model, using statistical probability mapping as a constraint term in 
the energy function to limit the over-segmentation of brain tissue, and 
after segmentation, using morphological mapping to reassign voxels 
between tissue boundaries; the energy minimum segmentation 
algorithm segments MRI brain images in the presence of white matter 
lesions, which may misjudge the focal regions and lead to the assessment 
of brain white matter volume inadequate. The specific improvement 
method uses the focal segmentation method to estimate the focal region 
on FLAIR images, screens out the lesioned tissue, and replaces the 
abnormal values by filling them using the focal filling method.

5. Conclusion

In this paper, the MRI brain image segmentation algorithm makes 
an intensive study, mainly considering the effects of offset field, cranial 
bone, volume effect and lesion on the segmentation results. A large 
number of MRI images are segmented and compared with existing 
related algorithms in terms of the effectiveness and accuracy of 
segmentation results. Experiments have verified that the algorithm 
proposed reduces the effects of partial volume effects and lesions; 
achieves accurate and efficient brain image segmentation by 
MRI. Therefore, it can better diagnose the brain disease, manage the 
patients effectively in the early stage and reduce the possibility of the 
brain disease worsening.
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