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In recent years, the effectiveness of a spiking neural network (SNN) for 
Electromyography (EMG) pattern recognition has been validated, but there is a 
lack of comprehensive consideration of the problems of heavy training burden, 
poor robustness, and high energy consumption in the application of actual 
myoelectric control systems. In order to explore the feasibility of the application 
of SNN in actual myoelectric control systems, this paper investigated an EMG 
pattern recognition scheme based on SNN. To alleviate the differences in EMG 
distribution caused by electrode shifts and individual differences, the adaptive 
threshold encoding was applied to gesture sample encoding. To improve the 
feature extraction ability of SNN, the leaky-integrate-and-fire (LIF) neuron that 
combines voltage–current effect was adopted as a spike neuron model. To 
balance recognition accuracy and power consumption, experiments were 
designed to determine encoding parameter and LIF neuron release threshold. 
By conducting the gesture recognition experiments considering different training 
test ratios, electrode shifts, and user independences on the nine-gesture high-
density and low-density EMG datasets respectively, the advantages of the 
proposed SNN-based scheme have been verified. Compared with a Convolutional 
Neural Network (CNN), Long Short-Term Memory Network (LSTM) and Linear 
Discriminant Analysis (LDA), SNN can effectively reduce the number of repetitions 
in the training set, and its power consumption was reduced by 1–2 orders of 
magnitude. For the high-density and low-density EMG datasets, SNN improved 
the overall average accuracies by about (0.99 ~ 14.91%) under different training 
test ratios. For the high-density EMG dataset, the accuracy of SNN was improved 
by (0.94 ~ 13.76%) under electrode-shift condition and (3.81 ~ 18.95%) in user-
independent case. The advantages of SNN in alleviating the user training burden, 
reducing power consumption, and improving robustness are of great significance 
for the implementation of user-friendly low-power myoelectric control systems.
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1. Introduction

Surface electromyography (sEMG) signals, which originate from motor neurons in the 
spinal cord and can accurately reflect muscle activity, is a common medium for detecting motor 
intent. Myoelectric pattern recognition is a technique of translating body movements into 
machine commands via Electromyography (EMG) signals, which is commonly used to 
implement myoelectric control systems in the fields of prosthetic control and rehabilitation 
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training (Oskoei and Hu, 2007; Xing et al., 2014). Myoelectric pattern 
recognition usually consists of sEMG signal acquisition and a classifier 
design. High-density (HD) array electrodes and low-density (LD) 
separate electrodes are often used to collect sEMG signals. LD sEMG 
uses a small number of electrodes to record muscle activity with low 
spatial resolution but low equipment cost. HD sEMG has a higher cost 
and uses a large number of electrodes to record muscle activity with 
high spatial resolution, which can capture the distribution of muscle 
activity and provide more detailed information about muscle 
activation patterns. With a classifier design, the ideal goal of 
myoelectric pattern recognition is to implement a general classifier 
with high generalization capability. However, due to the large 
individual differences of sEMG signals, the generalization capability 
of classifiers is often poor in user-independent cases. In fact, most 
effective myoelectric control systems work in a user-specific mode 
(Zhang et al., 2020; Chen et al., 2021; Hu et al., 2021; Yu et al., 2021), 
although training a specific classifier for each user will create a heavy 
training burden. Even in a user-specific mode, in practical interactive 
applications, the repeated wearing of the acquisition device will lead 
to electrode shifts, which will create large differences in the 
distributions of training data and test data and seriously degrade the 
performance of the classifier. Therefore, how to design a robust pattern 
recognition scheme that is insensitive to individual differences and 
electrode shifts is one of the current research hotspots in the field of 
myoelectric pattern recognition.

In early research, traditional machine learning algorithms based 
on manual feature extraction such as support vector machine (SVM) 
(Cortes and Vapnik, 1995), k-nearest neighbor (KNN) (Cover and 
Hart, 1967), and linear discriminant analysis (LDA) (Fisher, 1936) 
have been successfully applied in myoelectric pattern recognition (Du 
et al., 2010; Phinyomark et al., 2013; Wei et al., 2016). These algorithms 
were often conducted on LD-sEMG signals in a user-specific mode. 
The difficulty of applying them to practical myoelectric control 
systems lies in their low generalization performance to new users. In 
recent years, the development of artificial neural networks (ANNs) has 
led to a shift in the research of myoelectric pattern recognition to the 
field of deep learning (DL) (LeCun et al., 2015). The deep neural 
network (DNN) based on end-to-end implementation can 
automatically extract the optimal features with high specificity, 
making it able to achieve high generalization of myoelectric pattern 
recognition. Relevant research has verified that DNNs such as 
convolutional neural networks (CNNs) and long short-term memory 
networks (LSTMs) can obtain higher recognition accuracy than 
traditional machine learning methods (Hu et al., 2018; Triwiyanto 
et al., 2020). In particular, the deep transfer learning method, which 
combines the feature learning ability of deep learning with the 
distributed adaptive ability of transfer learning, has been proven to 
have significant advantages in improving the generalization and 
reducing the user training burden (Chen et al., 2021; Soroushmojdehi 
et al., 2022).

Although the research on myoelectric pattern recognition based 
on DNN has made some progress, considerable progress still needs to 
be made to meet the actual needs of myoelectric control systems. First, 
heavy training burden is a prominent problem for the implementation 
of DNN. Feature learning of complex DNN usually requires large-
scale training sets, which requires sufficient training samples to 
be  collected from users, resulting in a heavy user burden. Since 
pre-training of the source network requires the collection of a large 

number of samples and the target network requires a certain amount 
of training data for fine-tuning, even transfer learning cannot 
fundamentally solve the training burden problem. Second, real-time 
implementation of DNN is often difficult. DNN often has too many 
parameters and requires a lot of floating-point multiplication, which 
leads to high hardware requirements for computational resources and 
storage space.

In recent years, a third generation of neural network, namely 
spiking neural network (SNN), has been proposed based on the laws 
of neuromorphic computing (Izhikevich, 2006). SNN is event-driven 
and can be  combined with event-based sensors to provide an 
efficient bionic solution for pattern recognition tasks. Specifically, 
for tactile object recognition based on event-based tactile sensors 
(Taunyazov et al., 2020), Kang et al. proposed a location spiking 
neuron based on time-dependent spiking neurons and constructed 
a hybrid model using both neurons, verifying that the model can 
better capture the complex spatio-temporal dependencies in event-
driven tactile data (Kang et al., 2023). For gesture recognition tasks 
based on event-based dynamic vision sensors (DVSs) (Brandli et al., 
2014), Xing et al. proposed a new spiking convolutional recurrent 
neural network (SCRNN) architecture, which used convolutional 
operations and recursive connectivity to maintain spatial and 
temporal relationships in event-based sequential data and achieved 
96.59% accuracy in 10-class gesture recognition and 90.28% 
accuracy in 11-class gesture recognition (Xing et al., 2020). From the 
perspective of myoelectric pattern recognition, temporal EMG 
signals also can be mapped to spike events using specific encoding 
for pattern recognition using event-driven SNN. In particular, the 
characteristics of SNN make it possible to achieve a high 
generalization, low training burden, and low power consumption 
myoelectric control system. First, SNN uses the biological 
mechanism of spike neurons to process sequential spikes, making it 
naturally advantageous when processing physiological signals such 
as electroencephalogram (Al Zoubi et  al., 2018) and functional 
magnetic resonance imaging (Sengupta et  al., 2018) with low 
training burden; second, SNN performs pattern recognition based 
on spike events space, which makes it insensitive to amplitude 
variations due to individual differences and electrode shifts; third, 
SNN can be implemented with adding operations only due to its 
binary mechanism, which can greatly reduce computational power 
and storage resources (Donati et al., 2019; Cheng et al., 2021).

Some scholars have actively applied SNN to myoelectric pattern 
recognition. For instance, Cheng et al. designed a Leaky-integrate-
and-fire (LIF) neuron-based fast spike discharge time search 
algorithm, constructed a pre-trained sub-network SNN, and obtained 
97.4% classification accuracy for eight gestures (Cheng et al., 2021). 
Garg et al. used a LIF neuron to construct a spiking reservoir with a 
biologically inspired topology, and obtained the classification 
accuracies of 89.72 and 70.6% for the 8-chanel EMG datasets with 
three gestures and five gestures, respectively (Garg et al., 2021). Ma 
et al. (2020) implemented a spiking recurrent neural network (SRNN) 
on the Dynamic Neuromorphic Asynchronous Processor (DYNAP) 
(Moradi et  al., 2018), using Spike-Timing Dependent Plasticity 
(STDP) and soft Winner-Take-All (WTA) for network training, and 
obtained over 85 and 55% classification accuracy on an 8-chanel 
EMG dataset with three gestures and the Ninapro dataset (Atzori 
et al., 2014) with five gestures, respectively (Ma et al., 2020). Tian 
et al. used the adaptive weight mapping method to convert CNN to 
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spiking-CNN. For 10-channel three-gesture recognition tasks, the 
gesture recognition accuracy is 85.7% (Tian et al., 2023). Donati et al. 
implemented a single hidden layer feed-forward SNN with adaptive 
exponential LIF neurons on a multicore neuromorphic chip and 
obtained 74% recognition accuracy for a three-gesture recognition 
task (Donati et al., 2019). However, although existing studies have 
validated the effectiveness of SNN for myoelectric pattern 
recognition, they lack comprehensive consideration of user training 
burden, power consumption, and generalization capability to 
individual differences and electrode shifts. In other words, the 
application of SNN in actual myoelectric control systems needs to 
be deeply explored.

In the above related studies, SNN-based myoelectric pattern 
recognition has usually focused on spike encoding method, neuron 
models, network topology, and learning algorithms. In this paper, in 
order to explore the feasibility of applying SNN to actual myoelectric 
control systems, we  investigate a SNN-based myoelectric pattern 
recognition scheme. Unlike other studies, the innovation or main 
contribution of this study is the attempt to explore the problems of 
training burden, robustness, and power consumption of pattern 
recognition for actual myoelectric control systems. To this end, the 
adaptive temporal contrast encoding method is adopted to alleviate 
EMG distribution differences caused by electrode shifts and individual 
differences; the LIF neuron is improved by combining voltage and 
current decay effects to improve the feature extraction ability, and the 
adaptive threshold encoding parameters and LIF neuron release 
thresholds are determined experimentally to balance recognition 
accuracy and power consumption as much as possible. By comparing 
this with CNN, LSTM, and LDA, the validity of the proposed SNN in 
reducing training burden, alleviating the influence of electrode shifts 
and individual differences, and lowering power consumption has 
been verified.

2. Materials and methodology

Figure 1 presents the research route of the proposed SNN-based 
myoelectric pattern recognition. It mainly includes EMG sample 
generation, design of SNN, CNN, LSTM, and LDA classifiers, gesture 
recognition experiments under user-independent case, electrode-shift 
case and different training test ratios, and performance analysis. Each 
part is described in detail below.

2.1. Gesture databases

This study takes the 128-channel HD-sEMG database established 
in our previous studies (Hu et al., 2021) as the target dataset. It consists 
of HD-sEMG data with nine gestures (Figure 2) and five electrode-
shift positions. Eight participants (five men and three women, aged 
24–35) participated in the data collection. The acquisition device 
(Figure 3A) consists of two 48-channel (8×6) and two 16-channel (4×
4) electrode arrays, both with an electrode diameter of 3.5 mm. The 
electrode spacing is 14 mm and 18 mm for the 48-channel and 
16-channel arrays, respectively. The two 48-channel electrode arrays 
are used to acquire signals from the forearm extensor and flexor 
muscles, and the two 16-channel arrays are used to acquire signals 
from the biceps and triceps muscles, respectively. The signal 
acquisition method is unipolar, i.e., the signal of each channel is the 
potential difference between the acquisition electrode where the 
channel is placed and the reference electrode located on the back of 
the right hand. The sampling frequency is 1 KHz.

All participants were informed of the experimental procedures 
and signed their informed consent approved by the Ethics Review 
Committee of First Affiliated Hospital of Anhui Medical University 
(No. PJ 2014-08-04). During the data collection experiment, 
participants sat comfortably on a chair with their right arm on a table. 
The skin on the front and back of the forearm was wiped with alcohol 
and coated with conductive paste. The rules for performing gestures 
were as follows: the first 2 s were the beginning phase, which involved 
relaxing the arm on the table and lifting the elbow to execute the 
gesture; the middle 2 s were the steady-state phase where the hand 
shape and strength remain unchanged; the last second was the end 
phase, when the muscles relaxed and the elbow returned to the table 
at free speed. Before data collection, participants were asked to 
practice completing one gesture action within 5 s until they 
become proficient.

FIGURE 1

Block diagram of the research route.

FIGURE 2

9 kinds of gestures.
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The data were collected in five different trials over 2 ~ 3 days. In 
each trial, participants performed all gestures at a comfortable level of 
moderate effort, and repeated each gesture eight times. Since the five 
trials for the data acquisition were performed at different times, 
re-wearing of the acquisition device inevitably created electrode shifts. 
It is worth mentioning that the electrodes could be  moved 
appropriately in the medial/lateral or distal/proximal directions 
during the wearing of the device, but they could not be rotated. To do 
this, participants were asked to keep their palm facing upwards with 
all five fingers together while straightening the fingers and arm, and 
the left and right edges of the electrode piece were always parallel to 
the middle finger, ensuring that the electrode piece did not rotate.

To verify the performance of the proposed SNN on both 
HD-sEMG and LD-sEMG signals, LD-sEMG dataset with 8-channels 
was also established by the following steps: Because the forearm 
extension and flexor muscles usually have richer activation modes 
during gesture execution, we selected eight channels from the two 
48-channel electrode arrays covering the two muscles. As shown in 
Figure 3B, the selection rule was to choose a 6×6 electrode matrix 
from a 6×8 electrode array, then divide it into four 3×3 sub-matrices, 
and finally select the center electrode of each sub-matrix.

2.2. Gesture sample generation

Since different pattern recognition schemes involved in this study 
have different requirements for input samples, gesture samples are 
generated through the following steps:

Step 1: raw EMG signal is pre-processed through amplitude-based 
data segmentation, filtering, and normalization to obtain a 5 s EMG 
active stream corresponding to each repetition. At first, a few channels 
(about 2 ~ 3 channels), whose signal amplitudes are beyond the 
reasonable range, are discarded and replaced by the average value of 
adjacent channels; then, the signals are segmented based on amplitude 
threshold. When the signal amplitude rises or falls to about 10% of the 
peak, the corresponding time point is considered to be the beginning 
or end of an active data segment, respectively. All active data segments 
are resampled into 5,000 points (corresponding to 5 s); finally, the 

signal of the active data segment is filtered using a 20–500 Hz, 50th-
order finite spike response (FIR) bandpass filter, and normalized to 
0 ~ 1 with respect to the Min-Max of each segment.

Step 2: sliding window sample segmentation is applied to the active 
data segment of each EMG stream to obtain real-valued samples that can 
be  directly input into CNN and LSTM. For an EMG stream 
corresponding to one gesture repetition, a sliding window (length: 
100 ms, increment: 50 ms) is adopted to segment the data during the 
stabilization phase (2nd to 4th seconds, 2000 ms) to obtain 39 real-valued 
EMG samples. According to the operation, each participant can obtain 
5 9 8 39 14 040trials gestures repetitions windows( )× ( )× ( )× ( ) = ,  
samples. The size of a real-valued sample is 128 or 8 (channels) ×100 
(time steps) for the HD-sEMG dataset or the LD-sEMG dataset, 
respectively.

Step 3: for real-valued samples, four time-domain features, namely 
mean amplitude value (MAV), variance (VAR), waveform length 
(WL), and zero-crossing (ZC), are calculated for each channel to get 
the featured samples. Therefore, the size of a featured sample is 128 or 
8 (channels) × 4 (Number of features).

Step  4: the real-valued samples are encoded to spike samples 
suitable to SNN as described in the following section.

2.3. Temporal encoding based on adaptive 
threshold

The commonly used spike encoding methods are rate encoding 
(deCharms and Merzenich, 1996) and temporal encoding (Bohte, 
2004). Compared with rate encoding, temporal encoding focuses 
more on the differences in temporal structure, and the temporal logic 
between spikes is considered to have the potential to encode important 
information. To take full advantage of the ability of SNN to process 
temporal signals, temporal encoding is applied in this study.

Temporal encoding can be implemented by the temporal contrast 
algorithm (Petro et al., 2019), which can track the temporal changes 
of the signal amplitude using the spike. In this study, a temporal 
contrast algorithm, namely incremental encoding, is adopted. As 
shown in Eqs. (1), (2), and Figure 4, for a EMG real-valued sample 
s t( ), first record the signal change at adjacent time points as diff t( ), 

FIGURE 3

(A) The acquisition device and (B) the selection method of 8-channel electrodes.
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then compare the absolute value of diff t( )  with a threshold Vthr1 to 
determine the spike issuing and obtain spike samples o t( ). The 
encoding time window (T) is equal to the time length of EMG sample.

 diff t s t s t( ) = +( ) − ( )1  (1)

 
o t

diff V

diff V
thr

thr
( ) =

( ) <
( ) ≥







0

1

1

1

,

,

t

t  
(2)

Obviously, the sparsity of the spike samples depends on Vthr1. A 
common threshold selection method is to determine a fixed threshold 
from experience (Donati et al., 2019; Garg et al., 2021). This method 
tends to encode signal differences caused by external adverse factors 
as spikes, which has weak immunity to interference. Relatively, the 
adaptive threshold selection method presented in references (Petro 
et al., 2019; Ma et al., 2020) has better anti-interference ability. As 
shown in Eq. (3), the threshold is determined by the mean and 
standard deviation of the signal differences (diff t( )), where θ  is the 
parameter that regulates the size of the threshold. The adaptive 
threshold selection method gives a threshold for each sample by its 
own distribution, which can effectively overcome the wrong spikes 
caused by external factors and be suitable for electrode shifts and 
individual differences.

 V mean diff t std diff tthr1 = ( )( ) + × ( )( )θ  (3)

2.4. SNN with LIF neuron

2.4.1. Improved LIF neuron based on voltage and 
current decay effects

LIF neurons simulate the dynamic processes of neurons with 
resistor-capacitance circuit formulas (Delorme et  al., 1999). 

During operation, the input current I  charges the capacitor. 
When the capacitor voltage exceeds a threshold, the capacitor 
generates a discharge phenomenon through leakage current. The 
differential formula for membrane voltage dynamics is expressed 
by Eq. (4), where U t( ) represents membrane voltage of the 
neuron, τmem represents membrane time constant, I t( ) is input 
synaptic current integrated with input spike, and R  is 
membrane resistance.

 
τmem

dU t
dt

U t RI t( )
= − ( ) + ( )

 
(4)

For the LIF neuron in layer l  with index i, the membrane voltage 
can be described in more explicit difference Eqs. (5) and (6), where 

τ τ=
−

e
1

mem , l  and l −1 represent the current layer and the last layer 
respectively, j  represents the jth neuron of last layer, R is set to unit 
resistance, S tj

l− ( )1  is the input spike, and wij  is the synaptic weight 
from the jth neuron in the last layer (l −1) to the ith neuron in the 
current layer (l).

 U t U t RI ti
l

i
l

i
l( ) ( ) ( )( ) = −( ) + ( )τ 1  (5)

 
I t w S ti
l

j
ij j
l( ) −( ) = ( )∑ 1

 
(6)

It can be seen that the traditional LIF neuron determined by Eqs. 
(5) and (6) only considers the dynamic attenuation of membrane 
voltages. In fact, the biological synaptic current I  itself follows specific 
time dynamics. To improve the biological rationality of neurons, 
further modeling for synaptic currents is considered. Referring to 
reference (Neftci et al., 2019), a simplified first-order approximation 
depicted in Eq. (7) can be adopted to model exponentially decaying 
current, where S t( ) is the input spike, W  is the input synaptic weight 
matrix, and τ syn  is the synaptic decay time constant.

FIGURE 4

Spike encoding and the architecture of the proposed SNN.
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dI t
dt

I t
WS t

syn

( )
= −

( )
+ ( )

τ  
(7)

Thus, the Eq. (6) can be rewritten as Eq. (8), where µ  = e
− 1τ syn . 

The improved LIF neuron is determined by Eqs. (5) and (8). It can 
be seen that the state of the neuron is given by the membrane voltage 
and synaptic current cyclically decaying in time step together. Note 
that (0< µ  and τ  <1) represent degree of leakage of voltage and 
current, respectively. τ syn  and τmem are equal to 5 and 10.

 
I t I t w S ti
l

i
l

j
ij j
l( ) ( ) −( ) = −( ) + ( )∑µ 1 1

 
(8)

When U ti
l( ) ( ) reaches the firing threshold Vthr2, the neuron emits 

a spike according to Eqs. (9) and (10). Then the neuron enters the 
refractory period and the membrane voltage is reset by subtracting the 
reset voltage as shown in Eq. (11), where the reset voltage is equal to 
U ti
l( ) ( ) multiplied by a penalty parameter p. It should be pointed out 

that the membrane voltage is not reset to 0 but a negative value, which 
can effectively suppress the continuous disbursement. In this study, p 
is taken as 1.5.

 
( ) ( )l
iS t =

  
h U t Vi
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thr
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h x
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( ) =
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0 0

1 0

,
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  U t U t pi
l

i
l( ) ( )( ) = ( ) −( )1  (11)

2.4.2. Structure of the SNN
The basic framework of SNN as shown in Figure 4 has been 

constructed. The SNN consists of the input layer, two SNN hidden 
layers, and an output layer. The input layer consists of 128 or eight 
neurons receiving 128 or eight channels of EMG spike every time 
step. The two hidden layers are to extract the spatiotemporal 
features by LIF neurons. The spike neurons typically require the 
calculation of multiple time steps, referred to as the integration time 
window, which is commonly equal to the encoding time window 
(T = 100). The output layer calculates the average membrane voltage 
of the second hidden layer over the time dimension and uses 
softmax to obtain the gesture classification as shown in Eq. (12). The 
number of neurons in the first hidden layer is determined 
experimentally and the number of neurons in the second hidden 
layer is equal to the number of classification gestures. SNN uses 
cross entropy to obtain the loss function, and the training algorithm 
of SNN is the back propagation algorithm of alternative gradient 
(Neftci et al., 2019).

 
o

T
U t= ∑ ( )






softmax

1

 
(12)

2.5. The definition of spike release rate

The spikes transmitted in SNN consist of the spikes of gesture 
samples and the output spikes of the neuron. To better evaluate the 
power consumption of SNN, the spike release rate (SRR) is uniformly 
defined as Eq. (13). For the gesture spike sample, N is the number of 
channels (128 or 8), T is the encoding time window, and n is the 
number of spikes calculated by counting the instances of 1  in the 
sample. For neurons in a certain layer, SRR represents the average of 
all neurons firing spikes in an integration time window. Specifically, T 
is the integration time window, N is the number of spike neurons, and 
n is the number of spikes issued by N neurons within T. Theoretically, 
the smaller SRR, the lower the power consumption. However, smaller 
SRR may lead to the degradation of accuracy. Therefore, the 
relationship between SRR  and gesture recognition accuracy should 
be explored to strike a balance.

 
SRR n

T N
=

×  
(13)

2.6. The contrast classifiers and 
performance evaluation index

2.6.1. LSTM, CNN, and LDA
This study also uses LSTM, CNN, and LDA for comparison. The 

network structure of LSTM is determined based on SNN, namely 
consisting of an input layer, an LSTM layer, and a fully-connected 
(FC) layer. As for CNN, Chen et  al. has designed a ConvNet for 
myoelectric pattern recognition (Chen et al., 2021). Since the form of 
EMG signals in this study is consistent with their work, the same 
structure is adopted. The input of the ConvNet is sEMG image with 
the size of C H W× × , where C =100  and H  and W  is the row and 
column width of the input. The 128-channel EMG signals are reshaped 
into 16×8. The 8-channel EMG signals are reshaped into 4×2. The 
CNN contains two convolutional blocks and a FC layer with softmax. 
In the two convolutional blocks, the convolutional layers consist of C1(
32) and C2(16) filters respectively, with padding to the same output 
dimensions. The size of the filters is k1*k2 with a span of 2, where k1=2 
and k2=2. The batch normalization (BN) layer is used to accelerate the 
convergence of the network and prevent the gradient from 
disappearing (Ioffe and Szegedy, 2015). The maximum pooling layer 
is used to further extract effective features and reduce the 
dimensionality of the features. The output of the last convolutional 
block is spanned into a one-dimensional vector by the spreading layer. 
The number of neurons of the FC layer is the number of gestures. LDA 
is a classical supervised data dimensionality reduction method 
proposed by Fisher (1936). As a common machine learning algorithm, 
it is the most widely used classifier in the field of myoelectric pattern 
recognition. In this paper, the EMG featured samples with four time-
domain features are directly input into LDA for gesture recognition.

2.6.2. Performance evaluation index
In this study, we use the inference power, i.e., the power consumed 

to perform a gesture classification, to measure the power consumption. 
The inference power is calculated in terms of the number of 
accumulation (AC) and multiply-accumulate (MAC) operations. In 
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ANN, neurons rely on floating-point matrix multiplication, which 
require too many MACs. In SNN, due to binary characteristics of the 
spike, spike neurons only require ACs for matrix multiplication, and 
only a few MACs are used to update membrane voltage. The literature 
(Horowitz, 2014) reported that 32-bit floating-point MAC consumes 
31 times more power than AC on 45 nm CMOS25. Combining the 
structures of SNN, LSTM, and CNN, the calculation formulas of the 
inference power are shown in Table 1, where 0.1 and 3.1 represent 
relative power of AC and MAC, and T is encoding or integration time 
window. For encoding, power consumption is mainly contributed to 
by the calculation of mean and standard deviation, and ch  is the 
number of channels of EMG signal. For SNN, SRR1 and SRR2 are the 
SRR  of the input sample and the output of the hidden layer 
respectively, and i, h, and o are the number of input neurons and the 
two SNN hidden layers neurons, respectively. For LSTM, the inference 
power is contributed to by the LSTM layer and the FC layer. For CNN, 
the inference power is contributed by the two convolutional layers and 
the FC layer.

Recognition accuracy is defined as the ratio of the number of 
EMG samples correctly recognized to the number of all input samples. 
The statistical analysis is carried out on IBM SPSS Statistics (Version 
26), and the significance level is 5%. Inference delay time typically 
refers to the time it takes for a model to process and predict input data. 
It is measured as the time from when the model receives the input data 
to the output of the prediction result. The training burden is evaluated 
in terms of user burden, which refers to the amount of data that the 
user needs to collect. In our paper, the number of gesture repetitions 
that need to be included in the training set are used as a measure of 
user training burden.

3. Results and analyses

In this study, five types of gesture recognition experiments are 
carried out. The first experiment is used to determine the network 
structure and hyper-parameters. The second experiment is designed to 
determine the encoding parameter and neuron release threshold. The 
third and fourth experiments are carried out to verify the feasibility of 
the SNN-based myoelectric pattern recognition in reducing user 
training burden, mitigating the adverse effects of electrode shifts and 
individual differences. The last experiment is conducted to demonstrate 

the superiority of the adaptive threshold encoding and the LIF neuron 
improved by the voltage–current decay effects.

3.1. The determination of network 
structure and hyper-parameters

The determination of network structure mainly refers to the 
number of neurons in the hidden layer of SNN and LSTM. The hyper-
parameters contain optimizers, batch sizes, and learning rates of three 
networks. The batch size is set to 1/8 of the training samples. For SNN, 
the stochastic gradient descent (SGD) (Amari, 1993) is chosen as the 
network optimizer. For LSTM and CNN, the adaptive moment 
estimation (Adam) (Kingma and Ba, 2014) is chosen as the network 
optimizer. The optimal learning rates of SNN, LSTM, and CNN are 
chosen as 0.1, 0.01, and 0.01, respectively.

The determination experiments are carried out on the HD-sEMG 
and LD-sEMG dataset, respectively. The encoding parameter θ  and 
neuron threshold Vthr2 of SNN are set to 0 2and . Since one of the 
major goals is to highlight the advantages of SNN with lower training 
burden, a small-sample training approach is adopted. Specifically, for 
the generated spike samples, the training sets and testing sets are 
divided as follows: one repetition of each gesture is randomly selected 
to form the training set and the other seven repetitions are used to 
form the testing set. The experiments are carried out under SNN with 
different numbers of hidden layer neurons (50, 100, and 150 for 128 
channels; 5, 20, and 50 for eight channels). All participants are 
enrolled in the experiments. As shown in Table  2, the average 
recognition accuracies of the testing set increase slightly with the 
number of neurons. Since the increase in the number of neurons leads 
to the dramatic increase in network training parameters and power 
consumption, the hidden layer neurons of SNN are set to 100 for 
128-channel samples and 20 for 8-channel samples by weighing 
recognition accuracy and network parameters. As for LSTM, in order 
to make the structure identical and comparable, the number of hidden 
layer neurons is consistent with SNN.

3.2. The determination of adaptive 
threshold encoding parameter θ  and LIF 
neuron release threshold Vthr2

The encoding parameter θ  and neuron release threshold Vthr2 are 
determined experimentally by balancing recognition accuracy and 

TABLE 1 The calculation formulas for inference power.
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TABLE 2 The recognition accuracies (%) under different number of 
neurons.

Number of 
hidden 
neurons

Trainable 
parameters

Database

HD-sEMG LD-sEMG

50 6,909 91.21±2.23 /

100 13,809 93.50±2.56 /

200 27,609 94.12±2.01 /

10 1,389 / 69.56±5 07.

20 2,769 / 75.71±6 71.

50 6,909 / 76.47±5.28
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SRR . Since the encoding parameters and firing behavior of single 
neurons are not affected by the number of channels and neurons, the 
two parameters are determined only by HD-sEMG dataset. Under 
determination experiments of θ , the Vthr2 for both neurons of hidden 
layers is set to 2, and the θ  is traversed in the order of (−0.4→ -0.2→ 
0→ 0.2→ 0.4→ 0.6→ 0.8→ 1→ 1.5→ 2). For the generated spike 
samples, the training set and testing set are also divided into 1:7. SRR1 
is the average SRR on all the testing spike samples. When θ changes 
in the above range, the range of SRR1 is (0.05 ~ 0.55). Figure 5A shows 
the relationships between SRR1, θ, and average recognition accuracies. 
It can be observed that the recognition accuracy increases first and 
then decreases with the increase of SRR1. When SRR1 falls within the 
range of (0.2 ~ 0.4), we  obtain relatively high and stable gesture 
recognition accuracies. Corresponding to the range of SRR1, the range 
of θ  is (−0.2 ~ 0.6). Therefore, this study takes θ as 0.6 to get a lower 
SRR in the following experiments.

The determination experiments of Vthr2 are carried out by the 
same training test ratios. The Vthr2 for two SNN layers is set as (−5→
-2→ 0→2→ 5→ 10→ 15→ 20). Since only the issued spikes of LIF 
neurons in the first hidden layer are involved in the information 
transfer, only SRR  of the first hidden layer needs to be considered. 
SRR2  is the average SRR  input for all test set samples. When Vthr2 
changes in the above range, the range of SRR2  is (0.006 ~ 0.7). 
Figure 5B gives the relationships between SRR2 , Vthr2, and average 
recognition accuracies. When SRR2  falls within the range of 
(0.05 ~ 0.4), we obtain satisfactory gesture recognition accuracies. The 
corresponding range of Vthr2 is (0 ~ 10). Therefore, this study takes 
Vthr2 =10 to get a lower spike release rate.

3.3. The inference power consumption and 
delay time of different networks

In this section, the inference power can be  calculated on 
HD-sEMG dataset by formulas shown in Table 1, where SRR1 and 
SRR2 are replaced by SRR1 and SRR2  and determined by θ = 0 6. and 
Vthr2=10, respectively. Table 3 shows the inference power and latency 
for different networks. The power and delay of encoding and 

network are considered together for SNN. Compared to LSTM and 
CNN, the SNN has the absolute advantages of low power 
consumption and latency. The inference latency of SNN, LSTM, and 
CNN are 0.073 s, 0.126 s, and 0.133 s, respectively. The inference 
power of LSTM and CNN are 211.51 and 43.61 times higher than 
SNN, respectively.

3.4. Gesture recognition results under 
different training test ratios

This section conducts gesture recognition experiments on the 
HD-sEMG and LD-sEMG dataset under different training test ratios. 
The training test ratio is defined as the ratio of the number of gesture 
repetitions used to form the training set and the test set. In theory, the 
fewer gesture repetitions used to compose the training set, the smaller 
the user training burden. Concretely, the featured, real-valued, and 
spike samples are, respectively, divided into training and test sets 
according to the follow method: sequentially select N (1 ≤ N < 8) 
repetitions from eight repetitions to form the training set, and the 
remaining makes up the test set. The real-valued samples are input to 
LSTM and CNN, spike samples are input to SNN, and the featured 
samples are input to LDA. Figures 6A,B show the gesture recognition 
accuracies obtained from the HD-sEMG and LD-sEMG dataset, 
respectively. The results of One-Way Anova Analysis are reported in 
Table  4. According to the results, the following conclusions can 
be drawn:

First, SNN can effectively improve the gesture recognition 
accuracy. For the HD-sEMG dataset, compared with LSTM, CNN, 
and LDA, SNN significantly improves the recognition accuracies 
(p < 0.0001***). When the training test ratio varies from 1:7 to 7:1, the 
average recognition accuracy of SNN is 5.24, 9.23, and 4.73% higher 
than that of LSTM, CNN, and LDA, respectively. For the LD-sEMG 
dataset, compared with CNN and LDA, SNN significantly improves 
the recognition accuracy (p < 0.0001***), but there is no significant 
improvement compared to LSTM (p = 0.288). The average recognition 
accuracy of SNN is 0.99, 14.91, and 8.52% higher than that of LSTM, 
CNN, and LDA, respectively.

FIGURE 5

(A) The relationships between SRR1, θ, and average recognition accuracies; (B) The relationships between SRR Vthr2 2, , and average recognition 
accuracies.
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Second, SNN can effectively reduce the number of repetitions in 
the training set. When there is only one gesture repetition in the 
training set, SNN achieves the average recognition accuracies of 
93.81±1.87% for the HD-sEMG dataset and 75.71±6.71% for the 
LD-sEMG dataset. However, for the HD-sEMG dataset, LSTM, CNN, 
and LDA only achieve the average recognition accuracies of 82.54±
7.87%, 66.45±12.27%, and 75.62± 9.65% respectively, and for the 
LD-sEMG dataset, only achieve 69.73 ±6.45%, 36.20±4.44%, and 
66.83±2.78%, respectively. When there are more than three gesture 
repetitions in the training set, the average recognition accuracies of 
SNN are higher than 95 and 80% for two datasets respectively, 
however, CNN and LDA require at least seven gesture repetitions to 
achieve a similar performance.

3.5. Gesture recognition results of 
electrode-shift experiment and 
user-independent experiments

The electrode-shift experiment and user-independent experiment 
are carried out on all five trials of the HD-sEMG and LD-sEMG 
dataset. The electrode-shift experiment is carried out in a user-
dependent mode. For each participant, the leave-one-out method is 
adopted to select one trial separately as the test set and the remaining 
trials as the training set. In the user-independent experiment, the 
leave-one-out method is used to select samples of each participant 
separately as the test set, and those of the remaining participants are 
used as the training set. Tables 4, 5 give the results of One-Way Anova 
Analysis and the average recognition accuracies for two experiments 
under all participants, respectively.

An overall observation of Tables 4, 5 shows that, in both electrode-
shift experiment and user-independent experiment, the classification 
performance is only significantly improved compared with LDA in 
HD-sEMG datasets(p = 0.014*, p < 0.001**). Specifically, SNN 
performs better in HD-sEMG datasets. In the electrode-shift 

TABLE 3 The inference power and latency(s) of the three networks.

Encoding + SNN LSTM CNN

Inference power 13.64*104 2855.1*104 594.9*104

Inference latency 0.073 0.126 0.1334

FIGURE 6

The recognition accuracies of (A) HD-sEMG and (B) LD-sEMG under different training test ratios.

TABLE 4 The one-way Anova analysis results of SNN with the other three networks under three kinds of experiments.

Gesture set Multiple comparisons

Different training 
test ratio

Electrode-shift
User-

independent

Sig. (p) for accuracy

HD-sEMG SNN

LSTM <0.0001*** 0.865 0.286

CNN <0.0001*** 0.474 0.126

LDA <0.0001*** 0.014* <0.001**

LD-sEMG SNN

LSTM 0.288 0.442 0.997

CNN <0.001** 0.981 0.367

LDA <0.001** 0.059 0.312

***p < 0.0001, **p < 0.001, *p < 0.05.
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experiment of the HD-sEMG datasets, the average recognition 
accuracy of SNN is 72.59±23 04. % , which is 0.94, 3.98, and 13.76% 
higher than those of LSTM, CNN, and LDA, respectively. However, 
for the LD-sEMG dataset, the average recognition accuracy of SNN is 
48.66±16.29%,which is 0.15 and 7.24% higher than those of CNN and 
LDA, but 3% lower than that of LSTM. In the user-independent 
experiment of HD-sEMG datasets, the average recognition accuracy 
of SNN is 66.61±7.63%, which is 3.81, 6.95, and 18.95% higher than 
those of LSTM, CNN, and LDA, respectively. However, for the 
LD-sEMG dataset, the gap between the recognition accuracy of SNN 
and the other networks is reduced.

3.6. Performance comparison of different 
encoding methods and LIF neurons

As described above, adaptive threshold encoding is adopted to 
reduce the distribution differences of the EMG signals, and LIF 
neurons considering the voltage and current decay (LIF-V-I) are 
adopted to improve the feature extraction ability of SNN. In order to 
verify their superiority, comparative experiments are carried out on 
the HD-sEMG dataset. For the adaptive threshold encoding, fixed 
threshold encoding is used for comparison. When θ  is in a stable 
range of (−0.2 ~ 0.6), the range of adaptive threshold Vthr1 is (0.08–
0.2). Based on the range, the fixed thresholds are obtained in intervals 
of 0.02. By comparing the classification accuracy under different 
thresholds, the optimal fixed threshold Vthr1 is selected as 0.18. 
Adaptive threshold parameter θ  is 0.6. As for the LIF-V-I, the LIF 
neuron (LIF-V) determined by Eqns. (5) and (6) is adopted for 
comparison. The Vthr2 of LIF-V is determined as 0.5 and the Vthr2 of 
LIF-V-I is 10. The electrode-shift and user-independent experiments 
are conducted with the following four schemes: adaptive threshold + 
LIF-V-I, fixed threshold + LIF-V-I, adaptive threshold + LIF-V, and 
fixed threshold + LIF-V. The division of the training and test sets is 
based on the leave-one-out method. From the experimental results 
shown in Table 6, it can be found that the adaptive threshold encoding 
and LIF-V-I neuron have relatively superior performance. Under 
electrode-shift and user-independent experiments, compared to the 
fixed threshold encoding, the adaptive threshold encoding achieves 
(3.39–6.75%) improvement when LIF-V-I and LIF-V are used. 
Compared to LIF-V neurons, LIF-V-I achieves (1.31–2.31%) 
improvement when the adaptive threshold encoding and the fixed 
threshold encoding are used. Compared to fixed threshold + LIF-V, 
adaptive threshold encoding + LIF-V-I achieves 5.24 and 8.06% 
improvement.

4. Discussion

Low robustness, heavy training burden, and high power 
consumption are important factors that hinder the application of 
myoelectric control technology. Based on the experimental results 
presented in the above sections, the feasibility and limitations of 
applying the SNN-based myoelectric pattern recognition scheme 
proposed in this study to actual myoelectric control systems can 
be discussed as follows.

4.1. The validity of the proposed SNN 
scheme in reducing power consumption

It is well known that floating-point matrix multiplication of 
DNN is the fundamental reason for high power consumption. Liu 
et al. demonstrated the first real-time embedded gesture recognition 
system composed of three feedforward ANN layers, which can 
recognize 10 gestures with a processing power consumption of 
69mw (Liu et al., 2016). Benatti et al. combined parallel ultra-low 
power platform (PULP) using binary hyper-vectors with a brain-
inspired algorithm, achieving an average accuracy of 85% for an 
11-gesture recognition task and an average power of 10.4 mw for a 
classification (Benatti et al., 2019). However, the hyper-vectors are 
often dense and have huge dimensions, making a further reduction 
in power consumption difficult. Since the event-driven mechanism 
of SNN enables floating-point numbers to be replaced by sparse 
binary vectors without dimension expansion, SNN has greater 
advantages in reducing power consumption. Donati et  al. 
implemented a SNN on a multicore neuromorphic chip and 
obtained 74% recognition accuracy for a 3-gesture recognition task 
(Donati et al., 2019). The average power for a classification was 0.05 
mw, which is 1/208 of the power consumption of PULP and 1/1380 
of the feedforward ANN.

In this study, the inference power of SNN is positively 
correlated with SRR . As shown in Figures 5A,B, when SRR1 and 
SRR2  ranges are within a stable range, satisfactory recognition 
accuracies can be obtained. Therefore, we can use minimum SRR 
of the stable range to further reduce the power consumption. 
According to Table 3, the power consumption of LSTM and CNN 
are about 1–2 orders of magnitude higher than that of SNN, 
which is consistent with the power consumption measured by the 
above literature. In addition, SNN also has lower latency 
compared with LSTM and CNN. Therefore, the lower power 
consumption and lower latency of SNN makes it more suitable 
than DNN for real-time gesture recognition in myoelectric 
control systems.

TABLE 5 The recognition accuracies (%) in electrode-shift and user-
independent experiments.

Network Electrode-shift User-independent

HD-
sEMG

LD-
sEMG

HD-
sEMG

LD-
sEMG

SNN 72.59±23.04 48.66±16.29 66.61±7.63 38.84±7.03

LSTM 71.65±23.95 51.73±19.28 62.8±6.62 37.73±8.86

CNN 68.61±24.09 48.51±16.79 59.66±6.75 35.77±8.54

LDA 58.83±23.19 41.4±13.11 47.66±9.56 35.25±6.89

TABLE 6 The recognition accuracies (%) under four schemes.

Methods Electrode-shift User-
independent

Adaptive threshold + LIF-V-I 72.59±23.04 66.61±7.63

Fixed threshold + LIF-V-I 69.20±24.63 59.86±8.56

Adaptive threshold+ LIF-V 70.80±26.32 64.30±6.89

Fixed threshold+LIF -V 67.35±29.55 58.55±8.55

https://doi.org/10.3389/fnins.2023.1174760
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Sun et al. 10.3389/fnins.2023.1174760

Frontiers in Neuroscience 11 frontiersin.org

4.2. The validity of the proposed SNN 
scheme in reducing user training burden

Because of the individual differences of physiological signals 
among users, enough training data is usually collected to train a 
specific classifier for each user. For instance, Phinyomark et  al. 
achieved 92.11% accuracy for a 6-gesture recognition task using an 
LDA and nine gesture repetitions for training and a repetition for 
testing (Phinyomark et  al., 2012). Li et  al. trained a generalized 
network on a dataset containing 30 gestures and used migration 
learning to reduce training burden (Chen et al., 2021). The target 
network achieved 90% recognition accuracy in the 30-gesture, 
10-gesture, and 8-gesture recognition tasks, respectively, using over 
two gesture repetitions for training. For a 5-channel 8-gesture task, 
Cheng et al. achieved 97.4% accuracy using a pre-trained SNN trained 
with 45 gesture repetitions (Cheng et al., 2021). For an 8-channel 
3-gesture task, Ma et al. implemented a SRNN (Ma et al., 2020). When 
12 gesture repetitions were adopted for training and three gesture 
repetitions for testing, the classification accuracy exceeded 85%. For 
10-channels 3-gesture recognition tasks, Tian et al. used spiking-CNN 
to achieve 85.7% gesture recognition accuracy using eight repetitions 
for training and two repetitions for testing (Tian et al., 2023).

Some studies have verified the superiority of SNN for reducing 
training burden in other applications. Ma et al. (2018) used SNN to 
classify the MNIST dataset, which contains 10 kinds of handwritten 
digital pictures, consisting of 60,000 training samples and 10,000 test 
samples. When all training samples were used for training, the recognition 
accuracy of SNN and CNN were 90.44 and 98.19%, respectively. However, 
when only 1,000 training samples were used, the accuracy of SNN was 
still as high as 80.15%, whereas that of CNN was only 10.28%.

In this study, we examine the performance of SNN on HD-sEMG 
and LD-sEMG datasets under different user training burdens. To the 
best of our knowledge, this is the first exploration on training burden 
of SNN-based myoelectric pattern recognition. The experimental 
results in Figure 6 and Table 4 show that SNN can achieve high-
accuracy myoelectric pattern recognition under lower training 
burden. SNN achieved higher recognition accuracy using only three 
gesture repetitions for training, compared to six repetitions required 
by LSTM, and seven repetitions required by CNN and LDA. Even 
when only one gesture repetition is used for training, the SNN 
achieves average recognition accuracies of 93.81±1.87% and 75.71±
6.71%for the HD-sEMG and the LD-sEMG dataset respectively, which 
is about an 11.27 and 5.98% improvement over LSTM, about 27.36 
and 39.51% improvement over CNN, and about 18.19 and 8.88% 
improvement over LDA. In addition, for the HD-sEMG dataset, the 
recognition accuracy of SNN can partly exceed that of existing works 
both in terms of training burden and recognition accuracy. For 
8-channel EMG signals, the recognition accuracy is also comparable 
to other works based on SNN. Therefore, this study proves that only a 
small amount of data needs to be collected to train a satisfactory SNN 
classifier, which provides the possibility for the realization of 
myoelectric control systems with low user training burden.

4.3. The performance of the proposed SNN 
scheme in improving robustness

There are two main factors that have a great impact on the 
robustness of myoelectric control systems, which are electrode shifts 

caused by electrode replacement or human movement and individual 
differences in physiological signals. First, the use of HD electrodes 
combined with the spatiotemporal feature extraction ability of DNN 
is often used to solve the above problems. Meng et al. constructed 
1D-CNN, 2D-CNN, and CNN-LSTM to carry out the classification 
task among users on the 256-channel sEMG datasets of 10 gestures 
(Meng et al., 2022). Compared with SVM, the recognition accuracies 
of three networks increased significantly. Second, specific training 
strategies are usually designed to ensure the robustness of myoelectric 
pattern recognition. For instance, Vidovic et al. proposed a pre-trained 
hybrid LDA for the recognition of eight gestures (Vidovic et al., 2016). 
The parameters of the pre-trained LDA model were calibrated using 
EMG data with shifts, and the classification accuracy reached more 
than 92%. Côté-Allard et al. (Cote-Allard et al., 2020) introduced a 
new multi-domain learning algorithm, named ADANN, for 
implementing an inter-subject classification task. Designing training 
strategies often requires collecting extra training data for training or 
fine-tuning, which will increase heavy training burden. Third, the 
advanced algorithms are designed to solve electrode shifts and 
individual differences. For electrode shifts, Hu et  al. proposed an 
adaptive electrode calibration method using a fast-independent 
component analysis algorithm to extract the muscle core activation 
region for gesture recognition (Hu et al., 2021). For an inter-subject 
task, Xue et al. proposed a framework based on typical correlation 
analysis and optimal transmission (OT), called CCA-OT (Xue 
et al., 2021).

This paper is the first work to explore the performance of SNN in 
solving the problems of electrode shifts and individual differences. 
Aiming to ensure the robustness of the SNN, we employ the adaptive 
threshold encoding to weaken the distribution differences of EMG 
data and use LIF-V-I neurons to improve feature extraction ability. 
The results of Table 6 indicate that these two strategies are effective. 
According to Tables 4, 5, overall, SNN has advantages in improving 
recognition accuracies in both the electrode-shift experiment and 
user-independent experiment. Since SNN can achieve even exceed the 
robustness of existing DNN with low power consumption and 
significantly outperform the robustness of LDA, we conclude that the 
proposed SNN-based scheme has more advantages in the application 
of myoelectric control systems.

4.4. Limitations and future works

We would like to point out the limitations of the current research. 
First, this study only selects a single time-contrast encoding method 
and the threshold-emitting neuron model to construct the 
SNN. Further attempts should be  made to try more encoding 
algorithms and neuron models; second, the EMG samples in this 
study are obtained only from the stabilization phase of gesture 
execution, and the transitions between rest and gesture execution may 
be a factor affecting the robustness of myoelectric pattern recognition, 
which should be  explored in the future; third, the proposed 
SNN-based scheme should be further verified on various publicly 
datasets; fourth, although the proposed SNN has certain advantages 
over simple CNN, LSTM, and LDA in terms of electrode-shift and 
user-independent tasks, the gesture recognition accuracy obtained by 
SNN is far from that obtained by related studies. In the work of Hu 
et al. (2021) using the same database, the gesture recognition accuracy 
under electrode shifts was 92.17%, whereas the accuracy in this study 
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is only about 72%. With reference to the recent research progress in 
electrode shifts and individual differences, advanced training 
strategies and signal processing algorithms should be introduced into 
SNN in the future; finally, the proposed SNN is carried out offline on 
a computer, and the measurement for network power consumption 
and inference delay is an algorithmic estimation, ignoring the 
potential problems of hardware implementation. In the future, it 
should be implemented on neuromorphic circuits.

5. Conclusion

This study is the first to explore the feasibility of applying SNN to 
myoelectric control systems from the aspects of training burden, 
robustness, and power consumption. Its main work and contributions 
are as follows: (1) Taking SNN as the basic network architecture, the 
adaptive threshold temporal contrast encoding and the LIF neuron 
that combines voltage–current effects are applied to improve the 
performance of SNN. Meanwhile, the adaptive threshold encoding 
parameter and LIF neuron release threshold are determined by 
experiments to balance recognition accuracy and power consumption 
as much as possible and (2) By conducting myoelectric pattern 
recognition experiments on the HD-sEMG and LD-sEMG in the cases 
of different training test ratios, electrode shift, and user independence, 
the advantages of SNN in reducing power consumption, alleviating 
training burden, and improving the robustness have been verified. The 
research results of this study are of great significance for the 
implementation of user-friendly low-power myoelectric 
control systems.
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