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Background: Substance addiction is a chronic disease which causes great harm to 
modern society and individuals. At present, many studies have applied EEG analysis 
methods to the substance addiction detection and treatment. As a tool to describe the 
spatio-temporal dynamic characteristics of large-scale electrophysiological data, EEG 
microstate analysis has been widely used, which is an effective method to study the 
relationship between EEG electrodynamics and cognition or disease.

Methods: To study the difference of EEG microstate parameters of nicotine addicts 
at each frequency band, we  combine an improved Hilbert Huang Transformation 
(HHT) decomposition with microstate analysis, which is applied to the EEG of nicotine 
addicts.

Results: After using improved HHT-Microstate method, we  notice that there is 
significant difference in EEG microstates of nicotine addicts between viewing smoke 
pictures group (smoke) and viewing neutral pictures group (neutral). Firstly, there is 
a significant difference in EEG microstates at full-frequency band between smoke 
and neutral group. Compared with the FIR-Microstate method, the similarity index 
of microstate topographic maps at alpha and beta bands had significant differences 
between smoke and neutral group. Secondly, we  find significant class × group 
interactions for microstate parameters at delta, alpha and beta bands. Finally, the 
microstate parameters at delta, alpha and beta bands obtained by the improved HHT-
microstate analysis method are selected as features for classification and detection 
under the Gaussian kernel support vector machine. The highest accuracy is 92% 
sensitivity is 94% and specificity is 91%, which can more effectively detect and identify 
addiction diseases than FIR-Microstate and FIR-Riemann methods.

Conclusion: Thus, the improved HHT-Microstate analysis method can effectively 
identify substance addiction diseases and provide new ideas and insights for the 
brain research of nicotine addiction.
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1. Introduction

Substance addiction is a chronic relapsing disease, which refers to the adaptation and 
dependence of individuals after long-term abuse of harmful substances (World Health 
Organization, 2009). It includes drug addiction and other mental addictions such as alcohol, 
nicotine, and caffeine. The root cause is the long-term adaptation of the brain to addictive 
substances, which makes it difficult for individuals to give up due to the escalating behavior of 
substance intake, even though they have been aware of the negative effects (Pengfei et al., 2019). 
Substance addiction can lead to a range of diseases, such as lung cancer, iron-deficiency heart 
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disease and esophageal cancer, and cause an enormous emotional, 
financial and medical burdens on individuals and society. Previous 
studies on the cognitive function of addicts with different substances 
have shown that addiction have an impact on cognition. For example, 
addicts have impaired executive control function, increased 
impulsivity (Fulton and Charlotte, 2009), decreased decision-making 
ability (Zernig et al., 2007), and strong memories related to addiction 
cues (Robbins et al., 2008; Yan Xue et al., 2017); Meanwhile, drug 
addicts have abnormal sleep structure (Conroy and Arnedt, 2014), 
whose sleep stages affected by various addictive substances (Colrain 
et  al., 2014). In addition, addiction theory has also shown that a 
common character of substance addiction is drug cue response, which 
means that compared with non-addicts, addicts show significantly 
different physiological and psychological responses when they face 
with smoke cues or neutral cues (Linyuan and Xiaoyi, 2005). 
Moreover, the responsiveness of addicts to cigarette-related cues is 
also the main factor of relapse (Wei et al., 2017), which means that the 
brain response of addicts to cigarette cues may predict their ability to 
give up smoking continually. At present, the main treatment methods 
of substance addiction are drug therapy, psychotherapy, physical 
therapy, and neutral feedback therapy. In recent years, the technique 
of Brain Computer Interface (BCI) from the perspective of 
electrophysiology has been proposed and applied to the research of 
addiction. BCI is a communication system built between the brain and 
other external devices, rather than relying on the brain transmission 
pathway composed of peripheral nerves and muscles, which is a new 
way of human-computer interaction. By using a non-invasive, cheap 
and powerful tool, Electroencephalogram (EEG), it can record the 
configuration of brain electric fields produced by the coordination of 
different nerve combinations and have a high temporal resolution 
(Arshad et al., 2022; Totev et al., 2023). Besides, with the development 
of the computer technology, some relevant and novel algorithms 
including Generative Adversarial Network (GAN), Convolutional 
Neural Networks (CNN) were employed for features extraction at 
EEG bands or to explore the potential neutral mechanism of the brain 
(Hu et al., 2020; Prasanth et al., 2020; Yan et al., 2020), and also made 
great contributions in some specific states or diseases such as 
Parkinson, depression and epilepsy (Uyulan et al., 2020; Chu et al., 
2021; Gabeff et al., 2021). On this basis, studies showed that the brain 
of substance addict has abnormal functions and structural changes 
(Bjork and Gilman, 2014). Therefore, many researchers have processed 
the cognitive function of the brain in different states and collected 
signals from the cerebral cortex to analyze the mechanism 
of addiction.

Previous investigations and studies on EEG signals of addicts have 
shown that there are some qualitative and quantitative changes in EEG 
signals of these addicts, including EEG coherence, frequency domain 
features and nonlinear features, and EEG source localization. As a 
measurement of brain network, coherence reflects functional 
connectivity and activity synchronization among brain regions 
(Franken et al., 2004) and has advantages in terms of high temporal 
resolution and measurement of brain networks among neuron 
populations. Compared with non-addicted people, EEG coherence in 
addicted people is significantly enhanced (Yan Xue et al., 2017) and 
significantly correlate with the changes in smoking cravings (Littel 
et al., 2009), which is advisable to explore the changes in brain activity 
related to addiction. In the frequency domain, there are less alpha 
EEG rhythm and more beta EEG rhythm in the addicted people, and 

many delta-theta rhythms with low amplitude in the central brain 
region (Benos and Kapinas, 1980; Olivennes et al., 1983; Gekht et al., 
2002); addicts have higher EEG correlation dimension than 
non-addicts, which can reflect the attention deficit of addicted people 
(Světlák et al., 2010). Furthermore, the analysis method of EEG source 
localization has also been applied to research the mechanism of 
addiction and solved the problem of observing the difference of brain 
activity and locating deep source error in high temporal and spatial 
resolution (Pascualmarqui et al., 1994). In addition, the rank-based 
feature selection method was used to assign weight values to EEG 
features such as the interhemispheric coherence and spectral power at 
EEG bands of patients with alcohol disorders, which obtain the better 
accuracy with the classification of the most discriminative features 
(Mumtaz et al., 2017). Meanwhile, study also found that the theta 
band (4–8 Hz) between the frontal and posterior cortical regions had 
a high level of synchronization in the brain of drug addicts according 
to the connectivity of subband cortical network which was calculated 
by synchronization likelihood algorithm (Coullaut-Valera et al., 2014).

EEG microstate is one of the methods to determine and quantify 
the oscillatory activity and dynamic characteristics of the cerebral 
cortex. It was first proposed by Lehmann, who regarded the multi-
channel spontaneous EEG signals as a series of EEG topographic maps 
changing over time. Each EEG topographic map is the superposition 
of the effects of all the sources that are instantly active at present and 
is a global measure of instantaneous EEG activity (Lehmann et al., 
1987; Lehmann, 1994). It reveals that the distribution of brain 
electrical activity does not change continuously but discretely over 
time. The topological structure of one EEG topographic map does not 
smoothly change to another structure, but stays in a quasi-stable state 
for about 80–120 ms, and then suddenly changes to another structure. 
Several EEG topographic maps with the same topological structure 
are classified as a class of microstate (Arjun et  al., 2014). In the 
literature of microstate analysis, generally four different microstate, 
typically labeled from A to D, respectively correspond to the activities 
of auditory network, visual network, prominence network and 
attention network (Britz et al., 2010) and can usually explain more 
than 80% of the variance present in the EEG data (Lehmann et al., 
2005; Seitzman et al., 2017). The temporal parameters of microstate 
include global interpretation variance, mean duration, occurrence and 
coverage of microstates, which provide new avenues for quantifying 
cortical oscillatory activity with functional relevance. The changes of 
these parameters can reflect the impact of diseases on the brain, such 
as Parkinson’s disease (John et al., 2023), dementia (Grieder et al., 
2016), schizophrenia (Andreou et al., 2014) and Alzheimer’s disease 
(Strik et al., 1997). Besides, there are also studies on the identification 
of epilepsy (Kiran et al., 2018) and motor imagination (Weifeng et al., 
2017) by using microstate parameters, and the accuracy is relatively 
high. However, most previous studies on EEG of addicted subjects 
were based on the analysis of brain network and EEG characteristics. 
Therefore, using microstate analysis to compare different EEG of 
addicts is a valuable method to analysis and detect substance addiction.

Previous studies have shown that the dynamics of microstates in the 
time domain are correlated with those in the spectrum domain. Milz 
et al. (2017) found that there was a consistent relationship between intra-
band microstates and power, which meant that the intra-cortical intensity 
and spatial distribution of alpha frequency band were determined. 
Traditional microstate analysis method lacks frequency domain 
information (Koenig et  al., 2018), which affects the conclusion of 
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correlation between microstate and spectrum domain. In order to solve 
this problem, Ehtasham et  al. (2019) used the empirical mode 
decomposition (EMD) and instantaneous frequency model in the Hilbert 
Huang Transform (HHT) method to extract the spectral features of 
microstates in time series. This method can preserve the local spectral 
properties of the original data in time domain, and does not require prior 
characteristic information of data, or as in the case of other decomposition 
methods such as Fourier, or wavelet analysis, it does not assume a 
pre-determined set of basis functions (Daubechies et al., 2011; Thakur 
et  al., 2013). Therefore, in this paper, an improved HHT-Microstate 
method was used to research the EEG of nicotine addicts. By preserving 
the instantaneous properties of the data in the spectrum domain, the 
microstate time series was analyzed to evaluate the instantaneous changes 
of the spectral features of the EEG data.

In this study, we selected two different types of nicotine addiction 
EEG data and used the improved HHT method to divide the EEG data 
into five frequency bands, including delta band (0.5–4 Hz), theta band 
(4–8 Hz), alpha band (8–12 Hz), beta band (12–30 Hz), and gamma 
band (30–40 Hz). By comparing the differences of the microstate 
parameters between the two types of tasks at each frequency band, 
we selected the microstate parameters with significant differences as 
features to detect different types of nicotine addiction. At the same 
time, in order to highlight the superiority of the improved 
HHT-Microstate method, the frequency band division method and 
EEG feature analysis method are compared with Finite Impulse 
Response (FIR) method and EEG Riemann distance method, which 
includes FIR-Microstate method, HHT-Riemann method and 
FIR-Riemann method. Finally, we  proved that the improved 
HHT-Microstate method is superior to other methods and can detect 
and identify different addiction states more effectively.

2. Materials and methods

2.1. Method

Our experiments in this paper are carried out on the platform of 
Matlab_2019 and the corresponding toolbox of EEGLAB_2019. The 
main method has two parts. Firstly, the data is time-frequency 
decomposition by using the Empirical Mode Decomposition (EMD) 
and instantaneous frequency model. Secondly, microstate analysis 
method is applied to each frequency band for the extraction of 
microstate topographic maps and microstate parameters at each 
frequency band.

2.1.1. Time-frequency analysis—improved Hilbert 
Huang transform

The obstacle to finding a correlation between microstates and 
spectrum is to correlate microstates in different temporal resolutions 
with spectral analysis. On the one hand, the EEG microstate analysis 
is carried out in the time domain and determine the EEG data and 
similarity index of the given segmentation for each instance; On the 
other hand, traditional spectrum analysis methods require at least a 
period to calculate the spectral power of any given frequency band. 
Therefore, in order to solve this obstacle, the EMD and instantaneous 
frequency models in HHT (Huang, 1998) were used for time-
frequency analysis (Huang et al., 2009; Liu et al., 2022). However, in 
the process of decomposition, the traditional EMD will cause 

problems of mode aliasing, which makes the component lose the 
single feature scale feature. Ensemble Empirical Mode Decomposition 
(EEMD) model has been optimized for EMD, but the added Gaussian 
white noise will remain and affect the result. To solve the problem of 
mode aliasing in EMD and reconstruction error or low computational 
efficiency in EEMD, a CEEMDAN method is used in this paper. By 
adding adaptive white noise to the EEMD, errors in signal 
reconstruction can be reduced and high computational efficiency can 
be ensured. Besides, it could maintain the original temporal resolution 
while transforming time-domain data into time-frequency domain 
data. The main steps of CEEMDAN are as follows:

 (1) Signal can obtain several Intrinsic Mode Functions (IMFs) after 
EMD, and each IMF must satisfy two restrictions: ① The difference 
between the number of extreme points and zero points is not more 
than 1; ② The mean value between the local maximum envelope 
and the local minimum envelope at any time is 0.

Add white noise βAj(t) to the original signal x(t), where β is the 
standard noise and j is the number of noises added. The newly 
constructed signal is Z(t) = x(t) + βAj(t). The first order component of 
CEEMDAN is:
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The remainder is r1 = Z(t) − IMF1.
 (2) The original signal of the second IMF component is 

Z(t) = r1 + βAj(t), after decomposition, it can obtain:
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The remainder is r2 = Z(t) − IMF2.
 (3) Next, repeat step (1) and (2) until the decomposition is 

complete. m IMF components are obtained, and the residual is:
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 (4) The reconstruction formula is:
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Due to the existence of false IMF components in the process of 
EMD decomposition, these false IMF components should be eliminated 
in practical application. The correlation between the real IMF 
component and the original signal is greater than those in false 
component, and the proportion of the real IMF component is larger 
than those in false IMF component. At present, the commonly used 
methods to eliminate false IMF components include correlation 
coefficient method, gray correlation degree method, mutual 
Information method, energy ratio method and K-S test method. Gray 
correlation degree method and K-S test method can better distinguish 
the false IMF component for single component signals, but it is difficult 
to distinguish the complex signals with multiple components (Yang 
et al., 2013). Correlation coefficient method and energy ratio method 
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have great amplitude dependence on signals, which is not conducive to 
the differentiation of false IMF components (Bao et al., 2009). Mutual 
Information (represented by the symbol IMI) can accurately calculate 
the correlation between the IMF component and the original signal, 
and has certain advantages in distinguishing the false IMF component.

Therefore, our paper uses IMI to select IMF components. IMI 
describes the degree of correlation between two random variables, and 
the amount of common information between two variables can 
be  measured by IMI. The larger the IMI, the more common 
information between variables, and the stronger the correlation. For 
the ith IMF component ci(t) of the signal and the original signal x(t), 
the IMI between them is defined as:

 
I c x p c x

p c x
p c p xMI i i

i

i
; ;

;( ) = − ( ) ( )
( ) ( )

Σ log

 
(5)

where, p(ci) and p(x) are the marginal probability distributions of 
the ith IMF component ci(t) and the original signal x(t) respectively; 
p(ci,x) is the joint probability distribution of the ith IMF component 
ci(t) and the original signal x(t).

After the decomposition of CEEMDAN and the selection of IMI, 
HT is used to calculate the instantaneous frequency and amplitude for 
IMF. The impulse response of HT is:
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The HT expression of IMF is:

 H IMF t h t IMF t( )( ) = ( ) ∗ ( ) (7)

where, H(∙) is the function of HT, * is the convolution. Then:
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Therefore, the instantaneous frequency can be expressed as:
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F(t) and a(t) are the instantaneous frequency and amplitude of IMF, 
respectively. Based on the instantaneous frequency value of IMF, IMFs 
with different instantaneous frequency values can be  obtained by 
selecting different sampling frequency for each electrode data and 
decomposing them. The instantaneous frequency value is adjusted to the 
frequency range of the above 5 frequency bands, which can obtain the 
corresponding 5 frequency bands. In addition, the time information can 
be saved after microstate extraction.

2.1.2. Microstate analysis
The core of microstate analysis is to segment EEG data into 

microstates by using clustering algorithms. The well-established 
standardized procedures in EEGLAB (Poulsen et al., 2020) are used 
for the microstate analysis. The specific processes are as follows:

 (1) The quantized scalar values for electric potentials across EEG 
electrodes also known as Global Field Potential (GFP) are 
computed for EEG: the standard deviation of voltage values at 
all electrodes of a topographic map at a time, which is used to 
describe the strength of the electric field of a topographic map. 
The formula is as follows:

 
GFP t

k
V t V t
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where, K is the number of channels, Vi(t) is the voltage and 
potential at the ith electrode, and Vmean(t) is the instantaneous 
average potential between electrodes.

GFP represents the intensity of the electric field on the brain 
at every moment. It is usually used to measure the total response 
of the brain to the event or to represent the rapid changes in brain 
activity. The local maximum of its curve represents the moment 
of the strongest field intensity and the highest signal-to-noise 
ratio. Therefore, using the topographic map at the peak of GFP 
to represent other surrounding topographic maps for analysis is 
an effective method to improve the microstate signal-to-noise 
ratio and reduce the amount of computation (Murray et  al., 
2008). At the same time, it is also found that the topographic map 
at the peak of GFP is similar to the surrounding one, while the 
similarity at the valley is low (Pascual-Marqui and Michel, 1995; 
Thomas et  al., 2002; Walther, 2005), which means that the 
transition from one topographic map to another is completed at 
the negative peak of GFP.

 (2) The modified k-means clustering algorithm is used for cluster 
analysis (Murray et al., 2008), and EEG data is clustered into n 
microstates. Clustering model is as follows:

 x Azn n n= + ε  (13)

where, xn is the EEG signal sampled for the nth time, 1 ≤ n ≤ N, N 
is the number of time sample; A∈RC × K is the topographic map of 
clustering, C is the number of channels, and K is the number of 
clustering (the number of microstate class). zn∈RK × N is the activation 
state of the microstate at the nth sampling; εn is EEG signal noise 
sampled at the nth time.

 (3) Global Explained Variance (GEV) and Cross-Validation 
criterion (Poulsen et al., 2020; CV) are calculated to evaluate 
the fitness of microstates and determine the optimal number 
of microstates.

GEV is an index to measure the similarity between each EEG 
sample and its assigned microstate, so the higher the GEV value, the 
better the result. The formula is as follows:
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where, GFPn is the global field potential and the standard 
deviation of all EEG electrodes sampled at the nth time.

The value of CV is related to residual noise, so a smaller value of 
CV should be obtained. The calculating formula is as follows:

 


22 1V
1

CC
C K

σ − = ⋅  − −   
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where, σ  is the estimator of the residual noise variance.
 (4) After matching the extracted microstates to the EEG signals of 

the subjects, the EEG microstate parameters between the two 
tasks at each frequency band are calculated respectively:

①  Mean Duration (MD): the mean duration of time that one 
microstate keeps stable.

②  Time Coverage Ratio (TCR): percentage in time coverage of 
one type of microstate.

③  Occurrence Per Second (OPS): frequency of occurrence of 
one microstate.

④  Global Explained Variance (GEV): an index to measure the 
similarity between each EEG sample and its assigned microstate.

2.2. Data and pre-processing

The dataset used in this paper is derived from a novel cognition-
guided neurofeedback BCI dataset on nicotine addiction, which 
includes smoking subjects performing two cognitively guided tasks at 
a sampling frequency of 250 Hz (Bu et  al., 2021). The cognitively 
guided task of the dataset is to record EEG data by allowing subjects 
to focus on the smoking-related pictures (e.g., holding a cigarette in 
hand) and paired neutral pictures (e.g., holding a pencil in hand). The 
EEG data of smoking-related pictures and neutral pictures on each 
subject were recorded in six groups, respectively.

In this study, EEG data of 20 subjects were selected from this 
dataset, including 120 groups of EEG data in smoking-related 
pictures (smoke) and 120 groups of EEG data in neutral pictures 
(neutral). In the pre-processing step, the original EEG signals 
were filtered to 0.1–40 Hz to remove noise and other interference 
signals. At the same time, the eye electrodes were removed, and 
the corresponding potentials of 45 electrodes (F7, F5, F3, F1, FZ, 
F2, F4, F6, F8, FT7, FC5, FC3, FC1, FCZ, FC2, FC4, FC6, FT8, T7, 
C5, C3, C1, CZ, C2, C4, C6, T8, TP7, CP5, CP3, CP1, CPZ, CP2, 
CP4, CP6, TP8, P7, P5, P3, P1, PZ, P2, P4, P6, P8) were selected 
for evaluation.

By using the CEEMDAN and instantaneous frequency model in 
the improved HHT method, our experiment divided the addiction 
EEG data with two different tasks into five frequency bands including 
delta band (0.5–4 Hz), theta band (4–8 Hz), alpha band (8–12 Hz), 
beta band (12–30 Hz), and gamma band (30–40 Hz). Then, 
we  analyzed and compared the microstate parameters at each 
frequency band.

3. Results

3.1. Full band microstates

According to GEV and CV, the difference is the largest when the 
number of EEG microstates in neutral group is 6 and smoke group is 
5 in Figure 1. Therefore, we selected 6 microstates in neutral group 
and 5 in smoke group, which is shown in Figure 2. Microstates A, B, 
and C in neutral group and smoke group are similar to the classic 
microstates. However, microstate D, with positive and negative voltage 
located in the frontal central region (ignoring polarity), is related to 
attention network and sleep (Delorme and Makeig, 2004), which is 
split into microstates D1 and D2 in neutral group, but does not split 
in smoke group. In addition, an additional microstate E is generated 
in both groups.

3.2. Time-frequency analysis

In this study, as mentioned above, instantaneous parameters 
were extracted to provide an insight into the local variations in 
the spectral domain of EEG data. For each subject, and for each 

C
V

G
E

V

C
V

G
E

V

Number of microstates in neutral group

A B

Number of microstates in smoke group

FIGURE 1

The effective number of microstates based on the fitness.
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FIGURE 3

Taking channel F7 as an example, the EEG signal was decomposed into IMFs, where (A) decomposed signal in neutral group, (B) decomposed signal in 
smoke group.

channel, the EEG data were decomposed into a set of IMFs using 
the CEEMDAN algorithm, which is followed by the estimation of 
instantaneous amplitudes and instantaneous frequency using 
HT. As an example, Figure 3 shows the decomposed IMFs for 
channel F7 of EEG data from a representative subject. Figure 4 
shows the corresponding energies at each band. It should 
be  noted that the whole-time length of 1  min is used for 
decomposition and for a better display only 5 s data are shown. 
Figure 5 shows the sub-band energies across 45 electrodes for one 
time instance.

3.3. Sub-band microstates and statistical 
analysis

We performed microstate analysis at each EEG frequency band 
obtained by improved HHT method. According to GEV and CV, the 
optimal number of microstate at delta, alpha and theta bands is 5, 
while the optimal number of microstate at beta and gamma bands is 
4. Figure 6 shows each band microstate topographic maps obtained by 
improved HHT method.

Microstate parameters at each frequency band under the 
improved HHT method were calculated, including MD, OPS, TCR, 

and GEV. The results are shown in Table 1. Multi-way ANOVA was 
performed for microstate parameters at each frequency band. We find 
significant class × group interactions for all microstate parameters: ① 
delta band: MD (F = 120.98, p < 0.001, η2 = 347164.93), OPS 
(F = 702.13, p < 0.001, η2 = 140.94), TCR (F = 551.46, p < 0.001, 
η2 = 5.55), GEV (F = 305.58, p < 0.001, η2 = 4.78); ② alpha band: GEV 
(F = 9.98, p < 0.001, η2 = 0.047); ③ beta band: TCR (F = 3.42, p = 0.017, 
η2 = 0.04), GEV (F = 25.45, p < 0.001, η2 = 0.16); Then, we performed 
separate one-way ANOVA for each microstate parameter at delta, 
alpha and beta bands between neutral and smoke group. The results 
are shown in “Supplementary Tables A.” These follow-up tests reveals 
significant between group differences for band microstates: ① At delta 
band, the OPS, TCR and GEV of microstate D5 in neutral group are 
higher than those in smoke group (OPSneutral = 1.59 ± 0.30, 
OPSsmoke = 1.44 ± 0.20; TCRneutral = 0.22 ± 0.11, TCRsmoke = 0.18 ± 0.03; 
GEVneutral = 7.75 ± 2.49, GEVsmoke = 6.64 ± 1.81); ② At alpha band, the 
OPS, TCR and GEV of microstate A2 in neutral group are lower than 
those in smoke group (OPSneutral = 2.03 ± 0.22, OPSsmoke = 2.14 ± 0.15; 
TCRneutral = 0.21 ± 0.03, TCRsmoke = 0.22 ± 0.02; GEVneutral = 7.62 ± 1.65, 
GEVsmoke = 8.62 ± 1.65); ③ At beta band, the TCR and GEV of 
microstate B2 in neutral group are lower than those in smoke group 
(TCRneutral = 0.25 ± 0.04, TCRsmoke = 0.27 ± 0.02; GEVneutral = 7.47 ± 1.89, 
GEVsmoke = 8.67 ± 3.53).
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FIGURE 2

EEG microstates on two response tasks, the number in neutral group is 6, the number in smoke group is 5.

https://doi.org/10.3389/fnins.2023.1174399
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Xiong et al. 10.3389/fnins.2023.1174399

Frontiers in Neuroscience 07 frontiersin.org

3.4. Classification and recognition on 
microstate parameters

According to the results in section 3.3, microstate parameters with 
significant differences between the two tasks were selected as features, 
including MD, OPS, TCR and GEV at delta, alpha, and beta band, 
which were performed for classification under Gaussian kernel 
SVM classifier.

The results are shown in Table 2. The classification effect is 
optimal at delta band. The microstate D1 has the highest 
classification accuracy (92%), sensitivity (94%) and specificity 
(91%). Other microstates at delta band also have better 
classification results. Then, microstate A2 and A3 at alpha band 
also have good classification effect, with the highest accuracy of 
78%, sensitivity of 75% and specificity of 87%. Furthermore, 
microstate B1 and B2 at beta band have general classification 
effect, with accuracy of 73%, sensitivity of 90% and 
specificity of 84%.

Besides, selecting the microstates D1, A2, and B2 with the best 
classification result, we also plot the ROC curve, which shows that D1 
has the best results in classification. The specific result is shown in 
Figure 7.

3.5. Comparing with other methods in 
nicotine addiction detection

Some EEG analysis methods which similar to the improved 
HHT-Microstate were also employed to analyze EEG data of these 
nicotine addiction subjects. Previous studies have greatly improved 
the decoding accuracy of EEG by calculating the spatial feature of the 
Riemann distance in the EEG of motion imagination at frequency 
bands (Qu et al., 2022). And in the traditional microstate analysis, the 
Finite Impulse Response (FIR) filter in EEGLAB (Michel and Koenig, 
2017) was employed to filter EEG data according to the frequency 
band range. Therefore, microstates and Riemann distance were 
calculated from EEG signal at each frequency band filtering by FIR 
and HHT. The result of analysis and comparison according to these 
methods are as follows.

Figure 8 shows each band microstate topographic maps obtained 
by FIR method. For further comparison with the improved 
HHT-Microstate, similarity index (Kingsley and Sethukarasi, 2023) 
was calculated for each single-band and full-band microstate 
topographic maps, respectively, for the purpose of 
corresponding comparison.

Firstly, the difference index of each EEG band topographic maps 
between the two types of tasks was compared. The results in Figure 9 
show that the improved HHT method provides more variability 
among the topographic maps at each frequency band.

Secondly, the permutation test was conducted for the similarity of 
the two topographic maps (Koenig et al., 1999). Table 3 shows the 
permutation test results of the similarity index among topographic 
maps. The difference of the test results under the improved HHT 
method is mainly reflected in the microstate A2 and A5 at alpha band 
and the microstate B4 at beta band.

In addition, the GEV under the two methods were calculated, 
respectively. The GEV under the improved HHT method is higher 
than the traditional filtering method, which are shown in Table 4.

Furthermore, microstate parameters and Riemann distance at 
each frequency band calculated under the FIR method were shown 
in “Supplementary Tables B,” which include MD, OPS, TCR and 
GEV for microstate, model of AIRM, Stein, Jeffery and LogED for 
Riemann distance. Multi-way ANOVA was performed for each 
parameter at each frequency band. We do not find significant class 
× group interactions for all parameters. We  also did one-way 
ANOVA for each microstate parameter and Riemann distance at 
delta, alpha and beta bands between neutral and smoke group. The 
results were shown in “Supplementary Tables C.” Only few 
parameters have significant difference.

Finally, we  also select microstate parameters and Riemann 
distance at delta, alpha and beta bands between the two tasks as 
features, which were performed for classification under Gaussian 
kernel SVM classifier.

The results are shown in Tables 5–7. The optimal effect of 
classification for microstate is A4 at alpha band, which has the highest 
classification accuracy (87%), sensitivity (88%) and specificity (86%), 
and for Riemann distance it is beta band, which has the highest 
classification accuracy (71%), sensitivity (67%) and specificity (75%). 
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FIGURE 4

Energy diagram at each band of F7 channel within 5 s, where (A) neutral group; (B) smoke group.
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The effect of classification for FIR-Microstate and FIR-Riemann is 
inferior to improved HHT-Microstate.

4. Discussion

As a category of mental illness, substance addiction is a cause of 
avoidable morbidity and mortality around the world. Nicotine 
addiction is the most widely distributed and the most numerous 
substance addiction type. According to relevant studies, nicotine 
addicts are different from non-addicts in cognitive function, sleep 
structure and smoking cue response. Therefore, many studies 
mainly carry out on the mechanism of addiction and intervention 
methods, which have great potential clinical benefits for the 
intervention and treatment of substance addiction. Spontaneous 

EEG signal, modulated by cognitive and sensory processing 
(Samaha et al., 2022), fluctuates in milliseconds and explains the 
transient brain functional states. Therefore, it is necessary to further 
explore the brain mechanism of smoking cue response and find 
effective markers of smoking cue response as targets for addiction 
detection and intervention.

In order to determine the fluctuation dynamics of brain neural 
sources in the time domain, Lehman (Lehmann et  al., 1987; 
Lehmann, 1994) proposed the method of EEG microstate analysis 
which quantified the spatial distribution of nerve potentials among 
scalp electrodes at each time, reflected the sum of instantaneous 
activity of brain neutral clusters with fewer microstate topographic 
maps, and examined the functional activity network of the brain 
(Lehmann et  al., 1987). It is the best choice for time domain 
analysis. On this basis, Ehtasham et  al. (2019) used the HHT 
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FIGURE 5

Sub-band energies across 45 electrodes, where (A) neutral group; (B) smoke group.
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TABLE 1 Microstate parameters at each frequency band under the improved HHT method.

Subjects Microstates
MD OPS TCR GEV

neutral smoke neutral smoke neutral smoke neutral smoke

Delta

D1 127.66 ± 10.97 131.01 ± 14.50 1.62 ± 0.39 1.63 ± 0.40 0.21 ± 0.06 0.22 ± 0.07 19.30 ± 6.60 20.33 ± 9.49

D2 125.50 ± 7.63 127.18 ± 7.83 1.49 ± 0.49 1.68 ± 0.20 0.19 ± 0.07 0.21 ± 0.03 11.77 ± 2.33 12.54 ± 3.79

D3 123.63 ± 9.19 126.21 ± 6.37 1.45 ± 0.42 1.59 ± 0.16 0.18 ± 0.06 0.20 ± 0.03 9.55 ± 1.90 9.26 ± 1.93

D4 127.82 ± 23.78 125.16 ± 7.34 1.57 ± 0.28 1.53 ± 0.20 0.21 ± 0.09 0.19 ± 0.03 9.19 ± 3.66 8.27 ± 1.96

D5 130.38 ± 34.43 121.22 ± 5.64 1.59 ± 0.30 1.44 ± 0.20 0.22 ± 0.11 0.18 ± 0.03 7.75 ± 2.49 6.64 ± 1.81

Theta

T1 123.31 ± 7.28 122.23 ± 8.37 1.95 ± 0.17 1.89 ± 0.16 0.24 ± 0.03 0.23 ± 0.03 10.00 ± 1.93 10.04 ± 2.32

T2 117.21 ± 5.98 119.86 ± 6.50 1.85 ± 0.11 1.82 ± 0.14 0.22 ± 0.02 0.22 ± 0.02 8.41 ± 1.44 8.45 ± 1.61

T3 115.51 ± 4.88 118.03 ± 6.38 1.74 ± 0.12 1.74 ± 0.11 0.20 ± 0.02 0.21 ± 0.02 7.37 ± 1.37 7.59 ± 1.19

T4 110.36 ± 5.43 112.61 ± 5.81 1.59 ± 0.13 1.64 ± 0.13 0.18 ± 0.02 0.18 ± 0.02 6.23 ± 0.96 6.40 ± 0.79

T5 109.74 ± 5.89 106.56 ± 4.40 1.49 ± 0.17 1.51 ± 0.15 0.16 ± 0.02 0.16 ± 0.02 5.29 ± 0.84 5.27 ± 0.89

Alpha

A1 108.60 ± 6.93 105.67 ± 5.46 2.20 ± 0.20 2.21 ± 0.17 0.24 ± 0.03 0.23 ± 0.02 9.64 ± 2.22 9.56 ± 1.50

A2 101.13 ± 6.60 104.07 ± 3.83 2.03 ± 0.22 2.14 ± 0.15 0.21 ± 0.03 0.22 ± 0.02 7.62 ± 1.65 8.62 ± 1.65

A3 100.27 ± 6.50 102.84 ± 5.59 1.96 ± 0.19 2.01 ± 0.17 0.20 ± 0.03 0.21 ± 0.02 7.18 ± 1.90 7.41 ± 1.47

A4 97.52 ± 4.45 97.24 ± 6.64 1.85 ± 0.18 1.79 ± 0.15 0.18 ± 0.02 0.17 ± 0.22 6.13 ± 0.82 5.97 ± 1.03

A5 96.73 ± 5.82 95.94 ± 4.41 1.81 ± 0.22 1.70 ± 0.15 0.18 ± 0.03 0.16 ± 0.02 5.69 ± 1.69 5.16 ± 0.90

Beta

B1 87.81 ± 6.92 83.90 ± 16.97 3.39 ± 0.16 3.88 ± 2.70 0.30 ± 0.03 0.29 ± 0.03 9.68 ± 3.47 9.48 ± 3.55

B2 80.62 ± 5.13 80.14 ± 14.76 3.11 ± 0.45 3.81 ± 2.58 0.25 ± 0.04 0.27 ± 0.02 7.47 ± 1.89 8.67 ± 3.53

B3 80.50 ± 3.65 76.48 ± 14.88 1.62 ± 0.39 1.63 ± 0.40 0.25 ± 0.03 0.23 ± 0.03 6.60 ± 1.17 6.35 ± 1.39

B4 76.90 ± 5.42 76.24 ± 15.44 1.49 ± 0.49 1.68 ± 0.20 0.20 ± 0.03 0.21 ± 0.03 4.91 ± 1.18 5.25 ± 1.33

Gamma

G1 120.30 ± 52.82 138.77 ± 102.42 1.45 ± 0.42 1.59 ± 0.16 0.30 ± 0.07 0.31 ± 0.08 10.09 ± 5.82 10.83 ± 7.82

G2 106.48 ± 53.52 93.68 ± 8.23 1.57 ± 0.28 1.53 ± 0.20 0.27 ± 0.05 0.26 ± 0.04 7.18 ± 2.88 6.52 ± 1.84

G3 90.54 ± 12.54 87.53 ± 20.00 1.59 ± 0.30 1.44 ± 0.20 0.22 ± 0.05 0.22 ± 0.08 4.68 ± 1.28 4.71 ± 2.10

G4 101.80 ± 57.41 94.04 ± 26.97 1.95 ± 0.17 1.89 ± 0.16 0.21 ± 0.05 0.21 ± 0.06 3.98 ± 1.17 4.51 ± 1.64

FIGURE 6

Microstate topographic maps at each frequency band, i.e., delta band (D1, D2, D3, D4, D5), theta band (T1, T2, T3, T4, T5), alpha band (A1, A2, A3, A4, 
A5), beta band (B1, B2, B3, B4), and gamma band (G1, G2, G3,G4).
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method to transform the time-domain data into the spectral 
domain data, which retained its instantaneous characteristics, 
constructed the correlation between microstate and spectral 
features, and proved that this method was superior to the traditional 
filtering method through experimental comparison. Therefore, in 
this paper, an improved HHT method and FIR method were used, 
respectively, for frequency band decomposition and microstate 
analysis on EEG of nicotine addiction under two types of different 
tasks. Besides, microstate parameters with significant differences 
after improved HHT decomposition were used as features to classify 
and detect nicotine addiction.

4.1. Comparison of microstate parameters 
at each frequency band

Since cue response plays an important role in the 
psychological cognition, withdrawal and relapse of nicotine 

addictions, many experiments have been conducted to study the 
different cues provided by nicotine addicts, which include the 
cues related to neutral control and cigarettes to different degrees. 
Through different cue feedback, it is found that cigarette-related 
cues caused higher levels of de-alpha synchronization (Cui et al., 
2013), and theta band in frontal lobe shows strong network 
coherence in smoking cues (Shinan, 2020). At the same time, 
studies have shown that there are significant differences in 
microstate parameters between addicts and non-addicts, and 
better identification and detection can be  achieved under the 
SVM optimized by genetic algorithm (Peng, 2019). Thus, 
combined with previous studies, whether there are significant 
differences in microstate parameters at different frequency bands 
and whether accurate identification and detection can 
be  achieved in the face of different smoking cues is a worth 
studying problem in the cue response of substance addicts.

Therefore, in our paper, two time-frequency decomposition 
methods were employed to divide the EEG data of nicotine addicts 
into five different bands and compared the microstate parameters 
between two different cue-response tasks at each frequency band to 
find differences.

The experimental results show that the two groups of full band 
microstates in Figure  2, microstate D in neutral group split into 
microstates D1 and D2, while those in smoke group does not split. In 
addition, an additional microstate E is generated in both tasks groups. 
Whether this microstate is unique to nicotine addicts needs further 
research. Then, MD, OPS, TCR and GEV at each frequency band 
obtained by the improved HHT method are shown in Table  1. 
According to the result of multi-way ANOVA, we find significant class 
× group interactions for microstate D5, A2 and B2 at specific delta, 
alpha and beta bands. However, the study of Ehtasham et al. (2019) 
found that the optimal number of microstates at each frequency band 
was 4, and the parameters were similar and consistent at each 
frequency band, without significant difference through healthy 
non-addicts. Our experimental results are similar to previous studies 
that there are significant differences in coherence, power, and energy 
between addicts and non-addicts at specific EEG bands (Reid et al., 
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FIGURE 7

ROC curves of classification on microstate D1, A2, and B2..

TABLE 2 Classification results of microstates at delta, alpha, and beta bands by using improved HHT-Microstate.

Subjects Microstates Accuracy (%) Sensitivity (%) Specificity (%)

Delta [0.1–4 Hz]

D1 92.86 94.29 91.43

D2 90.35 90.03 90.29

D3 83.33 68.89 91.11

D4 87.88 86.02 88.14

D5 83.34 66.67 91.36

Alpha [8–12 Hz]

A1 69.44 75.08 63.89

A2 78.30 73.58 83.02

A3 71.28 46.81 87.74

A4 56.71 64.86 48.16

A5 61.86 58.28 64.22

Beta [12–30 Hz]

B1 70.19 55.77 84.62

B2 73.47 90.88 53.06

B3 61.02 61.02 61.02

B4 63.64 70.45 56.82
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2004; Peng, 2019), which may indirectly indicate that the EEG of 
nicotine addicts is different at certain frequency bands. Therefore, the 
difference of EEG microstate parameters at specific frequency bands 
can be used to detect substance addiction. Furthermore, based on the 
results of one-way ANOVA for each microstate parameter between 
neutral and smoke group at delta, alpha and beta bands, D5OPS, D5TCR 

and D5GEV in neutral group at delta band are higher than those in 
smoke group, A2OPS, A2TCR and A2GEV in neutral group at alpha band 
are lower than those in smoke group and B2TCR, B2GEV in neutral group 
at beta band are higher than those in smoke group. We can distinguish 
and detect nicotine addiction with different cue responses mainly by 
these microstate parameters at these frequency bands.

FIGURE 8

Microstate topographic maps at each frequency band, i.e., delta band (D1, D2, D3, D4, D5), theta band (T1, T2, T3, T4, T5), alpha band (A1, A2, A3, A4, 
A5), beta band (B1, B2, B3, B4), and gamma band (G1, G2, G3,G4).

FIGURE 9

After frequency band division by the two methods, the similarity index hot plot of all microstate topographic maps at each EEG frequency band 
between two kinds of different tasks is extracted. The horizontal axis is EEG microstate of the neutral group and the vertical axis is EEG microstate of 
the smoke group.
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4.2. Detection of nicotine addiction by 
improved HHT-microstate method

Previous studies have used microstate correlation parameters 
to classify and detect different diseases or tasks and have achieved 
better identification and detection effect. For example, for heroin 
addicts, the features of EEG microstate parameters and negative 
peak of microstate duration were used to classify, with the accuracy 
of 72% (Peng, 2019). At the same time, there are different spatial 
microstates between patients with high and normal cranial 
pressure. Microstate parameters were used to classify patients with 
high and low cranial pressure, which can obtain the highest 
classification accuracy (87%; Shuaiyang, 2021). In this paper, 
microstate parameters with different frequency bands under 

different cue-response tasks were selected as features to the 
Gaussian kernel SVM classifier for classification and detection. The 
microstate parameters at delta band, alpha band and beta band 
were used to classify substance addiction. The microstate D1 at 
delta band has the highest classification accuracy (92%), sensitivity 
(94%), and specificity (91%), the microstate A2 at alpha band and 
microstate B2 at beta band also have better classification result. At 
the same time, the microstates with the best classification result at 
each band were selected and plot the ROC curves, which also 
mainly reflected the best result on microstate D1 and the better 
result on microstate A2 and B2 by evaluating the AUC under each 
curve. Therefore, microstate parameters at delta and alpha bands 
are promising for the identification and detection of 
nicotine addiction.

TABLE 3 The permutation test results of the similarity index between the full-band and single-band microstate topographic map of subjects’ EEG.

Microstates A B C D E

Bands
Improved 

HHT
FIR

Improved 
HHT

FIR
Improved 

HHT
FIR

Improved 
HHT

FIR
Improved 

HHT
FIR

Delta

D1 0.31 0.85 0.28 0.86 0.34 0.88* 0.29 0.83 0.35 0.86*

D2 0.25 0.86 0.22 0.86 0.27 0.88 0.23 0.83 0.34 0.85

D3 0.23 0.86 0.20 0.86 0.24 0.88 0.22 0.84 0.32 0.86

D4 0.30 0.87 0.38 0.87 0.39 0.89 0.38 0.84 0.35 0.87

D5 0.37 0.87 0.35 0.87 0.32 0.89 0.37 0.84 0.38 0.87

Theta

T1 0.25 0.79 0.23* 0.79 0.27 0.85 0.23* 0.76 0.34 0.92

T2 0.13 0.80 0.13 0.80 0.16 0.86 0.16 0.77 0.22 0.92

T3 0.28 0.79 0.29 0.79 0.26 0.85 0.30 0.76 0.22 0.92

T4 0.30 0.81 0.24 0.80 0.39 0.86 0.25 0.77 0.42 0.91

T5 0.20 0.82 0.15 0.81 0.24 0.87 0.19 0.78 0.29 0.92

Alpha

A1 0.47 0.80 0.47 0.79 0.47 0.85 0.48 0.77 0.33 0.92

A2 0.04* 0.80 0.04 0.79 0.04* 0.85 0.05* 0.76 0.04* 0.90

A3 0.30 0.81 0.34 0.80 0.37 0.86 0.32 0.77 0.35 0.92

A4 0.29 0.80 0.30 0.79 0.29 0.85 0.32 0.77 0.28 0.91

A5 0.21* 0.80 0.19* 0.80 0.17* 0.86 0.20* 0.77 0.11* 0.91

Beta

B1 0.18 0.79 0.19 0.80 0.20 0.83 0.14 0.77 —— ——

B2 0.17 0.79 0.17 0.80 0.16 0.82 0.16 0.77 —— ——

B3 0.32 0.80 0.26 0.80 0.23 0.85 0.24 0.77 —— ——

B4 0.50* 0.81 0.04* 0.81 0.06* 0.85 0.04* 0.78 —— ——

Gamma

G1 0.16 0.76 0.25 0.79 0.21 0.78 0.21* 0.76 —— ——

G2 0.22 0.76 0.34 0.80 0.30 0.78 0.28 0.77 —— ——

G3 0.32 0.76 0.31 0.79 0.21 0.78 0.11 0.76 —— ——

G4 0.40 0.80 0.37 0.81 0.27 0.83 0.16 0.78 —— ——

The results with statistically significant differences are indicated by asterisks (*).

TABLE 4 GEV for all microstates at each frequency band under improved HHT method and traditional filtering method.

EEG Data Methods Delta Theta Alpha Beta Gamma

Neutral
Improved HHT 55.17 37.93 36.77 27.10 21.15

FIR 31.79 33.20 34.89 24.50 33.19

Smoke
Improved HHT 55.14 38.29 37.15 27.57 22.87

FIR 32.49 32.8 34.99 28.39 34.21
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4.3. Comparison of analysis result between 
the improved HHT-microstate and other 
methods

In order to further prove the intrinsic superiority of the improved 
HHT-Microstate method, this experiment compared the improved 
HHT-Microstate method with other similar EEG analysis methods, 
including the frequency band microstates and frequency band 
Riemann distance extracted by FIR filtering methods, and conducted 
corresponding statistical analysis and classification detection, 
respectively. According to the comparison results in section 3.5, it is 
found that there were significant differences on the similarity of 
microstate topographic maps, statistical analysis and classification 
results of parameters between different methods.

Firstly, according to Figures 6, 8, it could obviously observe that 
there were significant differences between the two methods for each 
EEG microstate topographic map at delta and gamma bands in neutral 
and smoke group, and there were also some other significant 
differences in the microstate topographic maps at other bands. The 
similarity index among all topographic maps at each EEG frequency 
band of the two groups obtained by the improved HHT and FIR is 
shown in Figure 9, in which the improved HHT method has a lot of 
variability among the band topographic maps. According to the 
permutation test in Table  3, the similarity of improved 
HHT-Microstate method at alpha and beta bands is significantly 
different. However, the FIR method does not detect these differences. 
In addition, the GEV under the improved HHT-Microstate method is 
higher than the FIR method.

Then, the same multi-way ANOVA as improved 
HHT-Microstate method was performed on the FIR band 
microstate parameters and Riemann distance, however, there were 
no significant interaction. At the same time, only a few parameters 
of each feature were significantly different under the one-way 
ANOVA between neutral and smoke group. For more accurate 
verification, we  also chose feature parameters consistent with 
improved HHT-Microstate method for classification detection, 
which means that microstate parameters and Riemann distance 
at delta, alpha and beta band were selected as features for 
classification. According to the results in Tables 5–7, it is found 
that the result of classification for microstate is A4 at alpha band, 
which has the best accuracy (87%), sensitivity (88%) and 
specificity (86%), and for Riemann distance is beta band, which 
has the best accuracy (71%), sensitivity (67%) and specificity 
(75%). Thus, the effect of classification for the improved 
HHT-Microstate is better than FIR-Microstate, HHT-Riemann 
and FIR-Riemann methods, which means that the improved 
HHT-Microstate method is more suitable to represent the 
characteristics of EEG microstates and more representative than 
other methods in describing the dynamic characteristics  
of EEG.

4.4. Expectation

As a widespread medical and social problem in the world, 
substance addiction causes great harm to the physical health of 

TABLE 5 Classification results of microstates at delta, alpha, and beta bands by using FIR-Microstate.

Subjects Microstates Accuracy (%) Sensitivity (%) Specificity (%)

Delta [0.1–4 Hz]

D1 64.44 62.22 66.67

D2 66.67 68.89 64.44

D3 62.22 93.33 31.11

D4 77.78 86.67 31.11

D5 77.78 73.33 82.22

Alpha [8–12 Hz]

A1 54.00 60.00 48.00

A2 65.00 52.00 78.00

A3 63.00 62.00 64.00

A4 87.00 88.00 86.00

A5 79.00 64.00 94.00

Beta [12–30 Hz]

B1 65.91 81.82 50.00

B2 64.78 72.73 56.82

B3 64.77 72.73 56.82

B4 65.91 77.27 54.55

TABLE 6 Classification results of Riemann distance at delta, alpha, and 
beta bands by using HHT-Riemann.

Bands
Accuracy 

(%)
Sensitivity 

(%)
Specificity 

(%)

Delta 62.22 55.56 68.89

Alpha 57.78 64.44 51.11

Beta 64.29 71.43 57.14

TABLE 7 Classification results of Riemann distance at delta, alpha, and 
beta bands by using FIR-Riemann.

Bands
Accuracy 

(%)
Sensitivity 

(%)
Specificity 

(%)

Delta 60.00 51.11 68.89

Alpha 57.45 57.45 57.45

Beta 71.43 67.35 75.51
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human and the stability of society. At present, the main 
treatment methods are physical therapy, drug therapy, 
psychological therapy and neurofeedback therapy. In recent 
years, with the development of BCI, EEG research has become 
a new diagnostic basis and treatment for substance addiction, 
which includes analyzing and comparing the differences of EEG 
signals in substance addiction, addiction withdrawal, and 
healthy controls. In this paper, the improved HHT method was 
used to divide the frequency band of EEG data and preserve the 
instantaneous characteristics of the time-domain data in the 
spectrum domain. At the same time, the EEG microstates of 
patients with nicotine addiction under different cue-response 
tasks were compared, and it was found that there were significant 
differences in the EEG microstates between different  
tasks.

However, with the advancement of computer technology, an 
increasing number of computational methods have been applied 
to brain research, such as Generative Adversarial Network 
(GAN), which solves the problem of imbalanced medical images 
(Hu et al., 2020), constructs super-resolution MR Images (You 
et al., 2022), reconstructs the lost BOLD signal (Yan et al., 2020) 
and fuse multi-modality medical images (Hu et al., 2021). All of 
them are latest research results in the brain science field and very 
enlightening the research of nicotine addiction in this paper. 
Therefore, our next step is to use these new techniques to analyze 
EEG signals and discover hidden information, which can 
be combined with microstate analysis.

Finally, there are individual differences in EEG signals. 
Increasing the amount of data will help further validate the 
results of this article, which is also one of our next steps. Besides, 
the methods of signal process could also be  improved, for 
instance, some other adaptive time-frequency analysis methods 
(Wacker and Witte., 2011; Hadjileontiadis et al., 2017) can replace 
the improved HHT method and calculate the corresponding 
instantaneous frequency or instantaneous amplitude to obtain 
the unique EEG bands.

5. Conclusion

In this paper, we  compared the difference of EEG microstates 
between nicotine addicts by using the improved HHT time-frequency 
decomposition method. We  selected microstate parameters with 
significant difference as features for classification and got better 
recognition detection results. These results indicate that the EEG data at 
frequency bands obtained by the improved HHT method is more 
suitable to represent the characteristics of EEG signals, and the 
microstates obtained by this method can be effectively distinguished 
from the EEG data of nicotine addiction, which means that the improved 
HHT-Microstate analysis can offer new ideas and insights for the brain 
research of nicotine addiction and provide more effective methods and 
basis for the diagnosis and treatment of substance addiction.
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