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Cognitive competency is an essential complement to the existing ship pilot 
screening system that should be  focused on. Situation awareness (SA), as the 
cognitive foundation of unsafe behaviors, is susceptible to influencing piloting 
performance. To address this issue, this paper develops an identification model 
based on random forest- convolutional neural network (RF-CNN) method for 
detecting at-risk cognitive competency (i.e., low SA level) using wearable EEG 
signal acquisition technology. In the poor visibility scene, the pilots’ SA levels 
were correlated with EEG frequency metrics in frontal (F) and central (C) regions, 
including α/β (p = 0.071 < 0.1 in F and p = 0.042 < 0.05 in C), θ/(α + θ) (p = 0.048 < 0.05 in 
F and p = 0.026 < 0.05 in C) and (α + θ)/β (p = 0.046 < 0.05 in F and p = 0.012 < 0.05 in 
C), and then a total of 12 correlation features were obtained based on a 5 s sliding 
time window. Using the RF algorithm developed by principal component analysis 
(PCA) for further feature combination, these salient combinations are used as 
input sets to obtain the CNN algorithm with optimal parameters for identification. 
The comparative results of the proposed RF-CNN (accuracy is 84.8%) against 
individual RF (accuracy is 78.1%) and CNN (accuracy is 81.6%) methods 
demonstrate that the RF-CNN with feature optimization provides the best 
identification of at-risk cognitive competency (accuracy increases 6.7%). Overall, 
the results of this paper provide key technical support for the development of an 
adaptive evaluation system of pilots’ cognitive competency based on intelligent 
technology, and lay the foundation and framework for monitoring the cognitive 
process and competency of ship piloting operation in China.
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1. Introduction

Improvements to ship pilots’ situation awareness (SA) in maritime navigation are critical to 
reducing human errors, which have caused 75–96% of marine accidents over the last few years 
(Hetherington et  al., 2006; Mohammadfam et  al., 2019). In recent years, growth in traffic 
densities, ship speeds, and ship sizes have led to the need to improve pilots’ operational safety 
(Weng and Yang, 2015). Due to the complexity of marine systems and the increased use of 
automation and intelligence, it is becoming more difficult for pilots to fully percept and 
understand the current environmental state and predict changes in near future (Wild, 2011; 
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Stirling et al., 2019). To prevent pilots’ unsafe behaviors in a more 
effective and practical manner, it is indispensable to identify at-risk 
cognitive competency combined with emergency situations in pilotage 
(Mosier et al., 2013). However, the measurement gap is increased by 
the requirement of pilots, as the task executors, to maintain high SA 
levels, as well as the individual differences and experiential properties 
of pilotage (Darbra et al., 2007). Therefore, identifying at-risk cognitive 
competency (i.e., low SA levels) as a means of preventing human 
errors is complicated, and is worthy of further investigation in 
operational situations.

At present, the collision of poor visibility situations continues to 
account for a major proportion of all accidents resulting in casualties, 
and studies are focused on determining their relevance through 
statistical methods (Antao and Soares, 2019). Chauvin et al. (2013) 
verified that collision accidents were significantly affected by visibility, 
which is a variable in 56.51% of environmental factors in the human 
factors analysis and classification system (HFACS). Bye and Aalberg 
(2018) supported this finding by calculating the ability of different 
visibility conditions to explain accidents, and concluded that the most 
significant effect occurs when the visibility drops to less than 0.25 
nautical miles. Existing research has effectively evaluated whether 
poor visibility conditions are more likely to cause accidents than other 
environmental factors (e.g., water depth, flow rate, etc.), but has not 
assessed changes in the cognitive state of the pilots in preparation for 
potential hazards in poor visibility (Endsley, 2015). In this study, the 
poor visibility was selected as a typical situation, in which the 
identification of pilots’ low SA levels is necessary. According to the 
literature, the SA three-level hierarchical structure is one of the most 
popular conceptual cognitive frameworks, which frames SA into three 
stages: perception, comprehension, and prediction (Lo et al., 2016). 
Therefore, the first problem to solve is how to accurately identify 
pilots’ low SA level with the three-level cognitive frameworks, taking 
poor visibility scenes as an example (Zhang et al., 2020).

According to the theoretical interpretation of the SA three-level 
model, eye movements and EEG parameters among physiological 
indicators are the most effective reflection of an individual’s intrinsic 
state from the cognitive processes of perception, understanding and 
prediction, providing the possibility to essentially prevent unsafe 
behaviors by detecting SA levels dynamically (Zhang et al., 2020; Pei 
et al., 2022). The correlation between pilots’ eye-tracking metrics and 
SA levels has been validated in a previous study (Jiang et al., 2021). 
However, eye-tracking metrics are only acquired through tangible 
visual behaviors, and there are no consistent conclusions on whether 
such visual behaviors truly meet the perceptual requirements in the 
SA model, or whether the information gazed at is effectively 
understood by the pilot and the actual behavior is taken (di Flumeri 
et al., 2018). Therefore, it is necessary to conduct research based on 
the application of EEG acquisition technology to further assist in 
quantifying the cognitive processes of unsafe behaviors, and the use 
of pilots’ EEG features for SA identification is the first problem that 
needs to be addressed.

To ensure consistency in the study of EEG signals in cross-domain 
applications, the brain is usually divided into different electrode sites 
based on five regions [frontal (F), central (C), parietal (P), temporal 
(T), and occipital (O)] (Aggarwal and Chugh, 2022). EEG is an active 
map of the brain displayed by converting EEG data to the time-
frequency by appropriate methods such as Fourier transform (FT) 
(Srinivasan et  al., 2019). In time-frequency analysis, information 

about the cognitive state of an individual is usually obtained based on 
the data in different frequency bands, commonly including delta (δ) 
(1–4 Hz), theta (θ) (5–8 Hz), alpha (α) (9–14 Hz), beta (β) (15–30 Hz), 
and gamma (γ) (31–59 Hz) (Pan et al., 2021). Therefore, it has become 
a common trend to analyze frequency features for the performance 
evaluation in EEG-based studies (Gutiérrez and Ramírez-Moreno, 
2016). Puma et al. (2018) explored the effect of task difficulty on the θ 
and α bands by varying the number of sub-tasks and showed that the 
higher the level of the operator’s behavioral performance, the lower 
the power spectral density (PSD) of the θ and α bands. Dimitriadis 
et al. (2010) found that the δ band was correlated with the difficulty of 
the operator’s perceptual task, i.e., the PSD of the δ band increased 
when the operator perceived the experimental task as too easy. 
However, previous studies not fully utilizing EEG time-frequency 
features for cognitive studies.

No common agreement has been made for the EEG features 
correlated with SA as EEG acquisition techniques were applied in 
different tasks and workplaces. Regarding the relationship between 
time-frequency features and SA, there have been attempts to validate 
the association (Klaproth et al., 2020; Iqbal et al., 2021). Kästle et al. 
(2021) identified the correlations between β and γ in parietal and 
temporal regions and SA levels during a control task. Notably, only a 
few studies (Saini et al., 2020) have adopted multiple EEG spatial-
frequency features, but there is no consensus on which features are 
associated with SA due to different task conditions and application 
purposes, let alone the identification of pilots’ SA levels based on EEG 
association metrics.

Therefore, the aims in this paper are twofold: First, the primary 
goal is to assess the relationships between EEG time-frequency 
features and SA levels. Correlation analysis indicated that α/β, θ/
(α + θ), and (α + θ)/β frequency bands are significantly correlated with 
SA levels. The ultimate intention of this work is to explore the SA 
identification method based on associated EEG metrics, which is 
expected to reduce piloting risks through improved pilot selection 
and training.

2. Experiments and methods

The research framework was constructed to identify pilots’ SA 
levels using EEG features after the EEG acquisition experiment in 
bridge simulator was implemented (Figure 1). Firstly, it was assumed 
that EEG features and SA were significantly correlated in specific 
scenes (including poor visibility situation). Consequently, based on 
SART questionnaire and EEG acquisition technology, the different SA 
level groups and EEG metrics were separately defined as independent 
and dependent variables. To ensure the professionalism of 
questionnaires and measurement accuracy, the SART questionnaires 
were confirmed through safety engineering and management, 
maritime supervision, and senior pilot experts to adjust existing 
measurement items (Jiang et al., 2021).

Secondly, EEG acquisition technology was used to capture pilots’ 
brain waves, including the θ/β, α/β, θ/(α + θ), (α + θ)/β, and (α + θ)/
(α + β) in different brain regions (e.g., F and C), which were used to 
indirectly infer SA-related constructs (e.g., understanding and 
prediction). And then the visualization methods (i.e., brain regions 
activity and time-frequency analysis) are illustrated to preliminarily 
understand the common EEG patterns and differences between the 
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various SA groups. Although visualization techniques allow analyzing 
EEG data in an explorative way, a statistical analysis must 
be performed to determine differences in spatial-frequency analysis 
as caused by variations in SA levels. Quantitatively, EEG frequency 
metrics are calculated for pilots in each SA group (high and low) 

within different regions. The average power-based values of EEG 
metrics among pilots with high and low SA levels were input into the 
permutation simulation to compare their associations. After digital 
and time-domain filtering, the FT-based EEG frequency features were 
divided into training and testing sets for input to the RF-CNN 
(Random forest-convolutional neural network) method, which 
provides the new avenue of classifying the SA for pilots’ screening.

2.1. Experiments

2.1.1. Participants
Twenty-five male pilots with normal vision from different 

pilotages were recruited as experimental participants, who were taking 
the qualification examination for pilots’ competency in navigation 
simulators. All pilots were aged from 30 to 45  years old, with an 
average of 11.3 years pilotage experience. Pilots have provided 
informed consent about experimental procedures that were approved 
by the relevant authority.

2.1.2. Situations
The trajectory from Shanghai Waigaoqiao terminal phase 5 to 

west Hengsha anchorage was selected from the database of 
qualification examinations, as shown in the Figure 2A. The course and 
distance of each section of the route from the port to the anchorage 
are marked according to the industry standard, and the scenes such as 
ship departure (initial course 18.4 degrees, distance 0.37 nm) and 

FIGURE 1

Identification framework of SA levels in the maritime pilotage simulations.

FIGURE 2

Voyage plan (A) and ship pilotage with poor visibility situations in the 
ship pilotage simulations (B).
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navigation in the fairway (initial course 121.3 degrees, distance 
2.40 nm) are included. Poor visibility was included as a mandatory 
assessment element in the pilotage experiments, as shown in 
Figure 2B. In addition, the initial conditions included that the type of 
vessel was uniformly set as 5000TEU container ship, speed of vessel 0 
knots, flood tide 1 to 2 knots, and north wind force 3.

2.1.3. Procedure
In this experiment, 25 exams were scheduled for 5 days, each of 

which tested one participant who acting as a pilot in a three-person 
exam group. Using the SART questionnaire and EEG acquisition, the 
experiment was divided into two parts, SA measurement and 
experiment. The procedure was as follows:

 (1) In the examination section, the EEG acquisition device (Semi-
dry Bitbrain EEG) was calibrated before the experiment. The 
pilots then used the bridge simulator to sail along a preset 
navigation route and pass through situations, whereby the 
pilots conducted at least 40 min of ship pilotage tasks. During 
this time, a wearable wireless EEG device was used to collect 
the pilots’ brain waves.

 (2) The democracy survey was used to pre-judge the pilots’ 
potential SA level before the experiment. Interviews for the 
SART questionnaire were implemented to confirm the SA 
levels in the post-test.

2.2. Methods

2.2.1. Data analysis
The extraction of EEG features involved identifying and 

calculating the raw data that depend on different SA levels. EEG 
records neuronal firing in different brain regions by arranging 
electrodes at corresponding locations in the cerebral cortex, in order 
to create a dynamic data curve over time. It can be used to reflect the 
brain activity during a specified time-period and can be classified as 
spontaneous or evoked EEG signals according to the principle of 
signal generation (Kaur et al., 2022; Quan et al., 2022). To investigate 
the cognitive processes of the pilots in a continuous task, rather than 
the cognitive state at a certain moment, the study of spontaneous 
rhythmic brain waves was carried out. First, the distribution of the 
initial EEG data in the temporal and spatial dimensions (including the 
F, C, P, and O regions) of the pilots in different SA groups was collected 
and taken for a 50-s period for preliminary analysis, as shown in 
Figure 3. Where, the voltage value displayed in each region is the 
average value of the corresponding EEG potential within that region. 
The distribution of the data revealed that the EEG data of the pilots in 
the high SA group fluctuated more gently, indicating that they had a 
better control of the situations during the piloting processes. And the 
variability of different SA groups in F region was relatively obvious, 
suggesting that the EEG features in this region may help to distinguish 
the pilots’ high or low cognitive level. Figure 3 shows the EEG data 
over a 50-s period, but in practice the device is recording at a sampling 
frequency of 256 Hz and the total number of samples collected is 
approximately 1,847,820. In addition, EEG has normal interruptions 
in capturing brain activity, including other activities from non-neural 
sources when capturing brain activity, such as ocular artifacts, cardiac 
artifacts, myoelectric artifacts, and work-frequency interference (Yang 

et  al., 2020), and voltage values above 200 are considered signal 
artifacts as in Figure 3.

Subsequently, EEG preprocessing is performed by feature 
extraction to reduce data complexity and remove artifacts. Due to the 
random, nonlinear, and multi-band characteristics of EEG signals, 
digital filters are commonly utilized to filter signals from frequency-
domain, but they can only filter out the 50 Hz frequency interference 
in practice. Therefore, indirect processing is required by effective 
feature extraction methods, including common spatial patterns (CSP), 
wavelet transform (WT), principal component analysis (PCA), 
independent component analysis (ICA), autoregressive analysis (AR), 
and FT. To reduce the data dimensions for effective time-frequency 
analysis, the FT-based PSD was selected for data processing and 
feature extraction, and power-based EEG data analysis has been 
applied in safety critical areas (Wang et al., 2015; Perez-Valero et al., 
2021). Specifically, the EEG signals need to be first transformed into 
the frequency-domain by FT, and then the PSD features are calculated 
as shown in the following equation:
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where X w( )  is the EEG signal after Fourier variation and N is 
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time-period.

 
S w

t
N t

X w t
fs

( ) = ( ) ( ) =
∆
∆

∆
2

2 1

 
(2)

where S w( )  is the feature variable of PSD, and ∅t  and fs  
denote the time intervals and acquisition frequencies of the samples, 
respectively.

2.2.2. RF-CNN methods
In the simulation experiments described above, real-time, 

synchronous EEG data were first collected. The multi-dimension of the 
EEG signals and its susceptibility to non-cerebral neural activity, which 
contains a large number of artifacts, make direct analysis of the data 
difficult (Rabcan et al., 2022). To classify pilots’ SA level using wearable 
EEG acquisition technology, an RF-CNN method including data input, 
RF, modified CNN, and verification modules was developed. RF, as an 
ensemble learning method, carries out voting integration based on the 
prediction results of decision tree classifiers, and has good accuracy 
and strong robustness in the identification of noise and outliers 
(McDonald et al., 2020). CNN algorithm is one of the typical examples 
of deep learning algorithms, which tend to mathematically represent 
complex and multi-dimensional classification problems and achieve 
accurate and fast identification of targets based on good network 
generalization ability (Zhu et al., 2021; Fan et al., 2022).

Currently, CNN algorithms have been used in direct combination 
with EEG images, but the identification accuracy is only about 50%. For 
example, Jie et al. (2014) used CNN alone for image identification of 
EEG signals and obtained an accuracy of 45%. Based on this, some 
researchers considered feature extraction of the preprocessed EEG 
signal and then combined with CNN to carry out the identification of 
EEG features and achieved better results. For example, Li M. A. et al. 

https://doi.org/10.3389/fnins.2023.1172103
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Jiang et al. 10.3389/fnins.2023.1172103

Frontiers in Neuroscience 05 frontiersin.org

(2021) tried to extract the WT features of EEG signals for CNN 
algorithm training, and the results showed that the final recognition 
accuracy reached more than 85%. Overall, the use of EEG signal 
features for RF and CNN model training has achieved good results in 
safety-related fields and has become an important research trend 
(Ieracitano et al., 2019; Admiraal et al., 2021). As EEG data involve 
multiple feature dimensions and are obviously correlated, commonly 
used machine learning algorithms fail to effectively reduce signal 
redundancy and relatively lack the ability to identify the internal 
mechanisms of EEG features. The RF-PCA algorithm is used to rank 
the importance of the initial EEG data and extract the main components 
to optimize the features of the input CNN network structure, i.e., to 
further ensure the overall identification rate of the RF-CNN algorithm 
by reducing the feature dimensions of the initial EEG data, and to verify 
the model performance of the optimized method in SA level 
identification by comparing it with the traditional methods.

2.2.2.1. RF module
As a machine learning method, RFs are effective tools for 

evaluation and classification (Scornet et al., 2015). The bootstrap 
sampling technique was used to extract training subsets from the 
samples that had been preprocessed by digital and time-domain 
filtering. Decision tree modeling was carried out for each subset (S1, 
S2, ⋯, Sk), and then the classification results were determined by 
voting according to the principle of majority rule. The objective of the 
RF was to generate a decision tree dependent on a random variable θ 
on the basis of data sample X and identification variable Y. Assuming 
that the identification result of a single decision tree classifier h x k,θ( )  
is h Xi ( ) , the final identification result of the model can 
be expressed as H X

k
h X

i

k
i( ) = ( )

=
∑1

1
.

The feature importance of the RF was determined by adding noise 
to a certain feature and considering whether the identification 
accuracy dropped significantly (Genuer et al., 2010). In the calculation 
process, the residual mean square of the out-of-bag (OOB) score was 
used to evaluate the importance of characteristic variables. This can 
be expressed as:

 
Importance

errOOB errOOB
Ntree

=
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where errOOB1 and errOOB2 are the OOB identification errors 
in each decision tree before and after adding noise interference to all 
sample features, respectively. To determine the optimal parameters, 
the grid search method was used to ensure model stability. The root 
mean square error (RMSE) was adopted to prevent the overfitting of 
feature data. This is calculated as follows:
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where yobs and y pred  are the observed and predicted values of 
the corresponding samples, respectively, and n is the number of 
samples. Moreover, because the correlation of initial features might 
tend to produce partial overlaps of information, PCA was applied to 
obtain the optimal feature combination:

 

F e X e X e X
F e X e X e X

F e X e X

z z

z z

z z z

1 11 1 12 2 1

2 21 1 22 2 2

1 1 2

= + + +
= + + +

= +

�
�

�
22 + +









 � e Xzz z  

(5)

where e e ei i iz1
2

2
2 2

1+ + + = , i = 1,2,⋯, z. No two principal 
components are related, i.e., F F i j i j zi j≠ ≠ =( );,,,, ;,,,, ;,,,, ;,,,, ;,,,,1 2  .  
The first principal component F1 is determined as being the most 
different from all linear combinations of the initial importance 
sequence (X1, X2, ⋯, Xz). The second principal component F2 is 
determined as being a linear combination of X1-Xz that is not related 
to F1 and gives the next-greatest difference from the initial sequence. 
Similarly, the remaining principal components were sought as new 
input sets for the CNN.

FIGURE 3

Fragment of the EEG raw data in different SA groups.

https://doi.org/10.3389/fnins.2023.1172103
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Jiang et al. 10.3389/fnins.2023.1172103

Frontiers in Neuroscience 06 frontiersin.org

2.2.2.2. CNN modified module
As a deep learning method, CNNs are often used to deal with 

binary classification problems with multi-dimension samples 
(Hersche et al., 2020). Essentially, the CNN algorithm mainly uses 
convolution, pooling and fully connected networks to alternately 
extraction, down-dimensioning, and fusion of features from 
multidimensional EEG data to achieve SA-level identification. The 
feature fusions for the CNN solved the problem of EEG data filtering 
and extracting in the identification framework through five 
structures: input layer, convolutional layer, pooling layer, fully 
connected layer, and output layer (Li F. H. et al., 2021; Luo et al., 
2021). The CNN model with the PCA algorithm was used to transfer 
the importance rankings and improve convergence efficiency.

2.2.2.2.1. Structure 1. Input layer: The input feature size preset to 
13 × 20.

2.2.2.2.2. Structure 2. Convolutional layer: The number of layers 
depends on the training parameters and convergence speed. In the 
parameters, the convolution kernel size, i.e., the filtering weights, is 
usually set to 3 × 3 or 5 × 5 matrices, calculated as follows:

 

g f a w b
x y

x y x y= × +
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(6)

where wx y,  denotes the filter weights, b is filter bias term, and f 
is activation function.

2.2.2.2.3. Structure 3. Pooling layer: After each convolution 
process gets the information of different features, layer-by-layer 
filtering of the convolved features can be achieved based on the 
pooling processes. The principle of follows closely the forward 
learning process of the convolutional layer, i.e., the unit matrix 
corresponding to each feature matrix is computed and 
normalized based on the movement of the filter from the 
top-left to the bottom-right corner of the current network (Hu 
et  al., 2019). The pooling layer is used to optimize the 
parameters of the convolved processes, and the activation 
functions of the pooling processes, i.e., the nonlinear ReLU, also 
contributes to reduce the interdependence between the 
convolution parameters by network sparse matrices, calculated 
as follows:
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where h j( )  is the output of the activation function and 
w xj T( )  is the multiplier of the weights and corresponding values 
of the neurons in the j th layer. And the maximum pooling 
process was selected for model training with the 
following equation:

 g ax y= ( )max ,  (8)

2.2.2.2.4. Structure 4. Structure 4. Fully connected layer, where each 
node is connected to all nodes in the previous layers, and is used to 
integrate all the features extracted during the convolving and pooling 
processes. The Softmax is the final output function, which can 
transform the original output of the neural network into a probability 
distribution and obtain the recognition probability of the 
corresponding category. Suppose the original output of the neural 
network is y y y yn1 2 3, , , ,⊃⊃ , then the Softmax regression process 
can be expressed as:
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To identify the speed of convergence, the cross-entropy validation 
method is used to describe the distance between the two probability 
distributions of the output. If the probability distributions of p and q 
are given, the formula for their cross-entropy can be  expressed 
as follows:
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For balancing the training time and accuracy of the network, a 
gradient descent method with error back propagation is also used, i.e., 
each training is based on a fixed number of samples from the training 
set only requires parameter updates in opposite direction of the 
gradient. Assuming J is cost function, the iterative process for 
each w bi j i j, ,,  is:
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Where ε  is learning rate, ∂( )J wi jl/ ,  and ∂( )J bi jl/ ,  are the 
partial derivatives of errors.

In addition, based on the CNN principle, it is found that each 
convolution process generates different information, and the 
convolution layer shows more spatial and frequency features than the 
fully connected layer. In the feature filtering processes of convolution 
and pooling, some important features that affect the results are inevitably 
filtered to ensure the objective requirement of convergence efficiency, 
which makes the identification performance degraded. Therefore, the 
PCA method is introduced to improve the CNN structures by reducing 
the dimensionality of the features after each convolution process, and 
fusing this reduced data with the pooling process point by point before 
inputting it to the following convolution layer until the end of training. 
This CNN modified module not only helps to improve the convergence 
efficiency, but also integrate important information based on the 
correlation mechanism to maximize the reflection of EEG time-
frequency features in the identification results.

2.2.2.3. Verification module
For the test set containing samples of unknown categories, the 

confusion matrix of the model output included true positive (TP), false 
positive (FP), true negative (TN), and false negative (FN) results. To 
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evaluate the identification performance of the RF-CNN method, RF and 
CNN methods without optimized feature combinations were selected 
for comparative analysis. The performance evaluation criteria for each 
classifier were the general accuracy (ACC), true positive rate (TPR), and 
true negative rate (TNR). These metrics were calculated as follows:

 
ACC TP TN

TP TN FP FN
=

+
+ + +

×100%
 

(12)

 
TPR TP

TP FN
=

+
×100%

 
(13)

 
TNR TN

TN FP
=

+
×100%

 
(14)

where TP refers to samples with an observed value of 1 and a 
predicted value of 1, FP refers to samples with an observed value of 0 
and a predicted value of 1, TN refers to samples with an observed 
value of 1 and a predicted value of 0, and FN refers to samples with an 
observed value of 0 and a predicted value of 0.

3. Results

For the purpose of constructing the SA identification model using 
EEG frequency metrics in different brain regions, groups with 
different SA levels were first established. To facilitate the analysis, the 
research hypotheses divide pilots’ SA into two levels based on their 
SART score: high (above average SART score) and low (below average 
SART score). According to the SART scores (mean = 20.13, standard 
deviation = 5.83), the pilots were divided into a high-SA group 
containing 13 participants (mean = 24.5, standard deviation = 5.13) 
and a low-SA group containing 12 participants (mean = 15.2, standard 
deviation = 4.37).

3.1. Time-frequency analysis

To visually compare the EEG pattern of different individuals in the 
two SA groups, the EEG features are illustrated using time-frequency 
analysis in the poor visibility situations of the examination. Since the 
variations in the features of a single channel are most likely the 
superimposed effects of stimuli in adjacent regions, it is necessary to 
analyze the time-frequency features combining with spatial-domain 
(i.e., different brain regions). The spatial-domain represents the 
dynamic distribution of features in different brain regions over time. 
Therefore, the PSDs of different brain regions during a time-period was 
selected, and its interpretation of brain activity by describing the power 
distribution of different signals in frequency, the results are shown in 
Figure 4. The PSDs data were higher in the low- than high-SA group, 
indicating that PSDs may initially reflect brain activity, i.e., brain 
activity of pilots in the low-SA group is more susceptible to external 
stimulus. The PSD features in F and C regions had more obvious 
differences between SA groups, suggesting that identifying different SA 
levels by features in these two brain regions might have better results.

To further investigate the correlation between SA levels and brain 
regions activity in specific frequency bands, the average power of δ, θ, 
α, β, and γ were extracted for activity analysis, and the results are 
shown in Figure 4. It is shown that the variability of the pilots’ brain 
activity is mainly concentrated in the θ, α, and β frequency bands, 
while the δ and γ frequency bands did not vary significantly due to 
their too-low or too-high frequency ranges, respectively. Moreover, 
the difference in brain activity between the high- and low-SA groups 
is more apparent in the F, C, P and O regions, including the C and O 
regions in the θ band, the C and P regions in the α band, and the F and 
P regions in the β band. These findings of brain activity analysis 
provide a preliminary reference and understanding for screening of 
brain regions in the identification model.

Time-frequency analysis provides joint information in the 
frequency- and time-domain to illustrate the time-varying frequency. 
For understanding the variability of EEG time-frequency features at 
high- or low-SA levels, a time-period in which poor visibility was 
selected for feature analysis to obtain the EEG frequency distribution 
over time in brain regions, as shown in Figure 5. The results show that 
there are significant differences in the time-frequency features of 
different SA groups, with the variability in the F and C regions mainly 
in the high frequency, while the P and O regions are more obvious in 
the low frequency. As only short time-periods of EEG features were 
selected for analysis, further statistical tests on the complete task 
processes are needed. However, there was consistency between the 
results of EEG time-frequency features and brain area activity, e.g., the 
finding that the high SA group was relatively inactive in high 
frequencies in P and O regions in time-frequency was also reflected 
in brain activity analysis, suggesting that EEG states can be cross-
referenced from different feature dimensions. Therefore, the brain 
region activity and time-frequency analysis in F, C, P and O regions 
consistently showed relatively significant differences in EEG signals 
between high- and low-SA groups in θ, α and β frequencies. The 
visualization outputs and analyses of these recorded EEG features help 
interpret the results qualitatively to better understand the quantitative 
SA identification results.

3.2. Correlation evaluation

To determine whether these differences are statistically significant, 
the averages power of the EEG frequency metrics from each SA group 
are compared across the brain regions using the permutation 
simulation technique. As before, the θ, α and β frequencies in F, C, P, 
and O regions are selected for statistical analysis as they are the 
primary objects with differences in brain activity between high- and 
low-SA groups in the visualized time-frequency analyses. The 
statistical differences between the EEG metrics and SA levels in the 
four regions across the poor visibility situations are calculated in the 
permutation simulations. Thus, descriptive statistics of five commonly 
used frequency combination metrics [θ/β, α/β, θ/(α + θ), (α + θ)/β, and 
(α + θ)/(α + β)] related to cognitive function for the two SA groups and 
the results of the statistical tests are summarized in Table 1.

In the statistical analysis of F region, the test results show that α/β 
(p  = 0.071 < 0.1), θ/(α + θ) (p  = 0.048 < 0.05), and (α + θ)/β 
(p = 0.046 < 0.05) are correlated with the SA level. In C region, α/β 
(p  = 0.042 < 0.05), θ/(α + θ) (p  = 0.026 < 0.05), and (α + θ)/β 
(p = 0.012 < 0.05) are significantly correlated with the SA level. The 
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pilot’s SA level also impacts the power of θ/β (p = 0.044 < 0.05) and 
(α + θ)/β (p = 0.038 < 0.05) in P region, and θ/(α + θ) (p = 0.027 < 0.05) 
in O region. The poor visibility is not conducive for pilots to obtain 
any necessary feedforward information related to ship collision 
hazards in a timely manner and take safe pilotage measures without 
neglecting stored materials. This demonstrates that they urgently need 
real-time feedforward information to understand the current 
situation, which imposes a higher need for the SA level. Due to the 
average power of the combination metrics of the low-SA group was 
generally higher than in the high-SA group, the descriptive statistics 
suggest that the low-SA pilots may be more susceptible to fluctuations 
in the external navigational environment.

Combined with the correlation evaluation of F, C, P, and O regions 
in poor visibility situation, these results provide the possibility for 
follow-up studies to identify pilots’ at-risk SA level using correlated 
EEG frequency combination metrics. The α/β, θ/(α + θ), and (α + θ)/β 
in F and C regions may be more conducive to distinguish this ability 
between pilots with different SA levels. Moreover, to reduce the data 
volume and noise, the mean and median power of EEG frequency 

metrics within a sliding time window of 5 s (i.e., epoch length) was 
used for data separation and feature extraction. The calculated results 
were then considered as the features to be selected in the subsequent 
identification model, as listed in Table 2.

3.3. SA identification

In this study, a nonlinear RF-CNN method was used for binary 
identification of the cognitive state, i.e., high- and low-SA levels, based 
on the frequency features extracted from the EEG data of the ship 
pilotage experiment. First, after preprocessing the data with time-
frequency analysis, the EEG features associated with pilot SA levels 
were classified into 12 categories based on the results of the correlation 
evaluation, as listed in Table 2. The features were then separated into 
training and testing sets before the RF-CNN method was constructed. 
The training set was randomly selected, accounting for 75% of the 
feature samples. Figure 6 shows the optimal parameters of the RF 
method obtained using the grid search method. The maximum search 

FIGURE 4

Fragment of the PSDs and brain activity in different SA groups.
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FIGURE 5

Fragment of the time-frequency in different SA groups.

TABLE 1 Correlation results in poor visibility situations.

EEG frequency 
metrics

High-SA Low-SA Permutation results

Mean Std. Mean Std. Welch’s t p value

F region

θ/β 0.376 0.074 0.914 0.164 1.263 0.132

α/β 0.457 0.003 0.752 0.102 1.786 0.071b

θ/(α + θ) 0.253 0.113 0.904 0.036 2.228 0.048a

(α + θ)/β 0.833 0.176 1.666 0.241 2.151 0.046a

(α + θ)/(α + β) 0.765 0.283 1.254 0.351 2.014 0.350

C region

θ/β 0.395 0.024 0.805 0.245 1.149 0.147

α/β 0.462 0.034 0.812 0.015 2.353 0.042a

θ/(α + θ) 0.257 0.029 0.461 0.054 2.493 0.026a

(α + θ)/β 0.857 0.143 1.617 0.335 2.362 0.012a

(α + θ)/(α + β) 0.562 0.167 0.865 0.264 0.425 0.618

P region

θ/β 0.388 0.146 0.755 0.164 2.339 0.044a

α/β 0.473 0.217 0.653 0.247 1.324 0.342

θ/(α + θ) 0.268 0.094 0.509 0.349 1.926 0.435

(α + θ)/β 0.861 0.294 1.408 0.226 2.236 0.038a

(α + θ)/(α + β) 0.594 0.243 0.816 0.381 1.369 0.236

O region

θ/β 0.373 0.211 0.846 0.429 1.721 0.116

α/β 0.457 0.214 0.772 0.304 1.355 0.334

θ/(α + θ) 0.264 0.108 0.624 0.241 2.486 0.027a

(α + θ)/β 0.581 0.143 0.956 0.156 1.583 0.152

(α + θ)/(α + β) 0.534 0.164 0.721 0.264 1.188 0.435

ap < 0.1, bp < 0.05. The bold values indicate significantly correlated metrics (i.e., p < 0.1).
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efficiency of 0.7399 was obtained with 11 estimators and a maximum 
depth of 10. Subsequently, the optimal parameters of RF method were 
confirmed, and the initial feature importance ranking based on the 
average score was obtained (see Table 3).

To prevent the overfitting of the identification model, the feature 
with the lowest importance score in Table 3 was eliminated, and then 
the remaining feature data were input back into the RF method. After 
11 iterations of this feature screening process, the RMSE and relative 
error (RE) were obtained for 1–11 features, as listed in Table 4. The 
results show that the RMSE and RE of the identification were 
minimized with 10 features. Therefore, CP1 and CP3 were eliminated, 
and 10 valid features were retained. Moreover, because of the 
possibility of overlapping information in the EEG frequency 
combination features of the same individual, the PCA algorithm was 
used to reduce the dimension of the features. The first 10 features in 
the importance ranking were calculated by the PCA algorithm, where 
X1- X10  corresponded to the features with importance ranking 1–10. 

The first six principal components were selected as extraction 
criterion, as these gave cumulative contribution to the rate of variance 
of more than 87.7%. The eigenvalues of the correlation coefficient 
matrix and the contribution rate of the principal components are 
listed in Table 5. These six principal components are:

 

F X X X X X
X

1 1 2 3 4 5

6

0 1226 0 0706 0 2358 0 1079 0 0992

0 0693 0

= + + + + +
+

. . . . .

. .. . . .0716 0 1063 0 0650 0 06257 8 9 10X X X X+ + +

 
F X X X X X

X
2 1 2 3 4 5

6

0 2015 0 0979 0 1352 0 1052 0 1147

0 0713 0

= + + + + +
+

. . . . .

. .. . . .0676 0 1012 0 0450 0 07057 8 9 10X X X X+ + +

 

F X X X X X
X

3 1 2 3 4 5

6

0 1526 0 1203 0 0718 0 1653 0 1201

0 0732 0

= + + + + +
+

. . . . .

. .. . . .0685 0 1041 0 0732 0 05237 8 9 10X X X X+ + +

 
F X X X X X

X
4 1 2 3 4 5

6

0 1206 0 2013 0 1017 0 1318 0 0797

0 0552 0

= + + + + +
+

. . . . .

. .. . . .0765 0 0671 0 1092 0 06437 8 9 10X X X X+ + +

 
F X X X X X

X
5 1 2 3 4 5

6

0 2156 0 1501 0 0827 0 1018 0 0787

0 0912 0

= + + + + +
+

. . . . .

. .. . . .0615 0 0671 0 1022 0 05637 8 9 10X X X X+ + +

 
F X X X X X

X
6 1 2 3 4 5

6

0 1906 0 1315 0 1037 0 0918 0 1253

0 0652 0

= + + + + +
+

. . . . .

. .. . . .0890 0 0761 0 1091 0 05737 8 9 10X X X X+ + +

 

F F F F
F F F

i = + + +
+ +

0 2862 0 1965 0 1616

0 1317 0 1142 0 1097

1 2 3

4 5 6

. . .

. . .

The first six principal components were extracted in the form of 
feature combinations and used to construct new input sets for the 
CNN modified model. Before the model training, the initial 

TABLE 2 List of calculated features.

Signal type Features

α/β

Average power of F region in 5 s (FM1)

Median power of F region in 5 s (FP1)

Average power of C region in 5 s (CM1)

Median power of C region in 5 s (CP1)

θ/(α + θ)

Average power of F region in 5 s (FM2)

Median power of F region in 5 s (FP2)

Average power of C region in 5 s (CM2)

Median power of C region in 5 s (CP2)

(α + θ)/β

Average power of F region in 5 s (FM3)

Median power of F region in 5 s (FP3)

Average power of C region in 5 s (CM3)

Median power of C region in 5 s (CP3)

FIGURE 6

Parameter optimization of the RF method.
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hyperparameter values were preset, including the batch size set to 20, 
the convolutional kernel set to 5 × 5, the maximum pooling to 3 × 3, 
the network learning rate to 0.1 and the weight decay parameter to 
0.0001. The results indicate that the learning rate is reduced by 50% 
when the initial increment of the loss function is greater than 25%. 
Figure 7A shows the trained loss values reach the expected level when 
the iterations exceed 900, and the convergence rate and loss values of 
the CNN model modified by PCA are better than those of the 
traditional CNN method. Further, the identification accuracy of the 
two methods is compared, and Figure 7B shows that the identification 
rate of CNN modified method remains around 84.8% after more than 
1,200 iterations. Thus, in the poor visibility, the PCA method 
contributes to improve the convergence rate and identification 
accuracy of the traditional CNN method is verified.

In the comparative analysis of the RF, CNN, and RF-CNN 
methods, three performance evaluation metrics were used to evaluate 
the effectiveness of the optimized feature combinations. Figure  8 
presents the distribution of the classification accuracy measure for the 
three classifiers using different performance metrics. In each box, the 
bottom and top edges indicate the 25th and 75th percentiles, 
respectively, and the center mark denotes the median. Using the 
optimal EEG frequency feature combinations in the RF-CNN 
methods, the average ACC over 1,200 calculations reached 0.848, 
while the TPR was 0.894 and the TNR was 0.860. Moreover, to 
facilitate the evaluation of the classification performance of the 
method, the Matthews correlation coefficient (MCC), F1-score and 
Kappa indexes were selected for analysis and found to be  within 
reasonable values. In general, the RF-CNN outperformed the RF and 
CNN methods without feature optimization.

Because the receiver operating characteristic (ROC) curves can 
intuitively observe the accuracy of the classification method through 
the graph, and usually combined with under the curve (AUC) to solve 
the evaluation problem of binary classification (Omar and Ivrissimtzis, 
2019). With the optimal RF-CNN parameters, we  retrained and 
retested ROC and the area AUC of the RF-CNN algorithms for 
comparative analysis. The results are shown in Figure 9. The AUC 

scores were 0.875, 0.867, and 0.924 for the RF, CNN, and RF-CNN 
algorithms, respectively, demonstrating the better stability of the 
RF-CNN. The superior sensitivity and specificity of the RF-CNN 
algorithms are verified by the TPR and TNR scores, respectively. 
Table 6 reports the performance of the three classification algorithms 
using the evaluation methodology described above. Using the 
optimized features as input data, the RF-CNN algorithm achieved an 
average accuracy of 0.848, average sensitivity of 0.894, average 
specificity of 0.860, and an AUC score of 0.924. These results 
demonstrate that the RF-CNN with optimized parameters achieves 
better performance than traditional algorithms in terms of the 
identification of EEG frequency combination features with different 
SA levels. This provides an important cognitive avenue for the 
construction of a screening and evaluation model for pilots’ 
competency.

4. Discussion

The results highlight that the RF-CNN method achieves good SA 
identification using six principal components of EEG features 
(Table 5). The EEG data of 25 pilots were collected during the whole 
experimental process based on pilots’ competency in poor visibility 
situations. Moreover, the poor visibility was designed to appear 
randomly in normal navigation during the simulation experiment. 
With respect to the fundamental analysis of EEG data, a permutation 
simulation was used to quantify the significance of the correlation 
between EEG cognitive state, as visualized in the form of brain activity 
and time-frequency analysis, and SA levels, as measured by SART. As 
the window width of short-time Fourier transform (STFT) is fixed and 
cannot be adaptively adjusted, it is usually applicable to the analysis of 
stable signals. WT is then proposed to observe the partial features of 
the signal through time windows of adaptive widths varying with 
frequency, but is often considered as a single power signal in the 
spatial dimension. Therefore, combining the time-frequency and 
spatial features of EEG signals, the frequency combination features of 
different brain regions in the time dimension are extracted for SA 
identification. The EEG frequency features were then extracted from 
the associated metrics and divided into overlapping 5 s epochs after 
digital and time-domain filtering. To prevent possible data overfitting 
and information overlap, the initial number of input features was 
determined to be 10 based on the minimum RMSE and RE values of 
the RF model, and the PCA algorithm was used for further EEG 
feature combination to obtain six major components as the final input 
set of the CNN model. Moreover, PCA was applied to optimize the 
network structure of the CNN model to improve the training 
convergence efficiency and accuracy, and the feasibility of the above 
methods has been verified by comparing the results with traditional 
methods (see 3.3 for details). The RF-CNN method was then used to 

TABLE 3 Initial feature importance score and ranking.

Number Feature Score Number Feature Score Number Feature Score

1 FM2 0.225 5 CM1 0.082 9 CM3 0.063

2 CP1 0.094 6 FP3 0.079 10 FM1 0.059

3 CM2 0.086 7 CP2 0.070 11 CP1 0.051

4 FP2 0.085 8 FM3 0.064 12 CP3 0.048

TABLE 4 Error values with various numbers of features.

Number 
of 
features

RMSE RE Number 
of 

features

RMSE RE

1 0.875 0.498 7 0.751 0.359

2 0.802 0.427 8 0.704 0.312

3 0.765 0.396 9 0.675 0.297

4 0.735 0.371 10 0.627 0.209

5 0.732 0.363 11 0.702 0.282

6 0.741 0.370
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obtain the identification accuracy of the at-risk cognitive competency 
(i.e., low SA level). Comparative analysis of the three-performance 
metrics shows that the proposed method outperforms two other 
traditional methods that do not use feature optimization.

The results of this study confirm that the at-risk cognitive state can 
be effectively detected with high accuracy, sensitivity, and specificity 
using EEG frequency features combined with an appropriate 
identification framework. The identification results obtained by the 
RF-CNN, RF, and CNN algorithms with different types of features are 
shown in Figure 8. We can observe that a combination of the top-nine 
most important features facilitates an improvement in classification 
accuracy, from 78.1% using the RF without feature optimization to 

84.8% using RF-CNN. Comparing the RF and CNN algorithms, which 
used the same feature data as their inputs, the latter produced better 
ACC, TPR, and TNR values, which verifies the applicability of the CNN 
for nonlinear multidimensional sample sets of EEG data in poor 
visibility situations. Therefore, we  can conclude that an effective 
RF-CNN method for identifying at-risk cognitive state should include 
a strong classifier after PCA optimization (i.e., CNN modified module) 
and input data that have been refined by the combination of salient EEG 
frequency features in different brain regions (i.e., RF module).

An accurate comparison with the results from other studies in 
which EEG was used is difficult, because each study used a different 
method of simulation, a different set of EEG features, and a different 

TABLE 5 Principal components of features.

Component Eigenvalues Contribution (%) Cumulative contribution (%)

F1 5.193 25.108 25.108

F2 4.109 17.233 42.341

F3 1.825 14.176 56.517

F4 1.372 11.548 68.065

F5 3.014 10.016 78.081

F6 2.917 9.624 87.705

A

B

FIGURE 7

The loss value (A) and accuracy (B) of CNN modified method training.
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classification of SA groups. The main limitation of the current study 
involves the performance issue of EEG acquisition devices. When the 
pilot is in a simulation experiment, the EEG devices are susceptible to 
environmental factors and physiological artifacts that generate large 
amounts of clutter. Although digital and time-domain filtering helps 
with feature extraction, it inevitably affects the significance level of the 
correlation results. Moreover, regarding feature extraction, the 
identification accuracy is associated with the correlation metrics and 

epoch lengths of EEG data in poor visibility situations. This study shows 
that pilots with low SA levels are susceptible to environmental risk 
factors resulting in significant EEG fluctuations, as expressed by a total 
of 14 EEG frequency combination features in F and C regions with an 
epoch length of 5 s. However, the SA level is not only correlated with 
EEG time-frequency features but is also related to other physiological 
measurement metrics, as confirmed in previous studies (Mehta et al., 
2018; Zahabi et al., 2021). Therefore, the identification processes of 

FIGURE 8

Performance evaluation of the three methods.

FIGURE 9

ROC curve of the three methods.

TABLE 6 Comparative analysis of performance metrics.

Classification algorithm Accuracy Sensitivity Specificity AUC

RF 0.781 0.857 0.855 0.875

CNN 0.816 0.815 0.827 0.867

RF-CNN 0.848 0.894 0.860 0.924
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at-risk cognitive states are complicated, and require further investigation 
considering multiple fusion metrics such as heart rate variability 
(HRV), electrocardiograph (ECG) and eye-tracking signals with 
different epoch lengths, as well as multiple classifications of SA groups 
(Paulus and Remijn, 2021; Xiong et al., 2021; Ren et al., 2022).

5. Conclusion

The results using the proposed RF-CNN method confirm that it 
is feasible to identify pilots’ at-risk cognitive competency (i.e., low SA 
levels) using EEG features. Specifically, the EEG data of 25 ship pilots 
were obtained from bridge simulation experiments in poor visibility 
situations for the training of the identification model, containing RF, 
modified CNN and validation modules. Six EEG principal 
components were produced by the PCA after RMSE and RF correction 
to obtain the optimal model training sets, with the cumulative 
contribution rate of more than 87.7%. The experimental results 
demonstrate that the proposed feature combinations enhance the 
classification performance over that of RF and CNN, which do not 
employ features optimization, demonstrating the potential for our 
approach to be  used in the computer-aided screening of pilots’ 
cognitive competency. Considering the universality of the proposed 
method, future research will focus on the verification and application 
of the identification model in different emergency situations (e.g., ship 
departure, two-ship crossing, and anchoring) with multiple fusion 
metrics (e.g., HRV, eye-tracking). Therefore, this study yields not only 
immediate benefits in monitoring cognitive competency and 
preventing unsafe behaviors, but also long-term benefits in opening 
new avenues for the construction of evaluation systems for the 
physical and mental competency of ship pilots.
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