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Fragile X Syndrome (FXS) is the most common form of inherited intellectual 
disability (ID) and a primary genetic cause of autism spectrum disorder (ASD). 
FXS arises from the silencing of the FMR1 gene causing the lack of translation 
of its encoded protein, the Fragile X Messenger RibonucleoProtein (FMRP), 
an RNA-binding protein involved in translational control and in RNA transport 
along dendrites. Although a large effort during the last 20  years has been made 
to investigate the cellular roles of FMRP, no effective and specific therapeutic 
intervention is available to treat FXS. Many studies revealed a role for FMRP 
in shaping sensory circuits during developmental critical periods to affect 
proper neurodevelopment. Dendritic spine stability, branching and density 
abnormalities are part of the developmental delay observed in various FXS brain 
areas. In particular, cortical neuronal networks in FXS are hyper-responsive and 
hyperexcitable, making these circuits highly synchronous. Overall, these data 
suggest that the excitatory/inhibitory (E/I) balance in FXS neuronal circuitry 
is altered. However, not much is known about how interneuron populations 
contribute to the unbalanced E/I ratio in FXS even if their abnormal functioning 
has an impact on the behavioral deficits of patients and animal models affected 
by neurodevelopmental disorders. We revise here the key literature concerning 
the role of interneurons in FXS not only with the purpose to better understand 
the pathophysiology of this disorder, but also to explore new possible therapeutic 
applications to treat FXS and other forms of ASD or ID. Indeed, for instance, the re-
introduction of functional interneurons in the diseased brains has been proposed 
as a promising therapeutic approach for neurological and psychiatric disorders.
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Introduction

Fragile X Syndrome (FXS) is the most prevalent genetic form of intellectual disability, 
following an X-linked inheritance, associated with deficits in cognition, language, Autism 
Spectrum Disorder (ASD), anxiety, epilepsy and Attention Deficit Hyperactivity Disorder 
(ADHD) (Hagerman et al., 2017). In FXS, the FMR1 gene is silenced and, consequently, its 
product, the Fragile X Messenger Ribonucleoprotein Protein (FMRP), is entirely absent. FMRP 
is an RNA-binding protein involved in different steps of mRNA metabolism, such as translational 
control both in soma and at the synaptic level, RNA transport along dendrites and from nucleus 
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to cytoplasm (Maurin et al., 2014; Richter and Zhao, 2021; Kieffer 
et al., 2022). FMRP regulates the shaping of sensory circuits during 
the critical period, which is a time during early postnatal life when the 
development and maturation of functional properties of the brain is 
strongly dependent on experience or environmental influences. 
Indeed, early sensory activity is pivotal for the maturation of visual 
(Burbridge et al., 2014) and somatosensory networks (Tuncdemir 
et al., 2016). FMRP loss causes alterations in maturation and pruning 
of dendritic spines and dysregulates the expression of a large number 
of synaptic proteins, which are essential for the correct function of 
cerebral circuits (Richter and Zhao, 2021). The information flow 
between brain regions occurs due to a fine balance between excitatory 
and inhibitory neurons that control the output signal. Excitatory (E) 
and Inhibitory (I) synapses have different architectures. Pyramidal 
cells comprise the majority of the neuronal population and are 
primarily responsible for long-range glutamatergic transmission in the 
mammalian forebrain. GABAergic interneurons (INs) are the major 
inhibitory neurons in the central nervous system (Zhang et al., 2021), 
where they control and synchronize the synaptic activity of excitatory 
neurons. They represent 10–25% of the total number of cortical 
neurons and are classified based on their morphology, molecular 
markers, postsynaptic targets, origin area, electrophysiological 
properties and functions, according to the Petilla terminology (Ascoli 
et al., 2008). Cognition, behavior and sensory information processing 
depend on this efficient balance. The control of neuronal excitability 
and ability of synapses to strengthen or weaken in response to an 
enhancement or decrease in their activity provide an efficient 
mechanism to tune up the E/I responses (Sears and Hewett, 2021). 
Synapses are extremely plastic structures, modifying their activity 
based on changes in neuronal activity or sensory experiences. 
Nevertheless, it is mandatory that these changes are synchronized with 
other synapses to maintain E/I inputs. Due to the fine regulation of 
the ratio between E/I synapses, its disruptions induce a broad range 
of neurological and psychiatric disorders, such as FXS. This pathology 
can be  classified as an interneuronopathy, where an alteration in 
inhibitory activity occurs rendering some neuronal circuits hyper-
responsive and hyper-excitable (Sohal and Rubenstein, 2019).

The GABAergic inhibitory system is 
impaired in FXS

Most of the altered excitatory mechanisms in FXS are described 
in the framework of the mGluR theory, according to which the 
absence of FMRP exaggerates mGluR-dependent protein synthesis, 
leading to altered synaptic plasticity (Bear et  al., 2004). However, 
FMRP is also expressed in GABAergic neurons at post-natal day 21 
(PND 21) (Olmos-Serrano et al., 2010) and regulates the expression 
of different components of GABAergic transmission (Paluszkiewicz 
et al., 2011a). Indeed, GABAA receptor δ subunits in neocortex are 
downregulated in adult Fmr1 KO mice at age of 8–12 weeks (d'Hulst 
et al., 2006; Figure 1). In human patients, a reduction of the GABAA-
mediated intracortical inhibition associated to an increase of 
intracortical circuit excitability was reported (Morin-Parent et al., 
2019). Moreover, a decreased GABA concentration in the frontal 
cortex and thalamus of neonatal PND 5 Fmr1 KO mice was found 
(Reyes et al., 2020). In line with the reduced excitability showed by 
INs, also the availability of GABA is decreased at PND 21 in the Fmr1 

KO amygdala, due to a decline in the number of inhibitory synapses 
and a reduced expression of GAD65/67, a rate-limiting enzyme for 
GABA synthesis (Olmos-Serrano et  al., 2010; Figure 1). All these 
alterations lead to a hyper-activity of neuronal circuits that can explain 
the typical behavioral disturbances of FXS such as exaggerated fear, 
anxiety and hyperactivity (Figure 1).

In the somatosensory cortex of 1 year-old Fmr1 KO mice, a 
reduction of parvalbumin (PV)-positive density, but not calbindin 
(CB) and calretinin (CR)-positive INs was described (Selby et al., 
2007). In addition, PV INs present a bigger soma and an impaired 
distribution in the lamina. Interestingly, PV INs reduction mainly 
occurs in somatosensory cortical layers II/III/IV of 8-week-old Fmr1 
KO mice, but not in deeper layers V and VI where PV INs number is 
increased (Selby et  al., 2007; Lee et  al., 2019). The density of 
somatostatin (SOM)-positive INs in layer II/III does not change 
between WT and Fmr1 KO mice at PND 19–31, as well as the 
proportion of layer II/III SOM/CR-positive INs  (Paluszkiewicz et al., 
2011b). Moreover, Fmr1 KO fast-spiking (FS) INs display an immature 
dendritic morphology during the critical period at PND 5–6 (Nomura 
et al., 2017), while at PND 9–10 there are no differences compared to 
normal (Crair and Malenka, 1995). These interneuronal in 
impairments could result into an alteration in the physiological onset 
of critical period, cell migration, differentiation of neurons and 
refinement of neuronal connectivity (Hensch and Fagiolini, 2005; 
Luhmann et al., 2015; Begum and Sng, 2017).

Indeed, alterations in sensory experience processing, like in FXS, 
induce a disruptive development not only in synaptic plasticity of 
excitatory neurons, but also in cortical INs-afferent connectivity. This 
hypothesis is supported by the description of an alteration of cortical 
INs-afferent connectivity of the PVs and SOM cortical INs in PND 30 
Fmr1 KO mice (Pouchelon et al., 2021). The number of synapses and 
neurons is strongly regulated by experience influence during 
development. Layers I-IV of the auditory cortex present a 
developmental enhancement of PV cell density in both WT and Fmr1 
KO mice at PND 21, but Fmr1 KO auditory cortex has less PV cell 
density than WT (Wen et al., 2018b). Like PV INs, perineuronal nets 
(PNNs), which are proteins in the extracellular matrix often associated 
with PV cells, show a developmental increase. However, Fmr1 KO 
mice show a reduction of PNNs selectively at PND 21 in layer II-IV of 
the auditory cortex. This loss of PNNs around PV cells is associated 
with abnormal critical period plasticity and reduced excitability of PV 
cells (Figure 1).

The endopeptidase Matrix Metalloproteinase-9 (MMP-9) cleaves 
the extracellular matrix components of PNN and is over-expressed in 
Fmr1 KO mice, leading to an altered PNN formation (Sidhu et al., 
2014; Figure 1). The PNN pattern can be rescued by MMP-9 genetic 
deletion (Wen et al., 2018a) or by its pharmacological inhibition at 
PND 22 (Pirbhoy et al., 2020).

Electrophysiological and Ca2+ alterations in 
FXS interneurons

The ElectroEncephaloGram (EEG) power represents the amount 
of neurons that fire synchronously in a certain frequency band 
(Willerman et al., 1991), while coherence is used to highlight if two or 
more brain regions have comparable oscillatory activity (Bowyer, 
2016). In FXS patients, the resting-state EEG recordings showed an 
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increased relative theta power (4–8 Hz), a reduced relative upper-
alpha (10–12 Hz) and beta (12–30 Hz) power (Van der Molen and Van 
der Molen, 2013; van der Molen et al., 2014), and a heightened gamma 
frequency (30–80 Hz) band power (Wang et  al., 2017). These 
alterations in EEG power are a readout of elevated excitatory cortical 
activity and a decrease of the inhibition process (Contractor et al., 
2015; Chen et al., 2017; Ethridge et al., 2017; Donoghue et al., 2020; 
Guyon et al., 2021). Analogous EEGs are recorded in murine models 
of FXS. Indeed, adult Fmr1 KO mice show an increased delta and 
gamma resting EEG power between 1.5 and 3 months of age (Lovelace 
et al., 2018; Wen et al., 2019). Consistent with these results, it was 
shown that Fmr1 deletion in forebrain excitatory neurons affects 
neuronal oscillations, enhancing the resting EEG gamma power in the 
auditory cortex of mice at PND 60–70 (Lovelace et al., 2020). Higher 
theta oscillations and coherence in the slow gamma band were 
recorded in the hippocampus of Fmr1 KO mice at 8 weeks of age 

(Arbab et al., 2018). In addition, adult Fmr1 KO mice display a cortical 
reduction of sound-evoked gamma synchrony (Kulinich et al., 2020; 
Lovelace et  al., 2020). Consistent with the human and mice EEG 
recordings, Fmr1 KO rats display a reduction in alpha power and 
enhanced baseline of gamma power at 5 weeks of age (Kozono et al., 
2020). This alteration in gamma band power is correlated to 
impairment in social and sensory processing and it is influenced by 
the abnormal activation and development of PV positive – fast-spiking 
(FS) interneurons. These types of neurons undergo developmental 
maturation during the early postnatal days, displaying modifications 
in membrane capacitance (Cm), input resistance (Rin) and neuronal 
activity (Itami et  al., 2007). PV – FS interneurons in the FXS 
somatosensory cortex show a delay in the development of their 
intrinsic membrane properties during the critical period (Nomura 
et al., 2017). Indeed, in Fmr1 KO INs, Cm is significantly lower during 
the critical period, whereas Rin is higher compared to WT INs. 

FIGURE 1

Electrophysiological alterations in Fragile X Syndrome. (A) Fmr1 KO brain regions where the inhibitory system is impaired are indicated. HIP, 
hippocampus; FC, frontal cortex; SC, somatosensory cortex; AC, auditory cortex; AM, amygdala. (B) Schematic representation of synaptic alteration in 
GABAergic synapses.
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Moreover, Fmr1 KO FS interneurons show a delay in the maturation 
of their firing properties, displaying an adaptation on the spiking 
activity, while FS mature INs are characterized by a non-adaptive 
spiking pattern. During the neurodevelopmental period, the local 
excitation of PV-FS inhibitory neurons is also altered in Fmr1 KO 
mice, showing a decrease in the neocortex (Gibson et al., 2008; Patel 
et al., 2013; Nomura et al., 2017). These neuronal and synaptic delays 
in neonatal Fmr1 KO mice can be rescued by chronic administration 
of a TrkB receptor agonist between PND 1 and PND17 (Nomura et al., 
2017; Figure 2). Moreover, the GABA switch from depolarizing to 
hyperpolarizing currents is delayed in cortical neurons of Fmr1 KO 
mice (He et al., 2014; Figure 2).

In addition, SOM- low threshold spiking (LTS) INs of Fmr1 KO 
mice at PND 19–31 are less activated by the group 1 metabotropic 
glutamate receptor (mGluR), generating inhibitory synaptic events 
with a reduced frequency (Paluszkiewicz et al., 2011b; Figure 2). LTS 
INs also present unsynchronized activity with pyramidal neurons, 
leading to the conclusions that those disruptions in neuronal 
synchrony could be the effect of disrupted LTS IN activity.

Alterations in the primary visual cortex of Fmr1 KO mice are also 
present at 6–8 weeks of age: PV INs display a reduced visually evoked 
activity with lower frequency of the calcium peak induced by a visual 
stimulus compared to WT cells (Goel et al., 2018). Hypersensitivity 
was also displayed in neurons of the auditory cortex of Fmr1 KO mice 
(Rotschafer and Razak, 2013), showing an increased response to a 
stimulus than WT mice (Wen et  al., 2018a). Consistent with the 
general hyper-activation of the auditory cortex, there is an expanded 
frequency tuning in Fmr1 KO neurons, where sound responses 
become abnormally high between PND 14 and PND 21, suggesting 

that a higher number of neurons in the auditory cortex are activated 
by a stimulus at the same time. This enhancement in responses could 
be caused by an alteration of the interneuronal activity (Patel et al., 
2013; Wen et al., 2018a). Indeed, a decreased number of PV INs and 
impairments in the perineuronal and extracellular matrix components 
were described in the auditory cortex (Wen et al., 2018a). The genetic 
reduction of MMP-9 restores the magnitude of auditory cortex 
response in Fmr1 KO neurons at PND 19–23 to WT levels (Wen et al., 
2018a). These findings demonstrate the pivotal role of extracellular 
matrix to control the development and the functions of 
GABAergic neurons.

Due to the connections between the cortex and the amygdala, a 
disrupted cortical spike synchronization could then affect amygdala 
neuronal activity, leading to hyper-responsivity (Olmos-Serrano et al., 
2010; Prager et  al., 2016). Indeed, a significant neuronal 
hyperexcitability in pyramidal neurons of the amygdala was shown in 
Fmr1 KO mice at PND 20–30 (Olmos-Serrano et al., 2010; Figure 2). 
Those neurons had a higher action potential (AP) frequency in 
response to a series of depolarizing current steps and also showed a 
decreased threshold for AP generation compared to WT. The synaptic 
response can be rescued by bath application of the GABA agonist 
gaboxadol (THIP), indicating a deficit in inhibitory transmission. 
Moreover, adult Fmr1 KO pyramidal neurons in the amygdala display 
a reduced amplitude and frequency of inhibitor post-synaptic currents 
(sIPSC) (Olmos-Serrano et al., 2010). In young mice, at PND 10, 
amygdala neurons in Fmr1 KO show reduced sIPSC amplitude and 
frequency, increasing at PND 14 (Vislay et al., 2013). In contrast, at 
PND 16, sIPSC amplitude returned to WT level, but the frequency 
remained high. At PND 21, sIPSC amplitude and frequency returned 
to control levels. These results show alterations at specific 
developmental points of inhibitory neurotransmission in the Fmr1 
KO amygdala.

Conversely, the cerebellar absence of FMRP reduces the 
spontaneous firing rate of Purkinje neurons at PND 26–32, due to an 
increased GABA release from IN basket cells (Yang et al., 2020). This 
interneuronal hyperactivity is induced by an altered activity of Kv1.2, 
a potassium channel highly expressed in fast-spiking GABAergic 
neurons. The deletion of Fmr1 induces higher Ca2+ transients because 
of a lower interneuronal expression of Kv1.2, leading to an over-
inhibition of Purkinje neurons.

Inhibitory INs display a form of synaptic plasticity which is 
independent from the activation of the NMDA receptor for glutamate, 
due to Ca2+ influx through AMPA receptors (Kullmann and Lamsa, 
2007). The Ca2+ permeability of AMPA relies on the absence of the 
GluA2 subunit in the structure of the receptors (Akgül and McBain, 
2016). In Fmr1 KO mice at 2–3 weeks of age, CA1 inhibitory INs 
present an increased expression of the GluA2 subunit in AMPA 
receptor, which induces a decreased inwardly rectification of AMPAR-
mediated excitatory synaptic current and a higher rectification index 
at glutamatergic synapses onto inhibitory INs (Hwang et al., 2022; 
Figure 1).

Recently, an altered AMPA response of the Fmr1 KO cell fraction, 
enriched in INs, was highlighted thanks to the use of Agonist-induced 
functional analysis and cell sorting (ai-FACS) (Castagnola et al., 2020). 
This innovative tool allows to sort living cells on the base of their 
response to Ca2+ concentration changes in real time, using a 
fluorescent indicator after the application of a pharmacological agent. 
These analyses resulted in the identification of altered interneuronal 

FIGURE 2

Electrophysiological alterations in Fragile X Syndrome. (A) The local 
excitation of interneurons, induced by excitatory neurons and 
measured as amplitude of excitatory post-synaptic currents, is 
reduced in Fmr1 KO mice compared to WT mice. (B) The action 
potentials firing of interneurons induced by DHPG, agonist of 
group 1 metabotropic glutamate receptor (mGluR), is decreased in  
Fmr1 KO mice. (C) The chloride reversal potential (ECl-) remains 
depolarized in excitatory neurons of  Fmr1 KO mice during neuronal 
development. (D) The firing action potential rates in excitatory 
neurons is increased in  Fmr1 KO mice than in WT.
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populations during the early post-natal development of Fmr1 KO 
brain (PND 18). In particular a reduced number of Fmr1 KO INs 
express Meis2, a transcription factor involved in ASD, at PND18 and 
this alteration was restored at PND19 (Castagnola et al., 2020). These 
results confirmed at the molecular level the presence of a transient 
altered interneuronal phenotype during early post-natal brain 
development in the absence of FMRP.

Involvement of interneurons in the 
behavioral phenotype of FXS

Fmr1 KO mice exhibit a cognitive deficit, autistic features and 
hyperactivity. Many studies investigated extensively the sensory 
phenotypes in both patients and animal models of FXS (Dölen et al., 
2007; Knoth et al., 2014). In particular, these mice display increased 
sensory responses and impaired sound selectivity (Rotschafer and 
Razak, 2013). Altered expression of PV and PNN in amygdala, 
hippocampus and auditory cortex of Fmr1 KO mice were showed to 
be linked to impaired tone-associated memory formation in adult 
mice following fear conditioning (Reinhard et al., 2019). Indeed, lower 
levels of PNN in amygdala and auditory cortex could be the cause of 
impaired tone-associated fear memory in Fmr1 KO mice as well as a 
reduced PNN density in hippocampal CA2. In addition, auditory 
cortex PV cell density is decreased after fear conditioning in both WT 
and Fmr1 KO mice, while it is increased during learning in 
hippocampal CA3 only in WT mice, indicating a link between tone-
associated memory and PV cells. Impaired visual discrimination in 
FXS mice at 6–8 weeks of age was also shown to be  correlated to 
decreased activity of PV INs and to an orientation tuning deficit of 
pyramidal neurons (Goel et al., 2018). Goel et al. used an excitatory 
DREADD strategy, targeting PV cells in Fmr1 KO mice that restored 
their visually evoked response and learning capacity in a visual 
discrimination task. More recently, the selective deletion of the Fmr1 
gene in PV- and SOM- expressing cells in mice induced an aberrant 
behavioral phenotype in adult mice at 6–8 weeks of age (Kalinowska 
et al., 2022). Mice with PV Fmr1-lacking INs showed anxiety-like 
behavior, altered social behavior and dysregulated de novo protein 
synthesis. Conversely, Fmr1 loss in SOM-expressing neurons did not 
result in behavioral abnormalities and did not significantly impact de 
novo protein synthesis. This suggests that PV cells alteration contribute 
more in the Fmr1 KO impaired behavior.

Remarkably, increased PV levels and enhanced PNN formation in 
the auditory cortex of Fmr1 KO mice following MMP-9 inhibition is 
correlated with decreased anxiety and hyperactivity during 
adolescence (PND 27–28) (Pirbhoy et al., 2020). Consistent with these 
findings, MMP-9 deletion in Fmr1/Mmp-9 double KO mice at the age 
of 2 months ameliorates anxiety, tested in an open field task, and social 
interaction (Sidhu et  al., 2014). Consistent with these results, the 
reduced level of MMP-9 in Mmp9 +/− /Fmr1 KO mice rescue abnormal 
sensory gating tested with pre-pulse inhibition (PPI) of acoustic startle 
response (Kokash et al., 2019). Interestingly, in 3-month old Fmr1 KO 
mice, the altered PPI can be rescued by GABAA activation by the 
GABAA receptor agonist THIP, supporting the aberrant GABAergic 
transmission theory in FXS (Olmos-Serrano et al., 2011). Another 
evidence of an altered inhibition of GABA signaling in FXS is 
represented by audiogenic seizures in Fmr1 KO mice, which consist 
in an extreme manifestation of auditory hypersensitivity after loud 

sound stimuli (Chen and Toth, 2001). This behavioral phenotype can 
be reversed by intraperitoneal administration of GABAA, agonists to 
Fmr1 KO mice at PND 21–25 (Heulens et al., 2012). Moreover, Fmr1 
KO mice exposed to passive sound postnatally (PND 9–21) have a 
significantly increased number of PV cells (Kulinich et al., 2020), 
showing again the correlation between INs and auditory 
cortex development.

Conclusion and therapeutic 
perspectives

Overall, the studies we summarized here strongly suggest that FXS 
is a form of interneuropathy. However, to advance the research in the 
field several aspects could be  taken into account to design 
future studies:

 I. To date, most of the studies have characterized FXS INs in adult 
mice (Olmos-Serrano et al., 2010; Paluszkiewicz et al., 2011b; 
Arbab et al., 2018; Goel et al., 2018; Kokash et al., 2019; Lee 
et al., 2019; Reinhard et al., 2019; Lovelace et al., 2020; Yang 
et al., 2020; Pouchelon et al., 2021; Kalinowska et al., 2022), 
while only a few studies have taken in consideration 
interneuronal impairment during the critical window of 
postnatal development (Nomura et al., 2017; Castagnola et al., 
2020; Reyes et al., 2020; Rais et al., 2022). It would be interesting 
to study and compare various ages in Fmr1 KO mice, which are 
associated to an altered function of INs through the different 
steps of neurodevelopment.

 II. The different brain areas have been studied differently: more 
attention has been paid to cortex (Selby et al., 2007; Gibson et al., 
2008; Paluszkiewicz et al., 2011b; Patel et al., 2013; He et al., 2014; 
Nomura et al., 2017; Goel et al., 2018; Wen et al., 2018a,b; Lee et al., 
2019; Pirbhoy et al., 2020; Reyes et al., 2020; Pouchelon et al., 2021) 
compared to other brain regions, such as the hippocampus (Arbab 
et al., 2018; Reinhard et al., 2019; Hwang et al., 2022), leading to 
missing molecular and behavioral information to understand the 
physiopathology of FXS.

 III. Another aspect that should be better considered in the future 
is the interneuronopathy in both sexes. Recently, it was shown 
that an altered activation of PV INs in mice during the critical 
period, especially in the limbic structures of the brain, has an 
impact on anxio-depressive behavior in adulthood (Banerjee 
et al., 2022). Indeed, adult male and female animals in which 
PV-positive INs have been activated during the critical period 
were less anxious and showed a reduction in despair-like 
behavior in adulthood. However, this reduction was dependent 
on the task and on the sex, leading to the conclusion that also 
the female phenotype should be taken into consideration in the 
behavioral test. FXS is a X-linked disorder, for this reason 
female Fmr1−/− mice are poorly studied since not representative 
of patients affected by this syndrome, however behavioral 
differences have been described in Fmr1 KO females compared 
to males (Nolan et  al., 2017) as well as sex differences in 
molecular pathways have been highlighted (Jiang et al., 2021). 
These results suggest that the analysis of this underrepresented 
population could help in the full understanding of 
brain function.
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 IV. Even if multiple pre-clinical studies have been carried out, the 
impact of various drugs was only episodically tested on 
interneuronal-associated phenotypes, as in the case of the 
modulation of TrkB or MMP-9  in infant Fmr1 KO brain 
(Nomura et al., 2017; Pirbhoy et al., 2020).

The use of compounds directly linked to the GABAergic system 
(e.g., Baclofen, R-Baclofen and Ganaxolone that are GABAB agonist) 
has been shown to rescue some of the molecular and behavioral 
phenotypes which characterize FXS in patients and in murine models 
(Heulens et al., 2012; Schaefer et al., 2015; Veenstra-VanderWeele 
et al., 2017; Jonak et al., 2022), suggesting that the rectification of the 
E/I imbalance through an enhancement of the GABAergic system 
could be a potential treatment for FXS. Although positive results were 
obtained in preclinical studies and in a Phase II clinical trial, these 
therapeutic approaches did not result into a broad treatment for FXS 
patients (Castagnola et al., 2017).

Due to the absence of significant results from the clinical 
studies, it remains a challenge to increase GABAergic system 
activity in those interneuropathies characterized by an excessive 
reduction in the GABA response. Among the drugs currently 
available we can mention metformin, an anti-hyperglycemic drug 
prescribed against diabetes mellitus type 2. The off-label use of 
metformin in FXS children improves language development and 
behavior (Biag et al., 2019). Furthermore, chronic treatment with 
metformin for 10 days in adult Fmr1 KO mice rescues different 
behavioral deficits, such as social deficits and repetitive behavior 
and normalizes the over-expression of MMP-9 (Gantois et  al., 
2017). We hypothesize that metformin could have an effect also on 
IN development and maturation due to its effect on MMP-9 
expression. In addition, cannabidiol has a positive allosteric 
modulation on GABAA receptors (Bakas et al., 2017), enhancing 
GABAergic transmission, and improves the balance in inhibitory 
and excitatory transmission, restoring neuronal function and 
synaptic plasticity in patients with FXS (Palumbo et al., 2023).

Furthermore, a useful tool used to increase synaptic inhibition 
could be neuronal transplantation, which has the effect to improve the 
behavioral phenotype in several nervous system pathologies. In 
Alzheimer’s disease-related mouse models, transplanted embryonic 
IN progenitors restore normal cognitive functions (Tong et al., 2014). 
Moreover, the replacement of INs improves memory precision after 
traumatic brain injury, showing to be a powerful therapeutic strategy 
for correcting post-traumatic memory and seizure disorders (Zhu 
et al., 2019). In the same path, preclinical studies performed on an 
epilepsy animal model highlighted a reduction of seizures after 
transplantation of GABAergic INs or their progenitors (Cunningham 
et al., 2014; Hammad et al., 2015). In this context, it is interesting to 
underline that human induced pluripotent stem cell (iPSC)-derived 

cortical neurons were transplanted into the adult mouse cortex with 
human synaptic networks substantially restructured over 4 months, 
suggesting the potential usefulness of this technology (Real et al., 
2018). Thus, the precise definition of affected INs subtypes during 
development in FXS, as well as in other forms of brain developmental 
disorders, could provide a new therapeutic approach for the most 
severe forms of developmental brain disorders. To reach this goal, 
single-cell sequencing and spatial omics technologies will be very 
useful in combination with functional analyses.
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