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Introduction: Research on the brain activity during resting state has found that 
brain activation is centered around three networks, including the default mode 
network (DMN), the salient network (SN), and the central executive network 
(CEN), and switches between multiple modes. As a common disease in the elderly, 
Alzheimer’s disease (AD) affects the state transitions of functional networks in the 
resting state.

Methods: Energy landscape, as a new method, can intuitively and quickly grasp 
the statistical distribution of system states and information related to state 
transition mechanisms. Therefore, this study mainly uses the energy landscape 
method to study the changes of the triple-network brain dynamics in AD patients 
in the resting state.

Results: AD brain activity patterns are in an abnormal state, and the dynamics of 
patients with AD tend to be unstable, with an unusually high flexibility in switching 
between states. Also , the subjects’ dynamic features are correlated with clinical 
index.

Discussion: The atypical balance of large-scale brain systems in patients with 
AD is associated with abnormally active brain dynamics. Our study are helpful 
for further understanding the intrinsic dynamic characteristics and pathological 
mechanism of the resting-state brain in AD patients.
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1. Introduction

Alzheimer’s disease (AD) is a common degenerative neurological disease that typically 
begins with memory loss and progresses to impairments in a series of higher cognitive functions, 
followed by a loss of ability to live independently and eventual death. The onset of AD is obscure 
and seriously affects the normal life of patients. The etiology and specific pathogenesis of the 
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disease have not been fully elucidated (Delbeuck et  al., 2003; 
Cummings et al., 2019; Lei et al., 2021). Therefore, methods designed 
to better understand the pathogenesis of AD and identify specific 
brain abnormalities in the early stages of AD are crucial.

Resting-state fMRI reflects the spontaneous activity of neurons 
when the brain is not performing a task. It has been widely employed 
in studies of a variety of neurological and psychiatric disorders. 
Because it does not require subjects to perform any task, resting-state 
fMRI is ideal for AD patients with cognitive decline (Vemuri et al., 
2012; Yang et al., 2020). Different functional connectivity networks 
have been described based on the synchronization of low-frequency 
BOLD signals in the resting state (Damoiseaux et al., 2006). Vinod 
Menon proposed that among the inherent functional networks in the 
human brain, the default mode network (DMN), the salient network 
(SN), and the central executive network (CEN) are particularly crucial 
(Menon, 2011). The DMN is more active in the resting state, while the 
DMN is inhibited instead during the execution of tasks. In contrast, 
the CEN is less activated in the resting state and more activated when 
subjects are performing tasks or receiving external stimuli. The SN is 
generally considered to coordinate the DMN and CEN (Buckner et al., 
2008; Lerman et al., 2014; Liao et al., 2021). Therefore, some studies 
have proposed the three networks as a “triple-network” model, which 
suggests that these three networks play an important role in the 
functions related to cognitive tasks performed by the brain, and they 
are considered the core networks related to the cognitive functions of 
the brain (Menon, 2011). The “triple-network” model is widely used 
to study various diseases. Previous studies have found that these three 
networks are closely associated with cognitive impairment in AD 
patients, and all three networks are damaged to varying degrees by the 
disease (Balthazar et al., 2014).

In a conventional resting-state fMRI analysis, functional 
connectivity is the most commonly investigated metric, which 
assumes that the BOLD signal is temporally stationary within the scan 
duration (Greicius et al., 2003). Actually, the brain is a complex and 
dynamic system with important features such as self-adaptation, self-
organization, and multi-stability. A previous study indicated that the 
activity patterns of the resting brain are presumably in a 
nonequilibrium process of continuous switching between multiple 
states and show considerable variability on different time scales (Yao 
et al., 2020). Revealing the dynamic mechanism of spontaneous neural 
activity in the resting-state brain has important scientific importance 
for understanding the working mechanism of the brain and has 

prospective clinical applications in the prevention and treatment of 
brain diseases, including AD.

Currently, dynamic functional connectivity (dFC) based on 
sliding window correlation (SWC) and co-activation patterns (CAP) 
are two popular methods for AD dynamics analysis. The former was 
based on dynamically intercepting signals through windows of specific 
length and then performing functional connectivity analysis within 
each dynamic window. In recent years, a number of studies have been 
devoted to the extraction of high-level features from the dFC to 
achieve effective filtering of invalid information in the dFC and 
extraction of dynamic change features associated with the disease, 
contributing to exploring abnormal brain function networks and 
improving the classification accuracy of AD (Sendi et al., 2021; Gao 
et al., 2022; Matsui and Yamashita, 2022; Qiao et al., 2022; Ghanbari 
et al., 2023; Penalba-Sánchez et al., 2023). The principle of CAP was 
to extract co-activation patterns in certain specific peak points of the 
BOLD signal time series using a clustering algorithm. By analyzing 
the spatio-temporal features of these patterns to reveal the underlying 
mechanisms of abnormal brain function in AD patients, providing 
some potential biomarkers for the diagnosis and treatment of AD (Ma 
et al., 2020; Adhikari et al., 2021). The methods and conclusions of 
recent studies on the dynamic brain function network analysis of AD 
are shown in Table 1.

The regularities presented by activity patterns in the resting brain and 
the underlying mechanisms are also well suited for research using 
statistical-physical and nonequilibrium dynamics approaches (Huang 
et al., 2020). One of the commonly used methods is energy landscape 
analysis, a data-driven approach based on statistical mechanics (Watanabe 
et al., 2014; Ezaki et al., 2017; Gu et al., 2018; Kang et al., 2019). This 
method is similar to CAP that focuses on the nonequilibrium process of 
switching between resting-state active modes in the brain, but the energy 
landscape analysis better describes this process by constructing an energy 
topography of the state space in the brain system based on the statistical 
distribution, whose structure represents the stability and interrelationship 
of the system states and reflects the dynamic characteristics of the system 
in more detail.

In the present study, we  extracted a time series based on 
representative ROIs in brain regions of the triple networks and used 
the energy landscape approach to analyze the dynamic characteristics 
of AD patients in the resting state. Some common dynamic indicators 
were used to characterize the resting triple-network dynamic system 
in the subjects and correlate it with the clinical index to further 

TABLE 1 Dynamic brain function network analysis method for AD.

Target Authors Method Conclusions

AD/NC Gao et al. (2022) dFC Extraction of potential advanced features enhanced the classification and diagnosis of brain diseases.

AD/MCI/NC Ghanbari et al. (2023) dFC
Redundancy could provide a basis for neuroprotective mechanisms of cognitive ageing and act as an early 

biomarker of AD.

vmAD/NC Sendi et al. (2021) dFNC
From NC to AD, the connectivity strength changed and the temporal properties of the FNC also became 

dysregulated.

AD/ASD Qiao et al. (2022) dFC
Inter-component dFC could be used as a biomarker for the diagnosis of AD et al. and provide a basis for 

brain connectomics.

AD/MCI/NC Ma et al. (2020) CAP
The DMN and visual network of AD are impaired, and transition and CAP entropies can be used as new 

biomarkers.

AD/NC Adhikari et al. (2021) CAPs Resting-state co-activation patterns could be a biomarker for the diagnosis and prediction of AD.
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explore the dynamic characteristics of the three resting networks and 
the hidden neural mechanisms of AD in patients, providing some 
theoretical inspiration for the prevention, diagnosis and treatment of 
diseases. Finally, the random walk method was used to simulate the 
dynamic changes in activity patterns in the triple network as a method 
to verify the effectiveness of the energy landscape analysis method.

2. Materials and methods

2.1. Subjects

The fMRI data from all subjects investigated in this study were 
obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
database and were acquired using a Philips 3.0 T MRI instrument.1 The 
downloaded data from each subject included 3 T structural fMRI data and 
behavioral data. This study included two groups of subjects selected based 
on the following criteria: (1) 33 patients with confirmed AD and MMSE 
scores = 6–26 points who were able to complete the entire data collection 
process and maintain a stable resting state during the entire time and (2) 
39 normal healthy elderly people with MMSE scores = 26–30 points, 
without depression or other types of dementia, and no history of receiving 
medication for psychiatric diseases.

Resting-state fMRI data were obtained from scans acquired with 
a 3.0 T Philips instrument. The acquisition parameters were as follows: 
(1) parameters of the fMRI scan were EPI fast imaging sequence, flip 
angle = 80°, matrix = 64 × 64 × 6,720, slice thickness = 3.3 mm, 
TR = 3,000 ms, TE = 30 ms, and pixel spacing = 3.3 × 3.3 × 3.3 mm3. (2) 
Scan parameters of the 3D-weighted T1 structural images were an 
acquisition plan = sagittal, flip angle=9°, and matrix = 256 × 256 × 170.

2.2. Data preprocessing

We preprocessed the resting-state fMRI data using the FSL toolkit 
and the AFNI toolkit. The preprocessing steps are described below. (1) 
The first four time points were deleted to ensure that all data were 
derived from a stable magnetic field. (2) Head movements were 
corrected. (3) Gaussian spatial smoothing was performed with a half-
peak width of 6 mm. (4) Bandpass filtering was performed at 
0.01–0.1 Hz. (5) Linear registration FLIRTt with the MNI152 standard 
spatial template was conducted. (6) White matter and cerebrospinal 
fluid signals were removed.

2.3. Triple-network ROI time series 
extraction

The ROI template used in this study was obtained from the 
Neurofunctional Imaging of Mental Disorders Laboratory at Stanford 
University.2 We  used this ROI template to extract time series of 
representative brain regions within the three networks. We selected 
representative ROIs from the three networks to extract their time 

1 https://adni.loni.usc.edu/

2 http://findlab.stanford.edu/research

series. The coordinates of the selected ROI corresponding to the 
Brodmann area (BA) and the MNI standard space are shown in 
Tables 2–5.

2.4. Energy landscape analysis method

The energy landscape approach aims to study the interactions 
among local brain regions from a statistical-physical perspective. The 
definition of energy can be used to describe the state of a brain system 
composed of different brain regions. This state model is essentially 
determined by the empirical distribution of fMRI data in different 
brain regions. Based on the model defined by the energy function, the 
energy landscape of the brain system in the state space can be obtained. 
The structure of the energy landscape reflects the stability and 
interactions of the states of the brain system. Furthermore, the energy 
landscape can also reflect a series of dynamic characteristics of 
the system.

We fit the subjects’ fMRI data to the pairwise maximum entropy 
model (MEM) using the criteria described below (Ezaki et al., 2018). 
Due to the large amount of data required for this method, we collected 
the fMRI signals from the same group of subjects and then performed 
pairwise MEM fitting. As each network contains a certain number of 
ROIs, we labeled each ROI as i i =( )1 2, .....  and denoted the binarized 
activity of the fMRI sequence at moment t as s it t T1£ £( ) , with +1 
and − 1 representing the activation and deactivation states, 
respectively. We set a threshold value for each ROI of each subject, and 
we  considered the ROI in an active state when it exceeded this 
threshold value. The threshold is the average signal value of the ROI 
for the subject over the whole time course, and thus the ROI of each 
subject is active approximately 50% of the time moments. The pattern 
of activity at moment t is represented by the NROI -dimensional 
binary vector s s s1 2

t t
N
t
ROI

, , ,....é
ë

ù
û , and there exist 2NROI possible 

patterns of ROI activity, which are enumerated as 
V V NROI1 21 1 1 11 1= - - -[ ] = [ ], , , , , ,... ...... ... .

For each ROI, we aggregated the data from the same set of subjects 
according to the time scale and calculated the occurrence frequency 
of each activity pattern V kk

NROI=( )1 2, ,... , denoted as P Vk( ) . In the 
paired maximum entropy model, the frequencies conform to the 
Boltzmann distribution as follows:

 
P V e ek

E V E V

i

k i

NROI

( ) = - ( ) - ( )

=
å/
1

2

 (1)

where E Vk( )  represents the energy of the active mode Vk , which 
we calculate using the following equation:

TABLE 2 Demographic and clinical scale information of subjects.

AD (n = 33) NC (n = 39) p-value

Gender(female/male) 14/19 16/23 0.90

Age(mean ± SE) 73.35 ± 1.30 74.44 ± 1.07 0.51

MMSE(mean ± SE) 22.97 ± 0.42 28.87 ± 0.20 < 0.001

CDR(mean ± SE) 0.76 ± 0.08 0.00 ± 0.00 < 0.001
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The fitting parameters hi and Jij denote the tendency of the ith 
ROI to be active when it is isolated and the strength of the interaction 
between the ith ROI and the jth ROI, respectively. Based on this 
definition, a smaller energy value corresponds to a greater frequency 
of occurrence of a pattern of activity on the time scale.

We obtain hi and Jij i j NROI, , , ,=( )1 2 .... by initially calculating the 
mean and two-by-two correlations for each state in the fMRI data 
from the subjects. The formula used for the calculation is as follows 
(where 〈 〉 denotes the average value):

 
á ñ = æ

è
ç

ö
ø
÷
=
ås si i

t

t

T

T
1

1  
(3)

 
á ñ = æ

è
ç

ö
ø
÷
=
ås s s si j i

t
j
t

t

T

T
1

1  
(4)

For a particular hi and J i j Nij ROI, , , ,=( )1 2 ... , the mean and 
correlation expected from the model in equation (1) are as follows:

 

á ñ = ( ) ( )

á ñ = ( ) ( ) ( )

=

=

ås s

s s s s

i m i k k
k

i j m i k j k k
k

V P V

V V P V

NROI

NRO
1

2

1

2 II

å

Notably, only the information on the average activity in each brain 
region and the coactivity between two brain regions in the fMRI data 
were used in the calculation. Other information was not considered 
in the model, such as information on the coactivity patterns between 
multiple brain regions. We must calculate the relative entropy of the 
model distribution of the brain system states and their empirical 
distribution, which is the K-L divergence (Kullback–Leibler 
divergence). The model distribution is defined as the Boltzmann 
distribution, and the empirical distribution is the actual probability 
distribution of each state in the fMRI data. The difference between the 
two can be measured using the following K-L divergence D2:

 D P V P V P Vk k model k
k

NROI

2 2
1

2
= ( ) ( ) ( )( )

=
å .log /  (5)

We iteratively adjust the values of hi and Jij  
according to h hi

new
i
old

i i m= + á ñ - á ñ( )a s s  and 
J Jij
new

ij
old

i j i j m= + á á ñ( )ñ -a s s s s , where α is the iteration step, 
until they gradually approach the values á ñs i m  and á ñs si j m  given 
in eqs. (3, 4) of the model.

TABLE 3 Brain coordinates in the DMN.

Number ROI Brain area BA MNI space

x y z

1 dDMN_1_ROI Left Medial Frontal Gyrus 10 0 49 12

2 dDMN_2_ROI Left Angular Gyrus 39 −48 −73 32

3 dDMN_3_ROI Right Media Frontal Gyrus 8 18 38 51

4 dDMN_4_ROI Precuneus 31 0 −57 30

5 dDMN_5_ROI Cingulate Gyrus 24 0 −17 35

6 dDMN_6_ROI Right Angular Gyrus 39 48 −66 29

7 dDMN_7_ROI Thalamus / −6 −6 3

8 dDMN_8_ROI Left Parahippocampal Gyrus 35 −24 −37 −9

9 dDMN_9_ROI Right Parahippocampal Gyrus 35 24 −21 −23

TABLE 4 Brain coordinates in the CEN.

Number ROI Brain area BA MNI space

x y z

1 LCEN_1 Left Precentral Gyrus 9 −35 21 3

2 LCEN_2 Left Middle Frontal Gyrus 10 −44 46 1

3 LCEN_3 Left Inferior Parietal Lobule 40 −44 −65 4

4 LCEN_4 Left Middle Temporal Gyrus 21 −65 −38 12

5 RCEN_1 Right Precentral Gyrus 9 32 26 4

6 RCEN_2 Right Middle Frontal Gyrus 10 35 62 7

7 RCEN_3 Right Inferior Parietal Lobule 40 46 −54 49

8 RCEN_4 Right Middle Frontal Gyrus 8 3 36 44
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The principle of this iteration is based on the gradient descent 
method, which minimizes the given K-L scatter, improves the 
accuracy of the model fit by iteratively training the two parameters h 
and j continuously, and finally obtains an optimized model. The 
energy landscape of the system is constructed based on this optimized 
model. The dynamics of different states of the brain system can 
be characterized by the local minimum, basin, dis-connectivity graph 
and energy barrier in the energy landscape.

In the energy landscape, among the 2n state vectors constructed, 
the two states in which only one element differs are considered 
adjacent states, such that each state has n neighboring states. When 
the energy value of a state is less than all n neighboring states, the state 
is defined as a local minimal state. It is also possible to construct 
disconnected diagrams to represent the main features of each state, 
including information such as the energy of local minimal states and 
the energy barrier of switching between neighboring states. The 
disconnected graph is a tree-like branching graph structure, where 
different branches represent different local minima, and the branch 
heights between neighboring local minima represent the energy 
barriers between them. The disconnected diagram is a more concise 
and intuitive representation of the relationship between the substable 
states of the system compared to the energy landscape. The detailed 
steps used to construct it are as follows:

 (1) First, the energy landscape is constructed based on the fitted 
optimization model and visualized to some extent in the 
superlattice diagram. Each state has a corresponding energy 
location and is connected to neighboring states, constituting 
multiple energy basins.

 (2) Second, the energy maximum corresponding to all current 
states is set as the energy threshold, which is denoted as Eth.

 (3) Then, the states and corresponding edges in the superlattice 
diagram with energies larger than the threshold Eth 
are removed.

 (4) Finally, all local minimal states in the superlattice diagram are 
checked to confirm that they have at least one path to achieve 
an interconnection.

 (5) Steps (3) and (4) are repeated and the threshold Eth is set to the 
maximum energy value in the remaining states, repeating this 
process until all local minimal states are disconnected from 
each other.

 (6) The energy threshold Eth corresponding to the first 
disconnection of each two local minimal states is recorded, and 
this value is the energy barrier between these two states, which 
is the height of the potential barrier between them in the 
disconnection diagram. As a result, the disconnected graph of 
local minimal states is obtained.

The energy landscape analysis method is a calculation method 
that can directly interpret multivariate time series. The analysis 
consists of the following four main steps: (1) binarization of the BOLD 
signal; (2) estimation of the maximum entropy model (Boltzmann 
distribution); (3) construction of the disconnected map and the local 
minimal state (basin) of energy; and (4) calculation of the dynamic 
index for the energy landscape. This method was originally designed 
to analyze fMRI data, but in principle, it is also applicable to other 
types of data. Based on experience, the energy landscape analysis 
method has a better performance when the number of variables is 

approximately 6 to 15. For a model with more variables, the calculation 
cost becomes significant, and the interpretation of the results becomes 
difficult. The energy landscape analysis process is shown in Figure 1.

3. Results

3.1. Construction of the triple-network 
energy landscape in the resting-state brain

Based on the structure of the energy landscape described above, 
we subsequently conducted studies on the dynamic characteristics of 
the triple networks in the resting-state brains of AD patients and 
NC subjects.

First, we constructed the corresponding energy landscape with 
fMRI data from two groups of subjects in the triple networks. The 
structure of the energy landscape in the triple networks from NC 
subjects and AD patients is shown in Figure  2. Nine ROIs were 
selected for the DMN, for a total of 29 activation states. The diagram 
in Figure 2A1 shows the activity patterns corresponding to the 8 local 
minimal states in AD patients, where black represents the inactivated 
state and white the activated state. The figure shows strong 
complementarity between the brain area states of these 8 activation 
patterns. For example, in pattern 1, all 9 brain areas are inactive, while 
in pattern 8, all 9 brain areas are activated; in pattern 2, only the left 
and right angular gyrus and precuneus are activated, while the 
remaining brain areas are inactive, which is completely opposite and 
complementary to pattern 7. Figure 2A2 shows the nonconnected 
graph of the local minimal state of AD patients, which visualizes the 
basic characteristics of each activity pattern, and the branches of the 
tree represent the hierarchical structure of each activity pattern in the 
energy landscape. Each branch corresponds to a local minimal state, 
and the difference in height between each two states is the energy 
barrier, which measures the amount of energy required to jump 
between these two states. The larger the energy barrier, the less easy it 
is to jump between states and the lower the frequency of occurrence. 
Conversely, if the jump between neighboring states is easier, the 
frequency is higher on the time scale. As shown in Figure 2A2, pattern 
4 and pattern 8, pattern 1 and pattern 5 are neighboring patterns, and 
their energy is relatively low, while the energy of the remaining four 
states is relatively high. Based on this structural feature of the energy 
landscape and the similarity between the two groups of subjects, 
we grouped the two lower energy pairs of local minimal states into two 
major brain states, denoted by major state 1 and major state 2, and the 
other higher energy local minimal states were uniformly defined as 
secondary brain states, which were denoted as minor states. These 
three states correspond to different colors in the nonconnected graph. 
The subsequent representation of the triple-network dynamics is 
based on these three states (major state 1, major state 2 and minor 
state) (Table 5).

Figure 2A3 shows five activation patterns corresponding to the 
local minimal state in the DMN energy landscape of NC subjects, 
where pattern 2 is characterized by activation in the left and right 
angular gyrus, left and right medial frontal gyrus, cingulate gyrus and 
precuneus, which are complementary to pattern 4. In pattern 3, only 
the left and right para-hippocampal gyrus, left and right angular gyrus 
and precuneus brain regions are activated, while the remaining brain 
regions are inactive and have no complementary activation patterns. 
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Compared with the results from the AD group, the NC group has 3 
fewer brain activity patterns. Figure 2A4 shows the nonconnected 
graph of the energy landscape of the DMN in NC subjects with a 
structure similar to AD, pattern 2. Pattern 5, pattern 1 and pattern 4 
are adjacent to each other, the energy required to jump between two 
states is smaller, and the energy of these four patterns is significantly 
lower than pattern 3. We inferred that these four patterns potentially 
represent the major activity patterns of the DMN in the resting state 
of NC subjects.

Figure 2B1 shows the activity patterns corresponding to the 8 local 
minimal states in AD patients, which are represented by the 
combination of 8 ROI activation states. Similar to the DMN, a strong 
complementary relationship exists between these 8 activation patterns 
corresponding to the states of brain regions. For example, in pattern 1, 
all 8 brain regions are inactive, which is complementary to pattern 8, 
where all 8 brain regions are activated; in pattern 3, only the left and 
right middle frontal gyrus and the left and right inferior parietal lobule 
are active, which is complementary to the activation status of pattern 
6. Figure 2B2 shows the nonconnected graph of the local minimal state 
in AD patients, where pattern 7 and pattern 8, as well as pattern 1 and 
pattern 2 are adjacent to each other, and the energy of these four 
patterns is relatively low compared to other patterns. Figure 2B3 shows 
six activation patterns corresponding to the local minimal states in the 
CEN energy landscape of NC subjects. Similar to the results from AD 
patients, the activation patterns are complementary, such as the lack of 
activation in all brain regions in pattern 1 that is complementary to 
activation in pattern 6; in pattern 2, only the right precentral gyrus, 
right middle frontal gyrus and right inferior parietal lobule are 
activated, which is complementary to the status of pattern 4. However, 
compared with subjects with AD, pattern 3 and pattern 5  in NC 
subjects have no complementary patterns, and two patterns of brain 
activity are missing. The nonconnected graph in the CEN of NC 
subjects is shown in Figure 2B4. Similarly, patterns 5 and 6 and patterns 

1 and 3 are neighboring, the energy required to jump between states 
with close branches is smaller, and two additional states with higher 
energy are observed. Overall, the structure of the CEN energy 
landscape for the AD and NC groups is similar to their DMN results.

Figure  2C1 shows 8 local minimal states corresponding to 
activation patterns in AD patients, which are represented by the 
combination of eight ROI activation states. All activation patterns in 
the figure are complementary. For example, in pattern 2, the left and 
right middle frontal gyrus and left cingulate gyrus are activated, while 
the remaining brain regions are not activated, which is complementary 
to the states of pattern 7. In pattern 3, only the left and right insula are 
activated, which is completely opposite to the state of pattern 6. 
Figure 2C2 shows the nonconnected graph of the local minimal states 
of AD patients, where pattern 1 and pattern 5, as well as pattern 4 and 
pattern 8, are adjacent to each other, and the energy of these four 
patterns is relatively low compared to the other patterns. Figure 2C3 
represents the 8 brain area activation patterns in the SN energy 
landscape of NC, which are completely consistent with the activation 
patterns of AD patients. The nonconnected graphs of the SN in NC 
subjects are shown in Figure 2C4, with pattern 1 and pattern 5, as well 
as pattern 4 and pattern 8 located adjacent to each other, and the 
energy of these two groups of patterns is significantly lower than the 
other four states. We infer that these four patterns potentially represent 
the major activity patterns in the resting-state SN of NC subjects. 
Overall, unlike the DMN and CEN, the results of the energy landscape 
analysis of the SN network in the AD and NC groups were less different.

3.2. Dynamic characterization of the 
triple-network activity patterns in the brain

Based on the accurately fitted energy landscape model mentioned 
above, some frequently occurring brain major states are sufficiently 

FIGURE 1

The process of energy landscape analysis. (A) extraction of ROI time series, (B) binarization of data, (C) calculation the frequency of appearance in each 
activity pattern, (D) fitting MEM (E) construction of energy landscape (F) construction of non-connected graph.
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representative of the resting-state brain activity pattern. The energy 
landscape analysis revealed the hierarchical relationships between the 
2n states by calculating the energy values for all possible brain activity 
patterns and systematically searching for brain activity patterns with 
the lowest local energy values that play a dominant role and are more 
easily observed compared to others. This value is essentially a 
statistical indicator of the probability that each activity pattern occurs 

on a time scale. Patterns of activity with lower energy values tend to 
occur more frequently, and these patterns are considered relatively 
more stable.

The results of the study showed that the energy landscape of the 
triple networks of subjects in the AD and NC groups had a similar 
structure that was dominated by the activity patterns with 
complementary relationships. Moreover, both had two sets of 

FIGURE 2

The structure of the energy landscape is shown for DMN from AD patients and NC subjects (A1–A4), CEN (B1–B4), and SN (C1–C4). Comparing the 
three networks reveals that the differences between AD and NC are the least in SN and the greatest in DMN.

TABLE 5 Brain coordinates in the SN.

Number ROI Brain area BA MNI space

x y z

1 aSN1 Left Middle Frontal Gyrus 10 −32 45 26

2 aSN2 Left Insula 13 −41 15 −2

3 aSN3 Left Cingulate Gyrus 32 −2 17 45

4 aSN4 Right Middle Frontal Gyrus 10 28 43 26

5 aSN5 Right Insula 13 44 13 1

6 aSN6 Left Cerebellum / −33 −54 −42

7 aSN7 Right Cerebellum / 33 −55 −43
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neighboring and low-energy activity patterns. Meanwhile, the 
remaining patterns were relatively high in energy. This suggests that 
the other local minimal states were less stable than these four patterns, 
which all had similar activation patterns in the triple networks. For 
instance, patterns 1/4/5/8 in the DMN of AD patients was similar to 
patterns 1/2/4/5 in the ROI activation pattern of NC subjects.

Based on the classification of the triple-network brain activity 
states described above, we selected some common dynamic indicators 
to quantitatively represent the dynamic characteristics of the three 
networks in the subjects, which include the appearance frequency, 
transition frequency and duration.

First, we calculated the frequency of occurrence of each state in 
the fMRI time series and used it to quantify the dominance of different 
states. The comparison of the frequency of each state in the DMN 
between the AD and NC groups is shown in Figure 3A. Within a 
single group of subjects, the frequencies of major state 1 and major 
state 2 were much higher than that of the minor state. The proportion 
of the frequency of brain states in the DMN of AD patients was similar 
to that of NC subjects, and both showed a significantly higher 
proportion of major states than minor states. This finding is consistent 
with the results of the energy landscape analysis, where states with low 
energy appear more frequently in time, are more stable, and dominate 
the pattern of brain activity. In addition, for major state 1, the 
frequency of occurrence was 42.1% in AD patients and 47.6% in NC 
subjects, representing a significantly lower percentage in AD patients 
than in NC subjects (p < 10−8). Similarly, the frequency of major state 
2 was 43.5% in AD patients and 50.5% in NC subjects, which was 
significantly lower in AD patients than in NC subjects (p < 10−12). 
However, the frequency of the minor state in the AD group was 14.4%, 
while the frequency in the NC group was 1.8%, representing a 
significantly higher frequency in the AD group than in the NC group 
(p < 10−25).

Figure 3C shows the comparison of the frequency of each state in 
the CEN between the AD and NC groups. Within a single group of 
subjects, the proportions of the frequencies of major state 1 and major 
state 2 were significantly higher than that of the minor state. The 
proportions of the frequencies of CEN brain states in AD patients was 
similar to that in NCs, both showing a significantly higher proportion 
of major states than minor states. Similarly, for major state 1, the 
frequency of occurrence was 40.2% in AD patients and 44.9% in NC 
subjects, and was significantly lower in AD patients than in NC 
subjects (p < 10−4). The frequency of major state 2 was 38.8% in AD 
patients compared with 43.1% in NC subjects, and was significantly 
lower in AD patients than in NC subjects (p < 10−3). In addition, the 
frequency of the minor state was 21.1% in the AD group compared 
with 11.9% in the NC group, representing a significantly higher 
frequency in the AD group than in the NC group (p < 10−6). The 
results of this analysis were generally similar to those obtained for the 
DMN network.

Figure 3E shows the frequency results for each state in the SN 
between the AD and NC groups. Within a single group of subjects, the 
frequency proportions of major state 1 and major state 2 were 
significantly higher than those of the minor state. For different groups 
of subjects, a significant difference was not observed between groups 
in the frequency of major state 1, which was different from the results 
obtained for the first two networks (p = 0.9026). In addition, the 
frequency of major state 2 was significantly lower in patients with AD 
than in NC subjects (p < 10−6), and the frequency of major state 2 was 

37.5% in patients with AD and 42.9% in NC subjects. In contrast, the 
frequency of minor states was significantly higher in AD patients than 
in NCs (p < 10−3), as the frequency of minor states was 22.2% in AD 
patients and 16.8% in NC subjects.

The aforementioned results indicate that the frequency of major 
brain states in AD patients is significantly lower than that in NC 
subjects, while the frequency of minor states is significantly higher 
than that in NC subjects. We further analyzed the dynamics of brain 
activity states by calculating and visualizing the transition frequency 
matrices between different brain activity states in the triple networks 
of the AD and NC groups. The transition frequency matrix of the 
DMN is shown in Figure 4C, and it depicts that the activity pattern 
transitions in both the AD and NC groups are mainly concentrated 
between the two major states. The difference is that the transition 
frequency between the minor state and the major state is higher in 
patients with AD, while it is approximately 0 in NC subjects.

The transition frequency matrix between different brain states of 
the CEN is shown in Figure 4D, and it indicates that although the 
activity state transitions in both the AD and NC groups were mainly 
concentrated between the two major states, the concentration trend 
was more obvious in NC subjects. Meanwhile, the transition frequency 
between the minor state and major states was significantly higher in 
AD patients.

The transition frequency matrix between different brain states of 
the SN network is shown in Figure 4E. Compared with the first two 
networks, the transition frequency between the minor state and major 
states was significantly increased for both groups. However, the active 
state transitions of NC subjects were still mainly concentrated between 
the two major states, while patients with AD had similar transition 
frequencies between the minor state and major states compared to the 
two major states.

In summary, the results showed that the minor state was less 
frequent in both AD patients and NC subjects, and the transition 
frequency from the minor state was also low. Therefore, we classified 
the transitions of brain activity states into the following two types: 
direct transitions between major states only and indirect transitions 
between the two major states through the minor state. For simplicity, 
we refer to the minor state as the intermediate state between the major 
states, which mainly appears in the jump transition between major 
states. The two types of state transitions are defined in Figure 4B.

Based on this definition, we further calculated the frequency of 
direct transitions between major states and the frequency of indirect 
transitions between major states through minor states and compared 
the statistical analysis of AD patients with NC subjects. The 
comparison of the transition frequencies between major states in the 
DMN for both groups is shown in Figure 5A. The direct transition 
frequencies were higher than the indirect transition frequencies in 
both the AD and NC groups. However, the direct transition frequency 
between major states was significantly lower in AD patients than in 
NC subjects (p < 10−8), being 19.9% in AD patients and 27.6% in NC 
subjects. In contrast, the indirect transition frequency for major states 
was significantly higher in subjects with AD than in NC subjects 
(p < 10−21), being 6.8% in the AD group compared to 0.9% in the 
NC group.

The comparison of the transition frequencies between major states 
in the CEN for both groups is shown in Figure  5C. The direct 
transition frequency of major states in the CEN was 17.4% in AD 
patients and 21.9% in NC subjects, which was significantly lower in 
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AD patients than in NC subjects (p < 10−3). Conversely, the frequency 
of indirect transitions between major states was 7.5% in patients with 
AD compared to 4.4% in NC subjects, and the value of the AD group 
was significantly higher than that for the NC group (p < 10−5).

The comparison of the transition frequencies between major states 
in the SN for both groups is shown in Figure 5E. The direct transition 
frequency of the SN was 15.9% in AD patients and 18.5% in NC 

subjects, indicating a significantly lower value for AD patients than for 
NC subjects (p = 0.0048). In contrast, the indirect transition frequency 
of the major state was 8.5% in the AD group compared to 7.2% in the 
NC group, where the value of the AD group was higher than that of 
the NC group (p = 0.025).

The state transition frequency difference in the three networks was 
similar in both groups, with lower direct transition frequencies and 

FIGURE 3

The frequency of different brain states in DMN between AD and NC in empirical data is compared in (A). In simulation, the frequency of appearance for 
each state in DMN is shown in (B). The frequency of appearance of each state in CEN is presented in (C,D) for empirical data and simulation, 
respectively. Similarly, the frequency of appearance of each state in SN is shown in (E,F) for empirical data and simulation. Although no significant 
difference is observed between the two types of data, there are significant differences between AD and NC, and these differences have varying degrees 
in the three networks. ***p < 0.001 in t-test.
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higher indirect transition frequencies in AD patients compared to NC 
subjects. However, within the AD group, the direct transition 
frequencies were significantly higher than the indirect transition 
frequencies. This abnormal state transition indicates that the brain 
activity states of AD patients tend to remain in minor states for a longer 
time than those of NC subjects. We  confirmed this inference by 
subsequently calculating the duration of brain activity patterns in the 
three states, where this index was the average duration of each state over 
the time series, quantified as the mean length of repetition over time. 
The unit of duration is step of TR, shortened to s. The comparison of 
the mean duration in the DMN between both groups is shown in 
Figure 6A. The duration of both major states in the AD group was 
significantly smaller than that of the NC group, where the mean 
duration of major state 1 was 2.78 s in patients with AD and 3.23 s in 
NC subjects (p = 0.0019), and the mean duration of major state 2 was 
2.76 s in patients with AD and 3.51 s in NC subjects (p < 10−8). However, 
the duration of the minor state in AD patients was significantly longer 

than that in NC subjects, with a mean duration of 1.27 s in AD patients 
and 0.88 s in NC subjects (p < 10−4). The comparison of the mean 
duration in the CEN between both groups is shown in Figure 6C. The 
duration of both major states in the AD group was significantly smaller 
than that in the NC group, where the average duration of major state 
1 in patients with AD was 2.62 s and 3.03 s in NC subjects (p = 0.0011); 
the average duration of major state 2 in the AD group was 2.49 s and 
2.83 s in the NC group (p = 0.0017). Unlike the results for the DMN, the 
duration of the minor state in the CEN of AD patients was not 
significantly different from that of NC subjects, with a mean duration 
of 1.51 s in AD patients and 1.42 s in NC subjects (p = 0.18). Figure 6E 
shows the comparison of the mean duration of states in the SN between 
both groups. The mean duration of major state 1 was 2.56 s in AD 
patients and 2.59 s in NC subjects, which were not significantly different 
(p = 0.74); the mean duration of major state 2 was 2.47 s in AD patients 
and 2.81 s in NC subjects, and was significantly smaller in the AD group 
than in the NC group (p = 0.0024). In addition, the duration of the 

FIGURE 4

Dynamics of brain activity patterns. We performed a 105 random-walk numerical simulation to characterize the dynamics in brain states for each 
network of AD and NC (A). A schematic diagram showing different types of transitions between brain activity states is presented. We divide the 
transition pattern of major states into direct and indirect forms (B). The transition frequency matrix between different brain states of DMN (C). The 
transition frequency matrix in CEN (D). The transition frequency matrix in SN (E). The three networks have different degrees of difference.
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minor state in AD patients was longer than that in NC subjects 
(p = 0.017), and the average duration of the minor state was 1.47 s in AD 
patients and 1.35 s in NC subjects.

Compared to the NC group, brain activity in the AD group was 
characterized by a shorter duration in major states and a significantly 
longer duration in transition states, but the duration of major states 
was significantly longer than that of transition states within the AD 

group. Notably, the duration of each state in the triple networks 
differed to varying degrees, with the DMN differing most significantly, 
followed by the CEN and SN.

In conclusion, compared with the NC group, the AD group has a 
higher frequency and duration of minor states and a higher frequency 
of indirect transitions, which indirectly reflects the abnormal dynamic 
characteristics of brain activity states in individuals with AD.

FIGURE 5

In the empirical data, the comparison of transition frequencies between major states in DMN (A). In the simulation, the transition frequencies in DMN 
(B). The transition frequencies between major states in CEN from empirical data and simulation (C,D). The transition frequencies in SN from empirical 
data and simulation (E,F). We can find that the empirical value is greater than the simulation value, and there are different degrees of variability in AD 
and NC among the three networks. *p < 0.05, **p < 0.01, ***p < 0.001 in t-test.
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3.3. Random-walk simulation of the 
dynamics of the energy landscape

We performed 105 random walk data simulations to characterize 
the dynamic changes in the brain states of the AD and NC groups, as 
shown in Figure 4A. The variability of dynamic changes in brain states 
differed among the three networks, with the most significant difference 
noted in the DMN, followed by the CEN, and the least significant 
difference detected in the SN. Compared with patients with AD, the 
frequency of major states in the DMN of NC subjects was extremely 
high, but the frequency of minor states was low. In the CEN, the 

frequency of minor states in NC subjects is increased, but there was 
still a gap compared with AD patients. In the SN, the difference 
between the NC and AD groups was significantly reduced, and the 
frequency of each state was similar. The SN usually plays a moderating 
and transitional role between the DMN and CEN; thus, 
we  hypothesized that the coordination relationship between the 
networks of dynamic brain systems in patients with AD might be less 
affected by the disease.

We characterized the dynamics of three core networks related to 
cognitive functions in AD and NC groups based on the energy 
landscape. Based on the results, the energy landscape structures of 

FIGURE 6

The comparison of empirical data on state duration in DMN (A). The comparison of simulated data for state duration in DMN (B). The state duration of 
each state in CEN from empirical data and simulation (C,D). The state duration in SN from empirical data and simulation (E,F). It can be found that the 
empirical value is smaller than the simulated value, and there are different degrees of variability in AD and NC among the three networks. *p < 0.05, 
**p < 0.01, ***p < 0.001 in t-test.
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the AD and NC groups are similar, the tree-like branching structures 
of the nonconnected graph have two sets of adjacent and relatively 
low energy local minimal states, and some similarity in the activation 
patterns of the three networks is observed between the two groups. 
Nevertheless, the results of the energy landscape analysis and the 
differences in dynamic characteristics of the AD and NC groups 
were significant. We analyzed three dynamic characteristics. The first 
characteristic is the appearance frequencies of different brain states, 
as shown in  Figure 3B, Figure 5B and Figure 6B. In both the AD and 
NC groups, all three networks showed a significantly higher 
frequency of major states over time than minor states, while the 
frequency of major states in patients with AD was lower than that in 
NC subjects, which was also evident from the transition frequency 
matrix between the different brain activity states. Thus, the activity 
of minor states in patients with AD increased and the total number 
of appearances of major states decreased significantly in the same 
time period. The second feature is the frequency of different 
transition modes of the major state, as shown in Figure  3D, 
Figure 5D and Figure 6D. The direct transition frequencies between 
the major states in patients with AD are all lower than those of NC 
subjects. In contrast, their indirect transition frequencies are 
significantly higher than NC subjects. Therefore, the minor state of 
patients with AD, which functions as a transition state, affects the 
stability of the switching between the major states, and thus the 
direct switching between the major states is more easily interrupted 
by the appearance of the minor states. Finally, we  analyzed the 
average durations of the three networks in the AD and NC groups, 
and the results in Figure 3F, Figure 5F and Figure 6F showed that the 
average durations of the two major states in patients with AD were 
less than those in NC subjects. Combining the results for these three 
characteristics, we propose that the major states in patients with AD 
showed instability phenomena, which might arise from the abnormal 
minor states. The total number of minor state appearances increased 
on the time scale, the AD group was more likely to jump from the 
major state to the minor state, and the duration of each minor state 
appearance increased. Based on these results, the brain regions 
associated with the minor state are more likely to be activated, and 
the activation level is increased and more persistent, disrupting the 
original steady state.

3.4. Study of the correlation between 
triple-network dynamic characteristics and 
clinical MMSE scores

We further explored whether the abnormal dynamic 
characteristics of the triple-network brain activity states in patients 
with AD are related to the disease by analyzing the dynamic indicators 
in combination with the subjects’ clinical behavioral data, the scores 
of which range from 0–30 points, with lower scores representing a 
more severe intellectual impairment. In the figure, R represents the 
correlation coefficient, and P represents the level of significance of 
the correlation.

We first calculated the correlation between the appearance 
frequencies of each state in patients with AD and the MMSE scores. 
The results for the DMN are shown in Figure 7A. The frequency of 
appearance of both major states had a significant positive correlation 
with the MMSE score (R = 0.484, p < 10−4; R = 0.606, p < 10−7). In 

contrast, the frequency of the minor state was significantly negatively 
correlated with MMSE scores (R = − 0.724, p < 10−12). The correlation 
between the frequency of each state in the CEN of patients with AD 
and the MMSE score is shown in Figure 7B. The frequencies of both 
major states were positively correlated with the MMSE score 
(R = 0.475, p < 10−4; R = 0.335, p = 0.004). In contrast, the frequency 
of the appearance of the minor state was significantly negatively 
correlated with the MMSE score (R = −0.494, p < 10−4). The 
correlation between the frequency of each state in the SN of AD 
patients and MMSE scores is shown in Figure 7C. No correlation was 
observed between the frequency of major state 1 and the MMSE 
score (R = 0.042, p = 0.724), but a significant positive correlation was 
observed between the frequency of major state 2 and the MMSE 
score (R = 0.528, p < 10−5). In contrast, the frequency of the minor 
state was negatively correlated with the MMSE score (R = −0.389, 
p = 0.001).

Second, we calculated the correlation between the transition 
frequency of patients with AD and the MMSE score. The result for 
the DMN is shown in Figure 8A. The direct transition frequency was 
significantly positively correlated with the MMSE score (R = 0.548, 
p < 10−6). In contrast, a significant negative correlation was detected 
between the indirect transition frequency and MMSE score 
(R = –0.736, p < 10−12). The correlation between the frequency of 
transitions in the CEN and the MMSE score is shown in 
Figure 8B. The frequency of the direct transition in patients with AD 
was positively correlated with the MMSE score (R = 0.336, p = 0.004). 
In contrast, the indirect transition frequency had a negative 
correlation with the MMSE score (R = −0.421, p < 10−3). The 
correlation analysis between the frequency of transitions in the SN 
and the MMSE score is shown in Figure 8C. The frequency of the 
direct transition in patients with AD was positively correlated with 
the MMSE score (R = 0.416, p < 10−3). The indirect transition 
frequency, on the other hand, had a negative correlation with the 
MMSE score (R = −0.329, p = 0.005). The correlations between each 
transition frequency and the MMSE score were similar for the 
three networks.

Finally, we analyzed the correlation between the mean duration of 
states in patients with AD and the MMSE score, and the results for the 
DMN are shown in Figure  9A. The correlation between the mean 
duration of major state 1 and the MMSE score was not significant 
(R = 0.194, p = 0.103), but the mean duration of major state 2 displayed a 
significant positive correlation with the MMSE score (R = 0.459, p < 10−4). 
In contrast, the mean duration of the minor state was significantly 
negatively correlated with the MMSE score (R = −0.363, p = 0.002). 
Notably, due to the low frequency of the minor state in patients with AD, 
some outliers in their mean duration (duration close to 0) are present, 
which may have affected the results of the correlation analysis. The 
correlation analysis between the duration in the CEN of patients with AD 
and the MMSE score is shown in Figure 9B. Unlike the previous results, 
the mean durations of both major states in the CEN were positively 
correlated with the MMSE score (R = 0.352, p = 0.002; R = 0.302, p = 0.01). 
A weaker negative correlation was observed between the duration of the 
minor state and MMSE score (R = −0.168, p = 0.158). The correlation 
analysis between the mean duration in the SN of patients with AD and 
the MMSE score is shown in Figure 9C. The mean duration of major state 
1  in patients with AD was not correlated with the MMSE score 
(R = −0.055, p = 0.644), whereas the mean duration of major state 2 was 
weakly positively correlated with the MMSE score (R = 0.257, p = 0.029). 
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In addition, a weaker negative correlation was observed between the 
duration of the minor state and the MMSE score (R = −0.259, p = 0.028).

4. Discussion

4.1. Time-varying characteristics of the 
triple-network dynamics in the resting 
brain

In the present study, we  explored the differences in dynamic 
characteristics of three networks in the resting brain between the AD 
and NC groups by conducting an energy landscape analysis. In all 
three networks, the brain activity patterns of patients with AD lacked 
a more stable major state compared to NC subjects, while the minor 
state was more active. This property may cause frequent switching in 

resting-state brain activity patterns between different substates, 
increasing the frequency of transitions between major and minor 
brain states, and the occurrence of minor states is significantly higher. 
Patients with AD experience difficulty in focusing on the major state 
for a long time and lose stability of the three networks.

According to previous studies of the normal ageing process of the 
brain, its internal balance system actively inhibits the effects of various 
genetic and environmental factors, whereas the balance system fails in 
patients with neurodegenerative diseases such as AD. The instability 
of spontaneous neuronal activity in cortical and hippocampal circuits 
is a typical feature of AD (Palop et al., 2007; Frere and Slutsky, 2018). 
Researchers observed a strong correlation between the formation of 
amyloid plaques, the appearance of overactive neurons and the 
impairment of learning abilities in animals. By performing functional 
studies of individual cortical neurons in a mouse model of AD, 
researchers found that the presence of overactive neurons near 

FIGURE 7

The correlation between the frequency of each state and MMSE in DMN (A1–A3). The correlation between the frequency of each state and MMSE in 
CEN (B1–B3). The correlation between the frequency of each state and MMSE in SN (C1–C3). It can be found that the frequency of appearance and 
MMSE are correlated, and the correlation is most significant in DMN.
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amyloid plaques accounted for 50% of neurons, which was 16 times 
more than that in normal mice. This phenomenon causes serious 
dysfunction of the neural network of AD mice (Busche et al., 2008). 
Impaired synaptic function and decreased neural plasticity are the 
early symptoms of AD and are closely related to the decline in 
cognitive ability. Based on a study using transcranial magnetic 
stimulation, cortical inhibition is weakened in AD patients, and the 
cortical excitability is significantly higher than that of elderly 
individuals with normal cognition. Lower cognitive performance is 
significantly associated with higher cortical excitability and lower 
inhibition (Spires-Jones and Knafo, 2012; Chou et al., 2022). These 

results are consistent with the findings from our study that the stability 
of major states in the network associated with cognitive function is 
disrupted in patients with AD compared with normal subjects, and 
the patient’s brain is unable to easily suppress this active abnormal 
activity. In recent years, Ma et al. have used co-activation pattern 
analysis to study the AD brain and found that the increase in transition 
and CAP entropies and the diversity of CAP transition probabilities 
suggest variable information flow and higher system uncertainty Ma 
et al. (2020). Our study has also revealed that the triple-networks of 
AD patients exhibit decreased main state occurrence, increased minor 
state occurrence, and increased system instability, which is consistent 

FIGURE 8

The correlation of transition frequencies between major states and MMSE in DMN (A1,A2). The correlation of transition frequencies between major 
states and MMSE in CEN (B1,B2). The correlation of transition frequencies between major states and MMSE in SN (C1,C2). It can be found that the 
frequencies of different transition methods are significantly correlated with MMSE, and the degree of correlation is different for the three networks.
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with the previous study. Sendi et al. observed during normal brain 
development toward very mild AD that there were significant 
interruptions in all states, and that connectivity of multiple networks, 
such as the subcortical, auditory, and visual networks, decreased 
(Sendi et  al., 2021). Recombination patterns were also found in 
connections within and between multiple networks. Similarly, our 
results show changes in the energy landscape of different states in AD 
patients when compared to those of NC individuals. This suggests a 
network reorganization may be occurring in AD patients. Ghanbari 
et al. employed a sliding window method to estimate the dynamic 
functional connectivity (dFC) of each network, from which they 
extracted the Mean of Redundancy (MOR) and Fluctuation of 
Redundancy (FOR) features. Statistical analysis based on these 
features revealed that redundancy significantly increased in AD 

patients compared to NC individuals (Ghanbari et al., 2023). Our 
study also found that the stability of the main state decreased, while 
the indirect switching increased in AD patients, which may account 
for the increase in redundant dynamic characteristics.

Therefore, we considered that all three core networks associated 
with cognitive function are affected by AD-related disorders. Previous 
studies have observed varying degrees of damage to the three networks 
in AD patients, where the number of functional connections in the 
module is significantly reduced and closely related to 
cognitive impairment.

The DMN consists mainly of the posterior cingulate cortex (PCC), 
precuneus (PCu), and inferior parietal lobe (IPL) and is mainly 
associated with some higher cognitive functions of the brain, such as 
situational memory, visuospatial processing, and consciousness 

FIGURE 9

The correlation between the duration of each state and MMSE in DMN (A1–A3). The correlation between the duration of each state and MMSE in CEN 
(B1–B3). The correlation between the duration of each state and MMSE in SN (C1–C3). It can be found that there is a significant correlation between 
duration and MMSE, but the degree of correlation is not significant in SN.
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(Ciftci, 2011; Mohan et al., 2016). The DMN in the normal brain is 
characterized by a symmetrical, well-organized pattern (Raichle et al., 
2001). However, in the mild AD group, the symmetry or functional 
connectivity between interhemispheric homogeneous regions 
decreases in some disease-related functional networks. Patients with 
AD perform normally when using intrahemispheric processing but 
poorly when interhemispheric communication is needed. This loss of 
symmetry may reflect a state of cognitive decline and imbalance in the 
functional networks of the patient’s brain (Lee et al., 2009; Chen et al., 
2013). For example, the functional connectivity of the precuneus, 
posterior cingulate and medial frontal cortex in the DMN of patients 
with AD is reduced, and the correlation between nodes in the DMN 
is reduced (Palesi et  al., 2016). The CEN is the functional brain 
network associated with executive tasks, mainly comprising the 
dorsolateral prefrontal cortex (DLPFC) and the posterior parietal 
cortex (PPC), covering multiple medial-frontal regions, including the 
anterior and paracallosal cingulate, which are presumed to help 
process information related to working memory, decision-making and 
retention, and operational target detection (Ramezanzadeh et  al., 
2014; Wang et al., 2015). Compared to NC subjects, patients with AD 
exhibit enhanced functional connectivity in the suprafrontal gyrus 
(SFGmed.L) and middle frontal gyrus (MFG.L) regions of the CEN 
network, while the anterior cingulate cortex (ACG.R) region of the 
CEN shows reduced functional connectivity. These changes may 
contribute to impaired executive function (Jilka et al., 2014). The SN 
is similar to a “dynamic switch” network that plays a regulatory and 
transitional role, mainly comprising the ventral lateral prefrontal 
cortex (VLPFC) and the anterior cingulate cortex (ACC), and is 
proposed to play a key coordinating role between the CEN and the 
DMN (Ciftci, 2011; Brier et al., 2012). Functional connectivity within 
the SN is not significantly different between the NC and AD groups, 
but abnormal connectivity with the DMN and CEN occurs in AD 
patients (Wang et al., 2015).

However, among the three networks, the dynamic characteristics of 
the DMN and CEN were significantly different between the two groups 
compared with the SN. For example, the intermediate transition states of 
the DMN and CEN in the AD group are greater than those in the NC 
group, whereas the energy landscape constructed by the SN had high 
similarity, corresponding to the same pattern of brain area activation. In 
addition, group differences in the frequency and duration of major state 
1 were not found in the SN, and the differences in the probability of 
transitions between the major states were not as significant as in the other 
two networks. Our results indicated that the SN may be less affected by 
the disease, while the DMN and CEN are more severely damaged than 
the SN in the early stage of AD.

In clinical practice, AD usually begins with a situational memory 
impairment followed by a slow progression to wider impairments in 
daily activities such as attention, executive functioning, language, and 
visuospatial functioning, eventually leading to loss of independent 
daily living abilities (Dai et al., 2015). As mentioned above, the DMN 
plays a key role in cognitive processes, particularly in situational 
memory processing. Therefore, the DMN plays a central role in brain 
activity and connects other participating networks, indicating that AD 
pathology may spread from the DMN to nearby networks, including 
those involved in visual space and executive function, as well as other 
peripheral networks (Fair et al., 2008; Liu et al., 2018). Significant 
degeneration of functional connectivity has been observed within the 
DMN network in AD patients, with the bilateral angular gyrus (AG) 

identified as one of the typical areas. Additionally, both clusters of the 
right middle frontal gyrus and the superior frontal gyrus in the CEN 
related to the control of executive functions showed a significant 
decrease in functional connectivity (Sridharan et  al., 2008). In 
contrast, no significant differences in the functional connectivity of 
internal networks were observed in the SN of both the AD and NC 
groups (Zhu et  al., 2016). Compared with age-matched controls, 
individuals with early-onset AD showed lower functional connectivity 
in all networks, such as auditory, sensorimotor, and default mode 
networks, whereas patients with late-onset AD showed lower 
functional connectivity only in the DMN. Patients with early-onset 
AD have more extensive disorganization of brain function than those 
with late-onset AD (Hodges, 2006; Adriaanse et  al., 2014). These 
results support the hypothesis that the DMN is more severely impaired 
than the CEN and that the SN is less affected by the disease in 
AD patients.

4.2. Comparison of the dynamic 
characteristics based on random walk data 
simulations

We conducted 105random walk data simulations to characterize 
the dynamic changes in resting brain activity in the three networks of 
AD patients and NC subjects as an approach to verify our results. 
We analyzed the dynamic characteristics of the simulation data and 
compared them with the empirical data to verify the effectiveness and 
rationality of the energy landscape model. Through comparison, 
we found that the statistical results of the dynamic characteristics of 
the simulated data and empirical data were consistent. Based on the 
findings described above, we further confirmed that the SN is less 
affected by the disease. We verified that the energy landscape achieves 
a better description of the nonequilibrium process of switching 
between resting-state activity patterns in the brain, from which the 
stability and interactions of the states can be determined and the 
dynamics characteristics can be described in more detail. The method 
is also suitable for analyzing specific networks and ROI brain regions.

4.3. The relationship between the dynamic 
changes in the three networks and a 
cognitive index

We tested the correlation between the dynamic features that were 
significantly different in AD patients and the clinical index. The 
frequency of occurrence, frequency of state transitions and duration 
of the major states in the three networks of these subjects were 
correlated with the MMSE scores. The characteristics of major states 
were generally positively correlated with MMSE scores; the higher the 
score, the more stable the major states were. Meanwhile, the 
characteristics of minor states were negatively correlated with MMSE 
scores; the lower the score, the more active the minor states were. The 
degree of correlation differed among the three networks, with the 
DMN exhibiting the highest correlation with MMSE scores, followed 
by the CEN, and the weakest correlation was observed with the 
SN. Therefore, we  suggest that the abnormalities in the dynamic 
characteristics of the three networks of patients with AD are related to 
their cognitive impairment, with the DMN and CEN identified as 
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more strongly associated with cognitive impairment and the SN 
showing a weaker correlation.

Our research provides empirical evidence that AD patients are 
characterized by abnormally nonequilibrium large-scale brain network 
dynamics. Although previous neuroimaging studies have reported neural 
synchronization disorders in patients with AD and identified a unique 
variety of structural and functional whole-brain architectures, most 
studies have not directly studied brain dynamics (Uhlhaas and Singer, 
2006). In contrast, we  illustrate the time-varying characteristics of 
dynamic brain activity patterns in three core brain networks associated 
with cognitive function and directly report the link between abnormalities 
in nonequilibrium brain dynamics in patients with AD and their clinical 
cognitive performance. Given the results of previous studies, our current 
study may be  considered as providing additional empirical support, 
emphasizing the importance of studying brain dynamics to obtain a 
biological understanding of various developmental and psychiatric 
disorders and provide a deeper understanding of the intrinsic neural 
mechanism and system dynamics characteristics of the AD brain in the 
resting state.

5. Limitations and future work

We have studied and revealed the dynamic characteristics of 
functional network activity patterns in the resting brains of AD 
patients from the perspective of nonequilibrium dynamics. The data 
used in this study are derived from subjects included in a single 
database, and the number of samples used in this study is limited, 
including only 33 AD patients and 39 healthy subjects. In the future, 
other data sources and a larger sample size must be considered, as well 
as the inclusion of patients with mild cognitive impairment as an 
intermediate control group, which will help to improve the reliability 
of the research methods and results. Additionally, the analysis 
performed in this study only used one clinical behavioral data point, 
the MMSE score of the subjects, and thus the study lacked 
comprehensiveness. Thus, we need to include more clinical behavioral 
data as indicators for the correlational analysis to increase the 
persuasiveness of the findings and conclusions. Currently, various 
artificial intelligence (AI) techniques and advanced signal processing 
methods have been used for accurate diagnosis of mental illnesses 
such as AD, Schizophrenia (SZ), and ASD (Khodatars et al., 2021; 
Sadeghi et al., 2022; Illakiya and Karthik, 2023). Combining dynamic 
indicators with deep learning can significantly reduce network 
training costs, which has become one of the hotspots in current 
research on mental illness diagnosis. We will continue to develop 
function magnetic resonance data analysis methods based on 
non-equilibrium dynamics in the future, and combine them with deep 
learning to strive for breakthroughs in the diagnosis of multiple 
neurological diseases such as AD and ASD.

6. Conclusion

The main focus of this paper was to perform an energy landscape 
analysis of three networks in the brains of patients with AD and NC 
subjects, to further characterize dynamics-related features based on 
the constructed energy landscape, and to observe the correlation 
between a series of dynamic characteristics and the clinical cognitive 

function of the subjects. In the Introduction section, we introduced 
the triple-network model and related background information, 
followed by the Methods, which described the extraction of the ROI 
time series and the most important method of the energy landscape 
analysis. Our study was divided into four parts. First, we compared the 
structure of the triple-network energy landscape between the two 
groups and then further explored the resting-state brain dynamic 
characteristics of the AD and NC groups. We confirmed our inference 
that AD brain activity patterns are in an abnormal nonequilibrium 
state, and the dynamics of patients with AD tend to be unstable, with 
an unusually high flexibility in switching between states. Then, 
we correlated the subjects’ dynamic features with clinical data and 
found that the atypical balance of large-scale brain systems in patients 
with AD is associated with abnormally active brain dynamics, which 
may explain the general cognitive impairment of patients. Finally, 
we simulated the dynamic changes in activity patterns using a random 
walk model and verified that the energy landscape analysis method 
can reveal the kinetic features in the model. The results of this paper 
are helpful for further understanding the intrinsic dynamic 
characteristics and pathological mechanism of the resting-state brain 
in AD patients.
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