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Traditional supervised learning methods require large quantities of labeled data. 
However, labeling sleep data according to polysomnography by well-trained 
sleep experts is a very tedious job. In the present day, the development of self-
supervised learning methods is making significant progress in many fields. It is 
also possible to apply some of these methods to sleep staging. This is to remove 
the dependency on labeled data at the stage of representation extraction. 
Nevertheless, they often rely too much on negative samples for sample selection 
and construction. Therefore, we  propose PSNSleep, a novel self-supervised 
learning method for sleep staging based on Siamese networks. The crucial step to 
the success of our method is to select appropriate data augmentations (the time 
shift block) to construct the positive sample pair. PSNSleep achieves satisfactory 
results without relying on any negative samples. We evaluate PSNSleep on Sleep-
EDF and ISRUC-Sleep and achieve accuracy of 80.0% and 74.4%. The source code 
is publicly available at https://github.com/arthurxl/PSNSleep.
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1. Introduction

Human sleep data are used in a variety of medical diagnoses, health care, and other 
applications (Wulff et al., 2010), and are commonly collected using polysomnography (PSG). It 
consists primarily of an electroencephalogram (EEG), an electrooculogram (EOG), an 
electromyogram (EMG), and an electrocardiogram (ECG). However, they are difficult to 
recognize and must be annotated by sleep specialists who have been well trained in the field. 
PSG data are always segmented into epochs of 30 s for analysis. In addition, the sleep stages of 
each individual are classified by experts according to sleep manuals such as the Rechtschaffen 
and Kales (R&K; Wolpert, 1969) and the American Academy of Sleep Medicine (AASM; Iber 
et al., 2007). There are a number of traditional deep learning approaches (Phan et al., 2018; 
Supratak and Guo, 2020; Zhu et al., 2020; Guillot and Thorey, 2021), which require a large 
amount of labeled data for training. It is very challenging to apply these methods to sleep 
classification when labeling these recordings is much more challenging than labeling an image 
(Mai and Yu, 2021).

The self-supervised learning method has attracted a lot of attention in recent years. It can 
be used to extract effective representations from unlabeled data and achieve similar performance 
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to supervised learning with limited annotation information (Jing and 
Tian, 2019). Among various self-supervised learning methods, 
contrastive learning is favored by researchers because of its excellent 
performance (Lê Khắc et  al., 2020). Oord et  al. (2018) proposed 
Contrastive Predictive Coding (CPC). The negative samples were 
selected from the current batch and the entire model was trained 
using the loss function NCE (Gutmann and Hyvärinen, 2010) known 
as InfoNCE. As well as proving that self-supervised learning is 
universal in many different fields, they also proved that it has many 
advantages. As Wu et  al. (2018) demonstrated, self-supervised 
learning can be  achieved by maximizing the distinction between 
instances. They adopted a memory bank to store representations, 
which expanded the selection range of negative samples to the entire 
dataset. He et al. presented Momentum Contrast (MoCo; He et al., 
2019), which was used for self-supervised visual representation 
learning. The updated strategy maximized consistency between 
negative samples and improved performance (Chen X. et al., 2020). 
However, the success of such methods depends greatly on the selection 
of negative samples in the training process (Jaiswal et al., 2020).

An alternative method of self-supervised learning is to learn 
invariant representations from different views of the original data 
(Zhou et al., 2021). As a means of achieving self-supervised learning, 
Siamese networks (Caron et al., 2020; Bardes et al., 2021) are used to 
maximize the similarity between the outputs (representations) of two 
branches of the Siamese networks. Chen T. et al. (2020) proposed 
SimCLR. It simplified contrastive self-supervised learning and did not 
rely on specific architectures or memory banks. A BYOL method has 
been proposed by Grill et al. (2020), and a SIMSIAM method has been 
proposed by Chen and He (2020). A prediction module is included in 
both of these methods, which introduces asymmetry into the original 
Siamese network. On the basis of previous research, Zbontar et al. 
proposed Barlow Twins (Zbontar et  al., 2021), which incorporate 
redundancy reduction strategies. Assran et  al. (2022) proposed 
Masked Siamese networks (MSN). It matched the representation of an 
image view containing randomly masked patches to the representation 
of the original unmasked image. A critical aspect of these methods is 
the composition of the data augmentations, which plays a crucial role 
in the results (Wang and Qi, 2021).

In recent years, some researchers have tried to apply self-
supervised learning to sleep staging, hoping to free sleep experts from 
the tedious labeling work. SleepDPC was proposed by Xiao et  al. 
(2021) and based on two dedicated learning principles, predictive and 
discriminative. It could discover underlying semantics from raw EEG 
signals. Cosleep is a representational learning framework that is based 
on a multi-view co-training mechanism that was proposed by Ye et al. 
(2022), along with a memory module that was added to the 
framework. Chang et al. (2022) proposed DSSNet, which combined 
the classical framework of DeepSleepNet (Supratak et al., 2017) and 
the classical self-supervised learning loss function InfoNCE. The 
TS-TCC was proposed by Eldele et  al. (2021), used two different 
augmentations to get two views and adopted a contextual contrasting 
module to learn discriminative representations. The above methods 
have achieved good results. However, some of these studies rely too 
heavily on the selection of effective negative samples, and some of 
their network structures are overly complex.

In order to better apply self-supervised learning method to sleep 
staging, and free it from excessive dependence on negative samples, 
we propose PSNSleep. It can achieve better performance than other 

self-supervised methods by using Siamese networks and only a 
positive sample pair. The positive sample pair is constructed using a 
simple data augmentation method. Then, two CNNs and a GRU are 
used as branches of the Siamese network to extract general 
representations. A network’s overall training goal is to maximize the 
similarity between pairs of positive samples in order to increase its 
performance. In addition, we introduce asymmetry into the Siamese 
network and adopt different update strategies for the parameters of 
the two branches.

In summary, this paper is mainly devoted to developing a novel 
self-supervised learning method based on Siamese networks for sleep 
staging. In the representation extraction part of the Siamese network, 
we adopted two CNNs and a GRU. This network structure is more 
suitable for sleep data and can extract multi-view representations. At 
the same time, we introduced an asymmetric structure of a prediction 
in one branch of the Siamese network to prevent the occurrence of 
collapse solutions. An augmentation strategy designed to eliminate 
dependence on negative samples and create positive pairs. 
We introduced mixup and time shift augmentations. The mixup learns 
foreground information by mixing different background information. 
The time shift views adjacent sleep epochs as positive pairs. 
We evaluated our framework on two public datasets. The results show 
that our method is effective for sleep staging. Additionally, 
we conducted ablation experiments to explore the effects of different 
data augmentation methods.

2. Materials and methods

We propose a new self-supervised learning method to extract 
general representations from single-channel EEG without expecting 
to learn differences between the current sample and negative samples. 
The method is called PSNSleep. Figure 1 illustrates the architecture 
of PSNSleep.

2.1. Data augmentation blocks

2.1.1. The time shift block
The sleep data are continuous, which means that sleep epochs 

are generally in the same stage for a period of time. A subject’s sleep 
data throughout a night is visualized in Figure 2; we can see the 
continuity between two adjacent sleep epochs. And the probability 
of adjacent two sleep epochs happen to be in the transition stage of 
sleep, which means they belong to two sleep stages, is very small. 
As a result, we may ignore this situation and consider two sleep 
epochs to be in the same sleep stage as a whole. After adopting this 
augmentation method, we  obtained encouraging experimental 
results, indirectly demonstrating that ignoring this situation does 
not have much impact on our experiments. We  can choose the 
adjacent sleep epochs at the same stage as a positive sample pair 
since their waveforms are similar, which indicates that they have a 
high degree of similarity. For the sleep signal at epoch t  in the 
overnight sleep data, the adjacent epoch t +1 can be considered as 
its positive sample (Mai and Yu, 2021). It should be noted that the 
continuity of sleep stages is an assumption. For people with diseases, 
e.g., sleep apnea, narcolepsy, it might not hold due to the sleep 
fragmentation they suffer from.
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2.1.2. The mixup block and the Gaussian block
A batch of normalized EEG samples is used as input. In the mixup 

block, each sample is mixed with the other sample in a small ratio to 
obtain a mixed sample (Niizumi et al., 2021). It is also pertinent to 
mention that the other sample has been randomly selected from the 
current batch. The batch size is large enough to ensure the randomness 
that the sample selection is random. This operation can be viewed as 
changing the background information of a sample. In detail, the 
mixed sample adds background that is produced by the mixup block, 
while the raw sample has no background. The purpose of the above 

operations is to create a positive sample pair. They share most of the 
information, which we call foreground when referring to the area of 
audio recognition, but have different backgrounds. Therefore, in our 
method, the model can be improved by focusing on the foreground 
and ignoring different backgrounds in order to learn similar 
information between positive sample pairs. We  actually require a 
representation of similar information extracted from the positive 
sample pair.

We adopt a basic mixup calculation method, and the calculation 
formula is,

FIGURE 1

The overview architecture of our model. The left part of the figure is a Siamese network. The two branches are the online network and the target 
network. The parameters of the target network are dynamically updated according to the online network. The right part of the figure shows the 
structure of the sub-model, consisting of two CNNs and a GRU.
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 x x xi i k= −( ) +1 γ γ  (1)

where xi is the current sample, xk is the other sample that is used 
to mix, γ  is the mixing ratio. Furthermore, a higher mixing ratio 
implies a greater proportion of background from the other sample. xi 
is the mixed sample. xk is randomly selected from the current batch.

For the Gaussian block, the principle is similar to the mixup block. 
The difference is that the mixed part is no longer other sleep samples, 
but rather the Gaussian noise we randomly generate. Considering that 
the signal about the Gaussian noise is generally small, it is directly 
superimposed on the original sleep data rather than mixed in a certain 
ratio. The current sample is superimposed with Gaussian noise 
generated at random, the calculation formula is,

 x x gi i i= +  (2)

where xi is the current sample and gi is the gaussian noise.

2.1.3. The random mask block
Assuming that the length of an EEG sample is N, we can say that 

the sample consists of N patches. In order to maintain global 
information, we randomly select patches to mask. We set the values of 
the randomly selected patches to 0 to ensure that the raw data and the 
augmentation have the same length. For the waveform of sleep data, 
masking some points randomly does not have a significant impact on 
the overall trend of the waveform. In other words, the masked 
waveform contains similar graphic information compared to the 
original waveform. They have high similarity and can be considered 
as a positive sample pair. In the training process, our network is used 
to predict masked patches using the powerful learning capability of 
neural networks, which facilitates learning off-the-shelf 
representations more effectively (He et al., 2021).

2.1.4. The scaling block
In addition to mixing with other signals to generate positive 

samples, we can also only rely on the sample itself to generate. We add 

random variations to the signal and scale up its magnitude. The 
specific realization is to scale the sleep data point by point by 
multiplying it with a random-number. The magnitude scaling can 
determine the similarity between positive sample pairs to a certain 
extent. The variation in amplitude can be expressed as follows,

 r ri i= ×ρ  (3)

where ri  is the magnitude of the current signal, ri  is the scaling 
magnitude, and ρ  is the scaling rate.

2.2. Siamese network

The Siamese network consists of two branches that are called 
online network and target network. Both of them share a similar 
architecture. The branch of online network has three parts: a 
sub-model that is used as a representation extractor, a projection, and 
a prediction. The prediction is absent from the other branch of the 
target network, which makes it a bit different. This self-supervised 
learning method is named PSNSleep.

2.2.1. Representation extractor
The specific structure of the sub-model is shown in Figure 1. The 

model is composed of convolution layers and a recurrent layer. A 
convolution layer consists of two branches, one with a big-filter and 
the other with a small-filter, which allows time-frequency features to 
be extracted. In actuality, the recurrent layer is a gated recurrent unit 
(GRU), which is used to learn sequential epoch features. Taking the 
sub-model of the online network as an example, the process is 
as follows:

 
f f fCNN GRUθ θ θ⋅( ) = ⋅( ) + ⋅( )( ) ( ), ,1 2  (4)

 z f x w x b w x bt CNN t s t s l t l= ( ) = +( ) + +( )( ),θ δ δ
1  (5)

FIGURE 2

Sleep distribution map for a subject throughout the night. Stages of the same type have the same color and height. A Y-axis represents the 
classification of sleep, where 1 represents W, 2 represents N1, 3 represents N2, 4 represents N3, and 5 represents REM. During a period of time, the 
height and color are the same, indicating that they are in the same phase of sleep.
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 c f z GRU z ht GRU t t= ( ) = ( )( ), ,θ2  (6)

Where fθ ⋅( )  represents the sub-model, f CNN ,θ1( ) ⋅( )  and 
f GRU ,θ2( ) ⋅( )  represent the CNNs and the GRU respectively, zt is 

the time-frequency feature, and ct  is the final representation 
we need.

2.2.2. Projection and prediction
It is very helpful to have a projection and a prediction. In previous 

studies, the projection has been shown to improve performance. In 
addition, the asymmetry of the two branches of the Siamese network 
caused by the prediction of the future can help the whole model learn 
more information and avoid collapsed solutions. Both are composed 
of two fully-connected layers, and all of the layers have 960 units. The 
projection also includes two additional operations, batch 
normalization (BN) and activation using rectified linear units (ReLU). 
The operations of these two parts are as follows:

 a g c a g cθ θ θ ε= ( ) = ( ),    (7)

 a p aθ θ θ
′ = ( ) (8)

where aθ . and aε  are the output of representations of c through 
the projection. aθ′  is the output of the prediction, which is used to 
predict aε

2.2.3. Update strategy of the Siamese network 
parameters

Although the online network and target network have many 
similarities, their update strategies are completely different. The 
parameters θ  of the online network are constantly updated during 
the training of the whole model. In order for the online network 
to be  trained, the regression targets are provided by the target 
network. The parameters ε  in this model are exponential moving 
averages of the θ . After each training step, we  perform the 
following updates:

 θ θ η= ∇( )optimizer L, ,  (9)

  = + −( )τ τ θ1  (10)

where ∇L is the gradient of loss function L, η  is the learning rate 
of optimizer, and τ  is the target decay rate.

2.2.4. Loss function
We duplicate a raw single-channel EEG (which has been 

normalized) into two copies. One does not require any processing, 
and the other is processed to get ′x  through a data augmentation 
module. We put x  and ′x  into two branches of the Siamese network, 
online network and target network, to get the outputs aθ′  and a  
respectively. In addition, L2-normalization is applied as well. To 
measure the similarity of the positive sample pair, we calculate the 

mean squared error between the normalized prediction and 
target projection.
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We symmetricize the loss Lθ ,  by separately feeding ′x  to the 
online network and x  to the target network to compute Lθ ,

′ . The loss 
function can be defined as follows:

 
L L L= +( )′

θ θ, , /  2
 

(13)

During each training step, a stochastic optimization step is 
performed to minimize the loss L.

2.3. Experiments

We evaluate our self-supervised learning method by using 
single-channel EEG signals from two public datasets: Sleep-EDF 
(Goldberger et  al., 2000; Kemp et  al., 2000) and ISRUC-Sleep 
(Khalighi et al., 2016).

2.3.1. Sleep-EDF
It was an excellent dataset for the study on sleep staging in 

aging. The data were obtained in a 1987–1991 study of age effects 
on sleep in healthy Caucasians aged 25–101. The SC cohort of the 
Sleep-EDF contains 20 healthy subjects. Each PSG recording has 
two EEG signal channels, Fpz-Cz and Pz-Cz. All of them have the 
same sampling rate of 100 Hz. According to R&K standards, all 
recordings are categorized into eight categories (W, N1, N2, N3, N4, 
REM, MOVEMENT, and UNKNOWN). Data need to 
be preprocessed in accordance with the AASM standard. N3 and 
N4 are combined into N3, MOVEMENT, and UNKNOWN are the 
start and end of the recording, respectively. It is only the Fpz-Cz 
channel that we use.

2.3.2. ISRUC-sleep
As a test of the fit of our model to a generalized situation, 

we  adopted this dataset to test the performance of the model. It 
contains 100 subjects. Each PSG recording has six EEG signals with 
the same 200 Hz sampling rate. All recordings are segmented into 30-s 
epochs and visually scored by two different sleep experts according to 
the guidelines of AASM, with the stages: W, N1, N2, N3, and 
REM. We only use the F3-A2 channel.

In Table 1, the numbers of 30-s EEG epochs for the five stages 
are presented. We employ zero-mean normalization to improve 
the speed of convergence of our model. The input data x is 
normalized to x x

=
− µ
σ

, where μ is the average and σ  is the 
standard deviation.
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The input size of Sleep-EDF is (batch-size, 1, 3,000) and ISRUC-
Sleep is (batch-size, 1, 6,000). Other basic settings include a batch size 
of 32, a model trained for 200 epochs, and a random seed of 2022. The 
optimizer we chose is Adam with a learning rate of 0.0001. A decay 
rate of 0.1 is set for the target network. For the augmentation block, 
the mixing ratio γ  is configured to 0.4. In order to mine the sequence 
information between extracted representations, we  add a simple 
sequence network before classification, which is composed of a GRU 
with 64 units. The sequence length is 5. Then a linear classifier is used 
to evaluate the performance of representations. It consists of two fully 
connected layers with 960 and 64 units, respectively. We  use the 
sample without any data augmentation as the input of the sub-model 
from the online network. In the process of evaluation, we adopt its 
output as a representation. All parameters of the sub-model are frozen 
when we train the classifier. The optimization is performed using an 
Adam optimizer with a learning rate of 0.0001. We have also set the 
number of training epochs to 200. The cross-entropy loss function is 
minimized by training the classifier.

We adopted 10-fold cross-validation. Datasets are divided into 10 
parts. In each fold, nine parts are used in the training process to help 
update the parameters of the Siamese network and the left part is used 
to evaluate. A confusion matrix is adopted to clearly show the 
classification result of each class. We  use overall accuracy (acc), 
macro-averaging F1-score (MF1), and Cohen’s Kappa coefficient (κ )
(Sokolova and Lapalme, 2009) to measure the performance of our 
network specifically. They can be calculated as follows:

 
acc

TP

N
c
C

c
= =∑ 1

 
(14)

 
MF

F

C
c
C

c
1

11= =∑
 

(15)

where TPc presents the true positive samples when the class is c, 
F c1  presents F1-score when the class is c, C presents the number of 
sleep stages, and N presents the total number of epochs.

3. Results

Table 2 shows the results of the previous methods compared with 
our model, including one supervised learning method and three self-
supervised learning methods. We have developed a model that has a 
similar structure to DeepSleepNet at the representation learning stage. 
Both SleepDPC and Cosleep contain multi-channel EEG signals, 
while we only use a single-channel EEG signal. Besides, SleepDPC 
only used the SC cohort portion of the dataset during the experiment. 
The previous model DSSNet used a single-channel EEG signal and all 
data, but it relied too heavily on the selection of negative samples.

For each fold, we use the last epoch’s result as the current fold’s 
result. Then, we can calculate the results of all folds to obtain the final 
performance metrics, as shown in Tables 3, 4. The accuracy of our 
method is 80.8% on Sleep-EDF and 74.4% on ISRUC-Sleep. It achieves 
the highest results among self-supervised methods. Our model 
improves the accuracy of Sleep-EDF and ISRUC-Sleep by 0.8% and 
3%, respectively, compared to DSSNet. The accuracy distance between 
our self-supervised model and the classic supervised learning model 
DeepSleepNet is further reduced to 1.2%, on the dataset Sleep-EDF. In 
the validation experiment, as the experimental sleep data includes a 
certain proportion of aging PSG data, our model is capable of 
performing both non-aging and aging PSG data sleep staging tasks. 
Table 4 shows that our self-supervised learning method is applicable 
to sleep datasets and has achieved state-of-the-art performance. The 
gap between our method and the traditional supervised learning 
method is further shortened. PSNSleep representations have high 
generalization. At the same time, the results also prove that over 
dependence on negative samples is not necessary in self-supervised 
learning, and only using positive sample pairs can also achieve positive 
encouraging performance.

To explore how data augmentation methods affect 
representation performance, we conduct the ablation experiment 

TABLE 3 Performance metrics on Sleep-EDF.

Predicted Per-class 
metrics

W N1 N2 N3 REM PR RC F1

W 6,912 445 136 28 213 80.23 89.37 84.55

N1 585 993 566 15 625 35.98 35.67 35.82

N2 603 500 15,192 598 777 87.15 85.98 86.56

N3 157 5 672 4,856 6 88.27 85.25 86.73

REM 358 817 867 4 5,670 77.77 73.48 75.56

TABLE 4 Performance metrics on ISRUC-Sleep.

Predicted Per-class 
metrics

W N1 N2 N3 REM PR RC F1

W 17,582 1,354 415 28 484 83.11 88.52 85.73

N1 2085 4,422 2,805 50 1,532 47.46 40.59 43.76

N2 869 1943 20,853 1802 1834 73.09 76.38 74.70

N3 74 40 3,194 13,697 190 87.79 79.66 83.53

REM 546 1,558 1,263 25 7,595 65.28 69.13 67.15

TABLE 1 The numbers of 30-s EEG epochs.

Dataset W N1 N2 N3 REM Total

Sleep-EDF 8,285 2,804 17,799 5,703 7,717 42,308

ISRUC-

Sleep

20,098 11,062 27,511 17,251
11,265 87,187

TABLE 2 The results of previous methods and PSNSleep.

Method Sleep-EDF ISRUC-Sleep

acc MF1 k acc MF1 k

DeepsleepNet 0.820 0.769 0.76 - - -

SleepDPC 0.701 0.640 - 0.536 0.489 -

Cosleep 0.716 0.558 - 0.579 0.501 -

DSSNet 0.800 0.700 - 0.714 0.663 -

PSNSleep 0.808 0.738 0.737 0.744 0.710 0.668
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in this section. In order to maximize the reliability of the 
comparable results, all experimental settings except the 
augmentation blocks have been kept the same. As a direct 
reflection of the performance of different data augmentation 
methods, we ignore sequence information in order to reflect the 
performance of the representations. The representations extracted 
by the self-supervised method are directly fed into the classifier. 
Our laboratory uses Sleep-EDF to conduct this 
ablation experiment.

We tested six augmentation blocks: none, Gaussian, scaling, 
random mask, mixup, and time shift. Their specific operations are 
shown in Figure 3. The number of masked patches of the random mask 

is set to 100 (mask100) and 1,000 (mask1000) respectively. The results 
are shown in Table 5. The accuracy is 50.2%, 52.0%, 53.5%, 54.2%, 
55.0%, 80.2%, and 80.5%, respectively. All data augmentation blocks 
have positive influences on the classification results compared with no 
augmentation. And the smaller number of mask patches may improve 
performance to a certain extent. For single augmentation, the time shift 
block and the mixup block have better results and their accuracy is 
over 80%.

To explore the sensitivity of our model to the mixing ratio, 
we varied it to 0, 0.2, 0.4, 0.6, 0.8, and 1.0, respectively. The results are 
shown in Figure 4. Our model achieves the highest performance when 
it is set to 0.4. It is also essential that the mixing ratio is chosen 
appropriately. Too large or too small a mixing ratio will lead to a 
decline in results.

There are still some limitations. (1) Through ablation experiments, 
we selected the time shift block as our data augmentation method. 
However, sleep data continuity in this method is an assumption. For 
people with diseases such as sleep apnea, narcolepsy, it might not hold 
due to the sleep fragmentation they suffer from. (2) For comparison 
with previous studies, we selected F3-A2 and Fpz-Pz channels when 
the EEG derivations recommended by the AASM are F4-M1, C4-M1, 
and O2-M1. (3) We selected two datasets to validate the feasibility of 
our proposed method. However, the effectiveness of joint training and 
testing on two or more datasets remains to be verified. (4) In addition, 

FIGURE 3

Diagram of different data augmentations. From left to right, the methods are mixup, mask, Gaussian, and scaling. The first row is the raw data, the 
second row is the augmentation data, and the last row is the result graphs. “+” represents the weighted sum of raw data and argumentation data in a 
certain proportion. “*” refers to the multiplication of elements one by one. A mask shape displays only the first 100 elements in order to facilitate 
viewing.

TABLE 5 The performance of different data augmentations.

Augmentation Acc MF1 k

None 0.502 0.356 0.234

Gaussian 0.520 0.383 0.279

Scaling 0.535 0.388 0.320

mask1000 0.542 0.419 0.327

mask100 0.550 0.429 0.334

Mixup 0.802 0.710 0.728

Time shift 0.805 0.720 0.731
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information about open-source datasets is limited. We  cannot 
determine whether data leakage occurs during the experimental process.

In the subsequent research: (1) We will explore whether using EEG 
signals from different channels of the same dataset impacts experimental 
performance. (2) We will conduct transfer learning on sleep data, which 
means training on one dataset and testing on another dataset. (3) Cesari 
et  al. (2021) developed an automatic method to model sleep as a 
continuous and dynamic process and this method predicted aging more 
accurately. In our future work, we can combine it with our method. 
Specifically, the self-supervised learning method replaces the manual 
feature extraction process, aiming to provide features with better 
generalization performance for the subsequent classification process.

4. Conclusion

In this paper, we propose a novel self-supervised learning method 
called PSNSleep. It extracts representations from unlabeled EEG signals 
and achieves the highest performance of self-supervised learning 
methods. It overcomes the disadvantage that the performance of self-
supervised learning depends largely on negative samples in sleep 
staging. Our architecture consists of a Siamese network with two CNNs 
and a GRU for representation extraction. A projection component 
based on previous experience is also included in our model. The use of 
prediction also facilitates the introduction of asymmetry and improves 
the performance of our network. The positive pair is constructed from 
data augmentations, which are essentially different views of the same 
sample. Data argumentation is one of the keys to ensuring that the 
method we propose is successful as well. We explored a variety of data 
augmentation techniques during the course of these experiments. The 

results show that the time shift block achieves the highest performance. 
The objective of our model is for the representation of the positive 
sample pair, which is made up of two branches of the Siamese network, 
to be highly similar. Our experimental results show that sleep staging 
based on self-supervised learning can also achieve competitive results 
when using only positive sample pairs.
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