Early identification and intervention of neurodevelopmental impairment in preterm infants may significantly improve their outcomes. This study aimed to build a prediction model for short-term neurodevelopmental impairment in preterm infants using machine learning method.
Preterm infants with gestational age < 32 weeks who were hospitalized in The Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, and were followed-up to 18 months corrected age were included to build the prediction model. The training set and test set are divided according to 8:2 randomly by Microsoft Excel. We firstly established a logistic regression model to screen out the indicators that have a significant effect on predicting neurodevelopmental impairment. The normalized weights of each indicator were obtained by building a Support Vector Machine, in order to measure the importance of each predictor, then the dimension of the indicators was further reduced by principal component analysis methods. Both discrimination and calibration were assessed with a bootstrap of 505 resamples.
In total, 387 eligible cases were collected, 78 were randomly selected for external validation. Multivariate logistic regression demonstrated that gestational age(
A support vector machine based on perinatal factors was developed to predict the occurrence of neurodevelopmental impairment in preterm infants with gestational age < 32 weeks. The prediction model provides clinicians with an accurate and effective tool for the prevention and early intervention of neurodevelopmental impairment in this population.