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Introduction: Alzheimer’s disease (AD) is the most common form of dementia 
worldwide. This study investigated the effects of lipopolysaccharide on 
neurosteroidogenesis and its relationship to growth and differentiation using SH-
SY5Y cells.

Methods: In this study, we used the MTT assay to assess the impact of LPS on 
SH-SY5Y cell viability. We  also evaluated apoptotic effects using FITC Annexin 
V staining to detect phosphatidylserine in the cell membrane. To identify gene 
expression related to human neurogenesis, we utilized the RT2 Profiler TM PCR 
array human neurogenesis PAHS-404Z.

Results: Our study found that LPS had an IC50 level of 0.25 μg/mL on the SH-SY5Y 
cell line after 48 h. We observed Aβ deposition in SH-SY5Y cells treated with LPS, 
and a decrease in DHT and DHP levels in the cells. Our analysis showed that the 
total rate of apoptosis varied with LPS dilution: 4.6% at 0.1 μg/mL, 10.5% at 10 μg/
mL, and 44.1% at 50 μg/mL. We also observed an increase in the expression of 
several genes involved in human neurogenesis, including ASCL1, BCL2, BDNF, 
CDK5R1, CDK5RAP2, CREB1, DRD2, HES1, HEYL, NOTCH1, STAT3, and TGFB1, 
after treatment with LPS at 10 μg/mL and 50 μg/mL. LPS at 50 μg/mL increased the 
expression of FLNA and NEUROG2, as well as the other genes mentioned.

Conclusion: Our study showed that LPS treatment altered the expression of 
human neurogenesis genes and decreased DHT and DHP levels in SH-SY5Y cells. 
These findings suggest that targeting LPS, DHT, and DHP could be  potential 
therapeutic strategies to treat AD or improve its symptoms.
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1. Introduction

The expression of Aβ, tau, synaptic factors, and other neuron-
specific proteins in SH-SY5Y cells makes them a suitable model to 
study the mechanism of neuron phenotype degeneration, including 
AD (Aitken et al., 2016). AD is a neurological disorder and the most 
common cause of dementia in older adults (Hoseinlar et al., 2023; 
Shademan et al., 2023). Although more common in women, it can 
occur in both men and women. Statistically, there are estimated 5.2 
million people in the United States with the disease, including 3.3 
million women and 1.9 million men (Aslanpour et  al., 2020a). 
Several studies have been conducted to treat and prevent AD, but a 
definitive treatment has not yet been approved. Drug treatment and 
medical costs are three times higher for people with Alzheimer’s 
disease than for others. Factors such as immobility, high blood sugar, 
cholesterol levels, and genetic history can play a role in the 
development of AD (Aslanpour et al., 2020b). The neuropathology 
of Alzheimer’s disease is mainly affected by extracellular 
accumulation of amyloid beta (Aβ), accumulation of tau in neurons, 
glial activation, and loss of neurons and synapses (Hoseinlar et al., 
2023). Neuropathological changes are associated with glial activity 
that causes nerve damage, loss of synapses, and neuronal death 
(Lawrence et al., 2023). Although the mechanisms underlying AD 
pathogenesis are not fully understood, amyloid plaques are thought 
to be involved in disease progression. The primary precursors for 
forming Aβ-plaques are the amyloid beta protein and neurofibrillary 
tau tangles in the brain. The primary amyloid precursor performs 
many functions, from neurotransmission to gene transcription 
(Beydoun et al., 2021).

Pregnant mice exposed to repeated systemic exposure to LPS 
(lipopolysaccharide) cause Alzheimer’s disease-related features, 
including behavioral and neuropathological changes, in their offspring 
(Wang et al., 2020). Despite the limited and temporary induction of 
neuronal damage, a single systemic challenge of LPS 
(lipopolysaccharide) leads to increased deposition of Aβ1-42 and tau 
levels in the brains of wild-type rodents (Wang et al., 2018). Moreover, 
repeated systemic injections of LPS (lipopolysaccharide) can lead to 
prolonged elevation of Aβ levels and cognitive deficits (Xie et al., 2022).

Sex hormones can influence growth, synaptogenesis, dendritic 
branching, and myelination (Calan et al., 2016), and other important 
mechanisms of neuroplasticity (Calan et al., 2016). Sex hormones are 
released into various tissues and the brain via the bloodstream. In 
addition to the sex glands, they are also produced in the brain and can 
improve brain function (Carroll et  al., 2010). Sex hormones can 
regulate neuronal survival in different areas of the central nervous 
system (CNS) and promote repair of neuronal damage (Castro et al., 
2011). Sex hormones can affect different areas of the CNS, including 
the brain, spinal cord, and peripheral nerves, due to the presence of 
estrogen and progesterone receptors in these sites. The increased risk 
of AD is significantly influenced by sexual steroid hormones in 
women. Decreased levels of progesterone are associated with an 
increased risk of AD. In men, the risk of developing AD is also affected 
by the male sex steroid hormone testosterone. The rate of testosterone 
production gradually decreases with age, leading to an increased risk 
of developing AD (Radaghdam et al., 2021). There is still debate about 
whether sex hormones should be used as a treatment or prevention 
strategy for diseases associated with neurological damage, including 
AD. However, progesterone and testosterone can reduce AD in several 

ways, including the MAPK/ERK and CREB pathways (Chouchane 
and Costa, 2019).

LPS exposure can lead to various chronic diseases and induce 
mitochondrial apoptosis in neurodegenerative conditions. Sirtuin 1 
plays a key role in the function of testosterone and estrogen receptors, 
along with androgens and estrogens. The concentration of LPS may 
affect the expression of the Sirtuin 1 gene, which in turn may be related 
to the production of dihydrotestosterone (DHT) and 
dihydroprogesterone (DHP), as well as neurogenesis. Therefore, the 
effect of LPS concentration on gene expression may be associated with 
DHT and DHP (Ian, 2017; Martins, 2018; Rasha et al., 2020; Tsuchiya 
et al., 2020). Identification of the genes involved in these mechanisms 
can aid in the development of treatments and management 
strategies for AD.

Examination of changes in the expression of genes related to 
human neuroblastoma neurogenesis in SH-SY5Y cells under the 
influence of LPS may offer new information on the submechanisms 
involved. This study aimed to investigate the effect of 
lipopolysaccharide (LPS) on neurosteroidogenesis and its relationship 
with growth and differentiation, as well as the expression patterns of 
genes involved in neurogenesis in the human neuroblastoma cell line, 
SH-SY5Y.

2. Materials and methods

2.1. Cell line, culture conditions, and 
chemicals

The SH-SY5Y cell line was obtained from the cell bank of the 
Pasteur Institute (Tehran, Iran). The cells were cultured in Dulbecco’s 
modified Eagle Medium/Nutrient Mixture F-12 medium (DMEM-
F12, Gibco) supplemented with 10% fetal bovine serum (FBS, Gibco), 
1% penicillin (100 units/mL, Biosera), streptomycin (100 μg/mL, 
Biosera), and 250 μmol/L cholesterol. The cells were incubated at 37°C 
with 95% humidity and 5% CO2. After 48 h, cells were harvested at 
70–80% confluence for further analysis. To prepare a concentration of 
250 μmol/L cholesterol, we dissolved 9.6 mg of cholesterol in 1 cc of 
ethanol and diluted at 1:100 with RPMI medium. The cells were then 
treated with different concentrations of LPS, including 0.1, 10, and 
50 μg/mL (as a control group) for 24, 48, and 72 h, respectively. Based 
on the results of the MTT assay, we  selected LPS 10 μg/mL for 
subsequent analyses.

2.2. Cell viability assay

We used the MTT assay (Gibco, United States) to assess the effect 
of LPS (Chen and Song, 2020) on cell viability in SH-SY5Y cells. 
SH-SY5Y cells were seeded in 96-well plates at a density of 1 × 104 
cells/well and incubated for 24 h under standard conditions. The cells 
were then treated with different concentrations of LPS (0.1, 10, and 
50 μg/mL) for 24, 48, and 72 h. The medium was replaced with 100 μL 
of MTT solution (5 mg/mL in PBS) and incubated for 4 h under 
standard conditions. Subsequently, 50 μL of dimethyl sulfoxide 
(DMSO; Merck) was added to each well and the plates were incubated 
for 30 min at 37°C. LPS IC50 values for LPS in the SH-SY5Y cell line 
were determined after 48 h, and subsequent experiments were 
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performed using this concentration. The optical density (OD) of the 
wells was measured at 570 nm using a microplate reader (BioTek, 
United States), and cell viability was evaluated based on the results.

2.3. Deposition of amyloid beta

The control group (SH-SY5Y cells cultured in a medium without 
cholesterol and LPS) and the case group (treated with LPS) were used 
to examine amyloid beta deposits with Congo staining. Amyloid 
detection was performed according to the instructions of the Vitro 
View Congo Red Amyloid Stain Kit (Biotech No. VB-3011, SKU). The 
CKX53 inverted microscope (Olympus) with a built-in camera port 
was used to detect amyloid deposits. When amyloid deposits were 
present in the environment, they became visible in red, while the 
nuclei appeared blue.

2.4. Measurement of dihydrotestosterone 
and dihydroprogesterone in SH-SY5Y cell 
line

DHT (Cat. No: MBS762135, MyBioSource, United States) and 
DHP (Cat No: DElA1592, Creative Diagnostics, United States), were 
quantified by the competitive ELISA detection method according to 
the manufacturer’s instructions. For this purpose, 1 × 104 cells/well 
were plated in 96-well plates and treated with different concentrations 
of LPS (0.1, 10, and 50 μg/mL). Cell culture supernatant was 
centrifuged at 1000 × g and 2–8°C for 20 min to remove insoluble 
contaminants and cell debris. We diluted the buffer with a protease 
inhibitor (1:2) to prevent protein degradation. The OD was measured 
using a microplate reader (BioTek, United States) at a wavelength 
of 450 nm.

2.5. Evaluation of apoptosis

The apoptotic effects of the drugs on the cell lines based on 
phosphatidylserine in the cell membrane were evaluated using the 
FITC Annexin V apoptosis detection method, following the protocol. 
For this purpose, 1 × 104 cells/well were counted on the BD ACCURI 
C6 flow cytometer (BD Biosciences Pharmingen). The data obtained 
from flow cytometry were analyzed using FlowJo software version 
7.6.1. The apoptotic effects of the drugs were examined 48 h after they 
were added to cells at the indicated doses. The groups that were not 
treated with the drugs served as controls.

2.6. Determination of gene expression 
changes

SH-SY5Y cells were seeded in a 6-well plate (1 × 104 cells/well) and 
incubated for 24 h under standard conditions. The expression changes 
induced by the IC50 doses of LPS in the SH-SY5Y cell line were 
determined using real-time polymerase chain reaction for 48 h. Total 
RNA was obtained from SH-SY5Y cells using the RNeasy kit (Cat. No.: 
FABRK001, Taiwan). Complementary DNA synthesis was performed 
using an RT2 first-strand kit (Cat. No.: YT4500, Austria). Changes in 

the expression of 96 genes associated with neurogenesis were 
examined using the RT2 Profiler TM Human Neurogenesis PCR 
Array (Qiagen, Cat. No.: PAHS-404Z) and the Light Cycler 480 
instrument II (Roche). Data were analyzed using the comparative 2−

ΔΔCT method (Light Cycler 480 Quantification Software) using the 
changes made. Differences of more than ±2-fold change in expression 
were considered cut-off values with p-values <0.05.

2.7. Statistical analysis

Statistical analyses were performed using SPSS version 16. 
Differences between the treated groups and control groups were 
analyzed with one-way ANOVA, followed by Tukey’s post hoc analyses. 
All variables are expressed as mean ± SD. Statistical significance was 
established at p < 0.05.

3. Results

3.1. Evaluation of the effect of LPS on cell 
viability in SH-SY5Y cell line

To determine the value of LPS IC50, LPS dilutions of 0.1, 10, and 
50 μg/mL were tested by the MTT assay at 24, 48, and 72 h in the 
SH-SY5Y cell line. The IC50 values of LPS for the SH-SY5Y cell line 
were 0.25 μg/mL at 48 h. Our results showed that cell death increased 
with increasing LPS dose (Figure 1).

3.2. Investigating the effect of LPS on the 
deposition of beta-amyloid

Congo red staining was performed to investigate Aβ deposition. 
The results indicated that LPS increased Aβ toxicity in SH-SY5Y cells, 
as amyloid beta deposition was observed in the cells treated with LPS 
(Figure 2).

FIGURE 1

IC50 of LPS in SH-SY5Y cells. The MTT assay was used to determine 
the viability of SH-SY5Y cells treated with different concentrations of 
LPS for 24, 48, and 72 h (*p < 0.05, **p < 0.01, and ***p < 0.001). The 
data is presented as the mean ± SD of triplicate experiments.
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3.3. Evaluation of changes in DHT and DHP 
concentrations induced by LPS in SH-SY5Y 
cell line

LPS decreases DHT and DHP in SH-SY5Y cells. The ELISA 
results showed that as the LPS concentration increased, the 
concentrations of DHT and DHP decreased, with the maximum 
decrease in DHT and DHP concentrations observed at 50 μg/mL of 
LPS (p < 0.001) and a decrease in concentration observed at 0.1 μg/mL 
of LPS (p < 0.05) (Figure 3).

3.4. Evaluation of the effect of LPS on 
apoptosis in SH-SY5Y cell line

Our study demonstrated that LPS-treated SH-SY5Y cells had 
significantly higher rates of early and late apoptosis than untreated 
cells. Furthermore, the total apoptosis rate in SH-SY5Y cells increased 
with increasing LPS concentration, with rates of 4.6, 10.5, and 44.1% 
observed for LPS dilutions of 0.1 μg/mL, 10 μg/mL, and 50 μg/mL, 
respectively. Notably, the overall apoptosis rate in SH-SY5Y cells 
treated with 50 μg/mL LPS was significantly higher than that of the 
other treatment groups (Figure 4).

3.5. Gene expression changes caused by 
LPS in SH-SY5Y cell line

We examined the effect of LPS on gene expression related to 
neurogenesis. The PCR array analysis indicated that LPS stimulates 
the expression of genes involved in human neuroblastoma 
neurogenesis (Table 1). LPS increased the expression of the ASCL1, 
BCL2, BDNF, NEUROG2, and PTEN genes was increased by 0.1 μg/
mL. Additionally, LPS increased the expression of ASCL1, BCL2, 
BDNF, CDK5R1, CDK5RAP2, CREB1, DRD2, HES1, HEYL, 
NOTCH1, STAT3, and TGFB1 by LPS 10 μg/mL. Finally, LPS 50 μg/
mL upregulated the expression levels of BCL2, BDNF, CDK5R1, 
CDK5RAP2, CREB1, DRD2, FLNA, NEUROG2, NOTCH1, PTEN, 
STAT3, and TGFB1 genes (Figure 5).

4. Discussion

Previous studies have shown that LPS causes a decrease in 
synaptic plasticity, cognitive function, and neuronal function by 
damaging myelin in (AD) (Cosgrove et  al., 2007; Congdon and 
Sigurdsson, 2018). Furthermore, affecting the inhibitory and 
excitatory synapses of hippocampal neurons causes loss of function in 
the CNS (Dai et al., 2021). As a significant ligand, LPS increases the 
expression of TLR4 and caspase-11 genes by targeting the neuronal 
TLR4 receptor. Consequently, it causes neuronal cell death in AD by 
activating the inflammatory response (Duhr et al., 2014; Fu et al., 
2019). Because TLR4 expression increases with age and amyloid beta 
levels, the interaction between LPS and TLR4 could influence the 
development of AD (Fulop et  al., 2018). Although the general 
mechanism of AD is not fully understood, the role of amyloid beta 
toxicity in the pathogenesis of AD is vital (Garcia-Ovejero et al., 2005). 
Our study showed that different concentrations of LPS can have 
cytotoxic effects on SH-SY5Y cells, and increased amyloid beta 
deposition can exacerbate apoptosis in SH-SY5Y cells.

Cholesterol is essential as a basis for producing steroid hormones, 
including progesterone and estrogen, and these two hormones play 
various physiological functions in both men and women. Because of 
the critical role of progesterone and estrogen in neurodegenerative 

FIGURE 2

Amyloid-beta deposition was observed in (A) control and (B) SH-
SY5Y cells treated with LPS using Congo staining at 100X 
magnification.

FIGURE 3

Differences in ELISA results of DHP and DHT levels in SH-SY5Y cells after treatment with different doses of LPS. The ELISA results showed that LPS 
decreased (A) DHP and (B) DHT levels in SH-SY5Y cells. Statistical differences between the control and treated groups: *p < 0.05, **p < 0.01, and 
***p < 0.001.
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FIGURE 4

Quantification of apoptosis by Annexin V-FITC/propidium iodide (PI) assay in SH-SY5Y cells treated with LPS dilutions of 0.1, 10, and 50 μg/mL. The 
induction of apoptosis in SH-SY5Y cells treated with LPS 50 μg/mL was significantly higher than in other treatments. FITC, fluorescein isothiocyanate; 
PI.

TABLE 1 PCR array analysis of RT2 human neurogenesis genes in ProfilerTM PCR array exposed to different concentrations of LPS compared to the 
control group.

0.1LPS 10LPS 50LPS

Gene Fold regulation* p* value Fold regulation* p value Fold regulation* p value

ACHE 0.93 0.376 0.78 0.004 1.67 0.001

ADORA1 0.69 0.006 1.01 0.832 1.84 0.001

ASCL1 2.19 0.001 2.65 0.001 1.58 0.001

BCL2 09.17 0.001 30.63 0.001 20.75 0.001

BDNF 4.29 0.001 27.57 0.001 17.75 0.001

CDK5R1 1.22 0.071 4.58 0.001 3.73 0.002

CDK5RAP2 1.66 0.01 2.65 0.05 8.26 0.002

CREB1 1.13 0.206 4.20 0.005 3.08 0.003

DRD2 1.67 0.002 4.84 0.004 10.98 0.005

FLNA 1.03 0.739 1.75 0.009 3.98 0.007

HES1 1.52 0.008 2.09 0.046 1.87 0.002

HEYL 0.85 0.059 3.10 0.004 0.26 0.244

NEUROG2 2.22 0.001 09.16 0.003 20.77 0.006

NOTCH1 0.91 0.279 7.25 0.009 13.99 0.003

PTEN 2.31 0.002 1.94 0.084 5.12 0.002

STAT3 1.61 0.007 2.78 0.003 6.35 0.007

TGFB1 1.93 0.002 10.00 0.004 24.70 0.006

RPLP0 1.81 0.001 1.24 0.187 1.28 0.002

*A fold change of more than two was considered acceptable. Statistical significance was established at p < 0.05. Fold change of more than two and statistical significance was p < 0.05.
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FIGURE 5

Clustergram analysis of genes involved in human neurogenesis after incubation with different concentrations of LPS in SH-SY5Y cells (n = 3). Here, the 
red color denotes the up regulation of genes across specific samples/conditions, and the green color denotes the downregulation of genes across the 
specific samples/conditions.
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diseases, including AD, many studies have investigated changes in 
these two hormones. Some studies have shown that the use of estrogen 
reduces the risk of AD in women. Therefore, estrogen compounds 
may be used to treat AD in the elderly (Gascón et al., 2016; Grothe 
et al., 2017). However, because hormone therapy is expensive and 
lengthy, patients often abandon treatment (He et al., 2014). Some 
studies have shown that testosterone and progesterone play an 
influential role in neuroprotection during the early stages of AD 
development. However, it is challenging to apply these two hormones 
effectively in the later phases of the disease (Heinrich et al., 2014; Huo 
et al., 2016; Hung et al., 2017; He et al., 2019). Furthermore, DHT has 
been found to modulate the expression of Aβ, the caspase-3, Bcl-2 and 
Bax, and synaptophysin, as well as reduce neuronal damage in mice 
treated with LPS. DHT also exerts anti-neuroinflammatory and 
neuroprotective effects, making androgen replacement therapy a 
potential therapeutic strategy for improving cognitive and behavioral 
function in neuroinflammation-related diseases (Yang et al., 2020). 
Our study revealed that an increase in LPS concentration led to a 
decrease in both DHT and DHP concentrations. The maximum 
decrease in DHT and DHP concentration occurred at an LPS 
concentration of 50 μg/mL. Previous research has shown that LPS in 
the hypothalamus or pituitary gland can disrupt follicular growth and 
function in mice by suppressing gonadotropin release (Kuo et al., 
2010; Kitagishi and Matsuda, 2013; Johnson et al., 2016). Additionally, 
in follicles with high LPS compared to those with low LPS, there was 
a suppression of CYP17 gene expression in theca cells and P450 
aromatase gene expression in granulosa cells, resulting in decreased 
estrogen levels (E2) (Lin et al., 2010; Lee et al., 2014; Liu et al., 2017). 
LPS has also been shown to reduce progesterone biosynthesis in mice 
(Mao and Sun, 2015; Masters et al., 2015). These findings suggest that 
menopause and the decrease in sex hormones, such as estrogen and 
progesterone in women and testosterone in men, may increase the 
susceptibility to AD in old age.

0.1 μg/mL LPS increased the expression of ASCL1, BCL2, BDNF, 
NEUROG2, and PTEN. LPS (10 μg/mL) increased the expression of 
ASCL1, BCL2, BDNF, CDK5R1, CDK5RAP2, CREB1, DRD2, HES1, 
HEYL, NOTCH1, STAT3, and TGFB1. 50 μg/mL LPS increased the 
expression levels of BCL2, BDNF, CDK5R1, CDK5RAP2, CREB1, 
DRD2, FLNA, NEUROG2, NOTCH1, PTEN, STAT3, and TGFB1. The 
results of our study show that LPS concentration has a differential effect 
on the expression of genes related to neurogenesis in human 
neuroblastoma. Increasing LPS concentration can significantly affect the 
expression of neurogenesis-related genes in human neuroblastoma. In 
AD, neuron destruction is triggered by increased CDK5 activity. CDK5 
kinase, abundantly expressed in neurons and plays a critical role in 
synaptic plasticity and neuronal development, is implicated in triggering 
neuronal destruction in AD through increased activity (Pan et al., 2016; 
Park et al., 2021). While CDK5 overactivity is linked to the development 
of neurodegeneration, it also plays a crucial role in various physiological 
functions, including migration, neuroblasts, and synaptic plasticity. 
CDK5 is located at the end of the axon growth cone, where it regulates 
the growth of neural progenitor cells into mature neurons, making it 
necessary for the maturation phase of neurogenesis. Altered CDK5 
activity in neural progenitor cells is associated with defects in 
neurogenesis in AD (Pascual et al., 2015). We also observed increased 
expression of genes, including FLNA and STAT3, both of which 
function as cofactors and transcription factors. Therefore, FLNA is 
considered associated with the pathogenesis of amyloid beta and tau 
proteins in AD (Pitsavos et al., 2006; Patricia et al., 2013). Amyloid beta 

induces the production of this protein, which plays a crucial role in the 
AD signaling pathway. Persistent activation of the TLR4 receptor by 
beta-amyloid causes an overproduction of inflammatory cytokines and 
triggers neuroinflammation (Pompili et al., 2012; Ruigrok et al., 2014; 
Robinson et  al., 2016; Schöll et  al., 2016). Furthermore, it is 
understandable that the limitations of cell lines in mimicking AD and 
the events that occur in AD make the field stronger for detailed studies 
in animal models (Zhan et al., 2018).

5. Conclusion

Different concentrations of LPS can have cytotoxic effects on 
SH-SY5Y cells, and increasing amyloid beta deposition may enhance 
apoptosis in these cells. Moreover, LPS can reduce the concentration 
of DHT and DHP. Changes in the expression of genes related to 
neurogenesis in human neuroblastoma cells under the influence of 
LPS suggest novel sub-mechanisms. Targeting DHT and DHP or 
neurogenesis in human neuroblastoma cells may be  a promising 
therapeutic strategy for AD treatment or symptom relief. However, 
further studies are needed to fully explain the underlying mechanism.
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