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Rapid progress in nanotechnology has advanced fundamental neuroscience and 
innovative treatment using combined diagnostic and therapeutic applications. 
The atomic scale tunability of nanomaterials, which can interact with biological 
systems, has attracted interest in emerging multidisciplinary fields. Graphene, a 
two-dimensional nanocarbon, has gained increasing attention in neuroscience 
due to its unique honeycomb structure and functional properties. Hydrophobic 
planar sheets of graphene can be effectively loaded with aromatic molecules to 
produce a defect-free and stable dispersion. The optical and thermal properties 
of graphene make it suitable for biosensing and bioimaging applications. In 
addition, graphene and its derivatives functionalized with tailored bioactive 
molecules can cross the blood–brain barrier for drug delivery, substantially 
improving their biological property. Therefore, graphene-based materials have 
promising potential for possible application in neuroscience. Herein, we aimed 
to summarize the important properties of graphene materials required for their 
application in neuroscience, the interaction between graphene-based materials 
and various cells in the central and peripheral nervous systems, and their 
potential clinical applications in recording electrodes, drug delivery, treatment, 
and as nerve scaffolds for neurological diseases. Finally, we offer insights into the 
prospects and limitations to aid graphene development in neuroscience research 
and nanotherapeutics that can be used clinically.
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1. Introduction

Nanotechnology has nanometric resolution referring to the length of a billionth of a meter 
(Linda and Wade, 2017). This engineering technology allows device manipulation to a 
microscopic structure that suits the basic orders of biomolecule systems. With their controllable 
nanoscale properties, scientists have exploited various synthetic materials and devices for 
treating and monitoring pathological conditions in biomedicine.

A size change in a nanostructure induces variations in its functional properties (Berube, 
2006), showing great potential for evaluating and solving several neurological problems, from 
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neurons to neurological diseases. Nanomaterials can be  used to 
construct biomimetic neural networks in vitro because of their 
physical and chemical properties (Malarkey and Parpura, 2010). 
Moreover, nanomaterials can be used for targeted drug delivery in vivo 
with minimal side effects through the fabrication method to improve 
the efficacy of cancer chemotherapy and enhance the efficiency of 
magnetic resonance imaging-guided gene delivery as radiation 
sensitizers and contrast enhancers (Nezakati et al., 2014). Driven by 
the lack of precise diagnosis and therapeutic strategies in the clinic 
(Shi et  al., 2013), the development of neural nanotechnology and 
nanomaterials used for studying the mechanisms, diagnosis, and 
treatment of nervous system disorders has to breakthroughs in using 
carbon nanomaterials.

Two-dimensional (2D) materials have been extensively explored 
for biomedical applications (Convertino et al., 2020b). With super 
structural rigidity and a good surface-to-volume ratio, 2D materials 
provide maximal interaction between the environment and surfaces, 
allowing for high sensitivity and rapid performance with small sample 
volumes (Palumbo et  al., 2018). Andre Geim and Konstantin 
Novoselov studied graphene and successfully separated it from 
graphite in 2004 (Novoselov et al., 2004). Graphene is the most widely 
studied nanomaterial for cell-based device platforms with peculiar 
properties, including its role as a polymeric conduit for nerve 
regeneration, carrier for targeted drug delivery, and for photo-thermal 
cancer therapy. Recently, highlighting the role of graphene in 
biomedical fields has inspired great interest in its analogs, such as 
transition metal dichalcogenide (Convertino et al., 2020b). However, 
compared with other nanomaterials, including carbon nanotubes and 
transition metal dichalcogenide, graphene has higher mechanical 
strength, chemical stability, and specific electrochemical properties for 
electrical signal detection and transmission. Furthermore, it can 
be used as a conductive stent or biosensor in the medical field. These 
characteristics make graphene and graphene-derived materials 
excellent candidates for detecting signals in the nervous system.

Previous studies have shown that graphene can aid in the adhesion 
and differentiation of neurons and can act as a neuroprotective agent. 
Graphene is a potential carrier to control drug release at specific 
disease sites, making it a valuable treatment strategy for neuronal 
diseases. Moreover, graphene and its derivatives can be  used as 
scaffolds to enhance nerve repairing, establishing it as a next-
generation candidate for advancing medical bioengineering. However, 
the safety of nanomaterials is essential to protect human health and 
ensure environmental safety. Thus, further studies are warranted to fill 
the knowledge gap on the limitations of carbon nanomaterials, 
including their toxicity and biocompatibility (Nezakati et al., 2014).

In this review, we focus on novel graphene applications in the 
nervous system. Graphene-based materials may be used clinically in 
the future; however, this article is limited to pre-clinical applications. 

We aimed to describe the properties of graphene-based materials 
applicable in neuroscience research, including using them as 
electrodes for neural recording and imaging, neural cell substrates, 
photothermal effects, and drug and gene deliveries. Furthermore, 
we aimed to outline the application of graphene-based materials in 
neurological diseases and neural tissue engineering. Finally, we aimed 
to discuss graphene’s cytotoxicity and provide an overview of 
its prospects.

2. Roles of graphene in neuroscience

Graphene is a sheet comprising a single layer of carbon atoms 
formed by stripping highly oriented pyrolytic graphite, like carbon 
nanofibers, another type of nanomaterial. In 2D, sp2 hybridized 
carbon atoms give graphene a hexagonal honeycomb lattice pattern 
with a thickness of approximately 0.335 nm [Figure 1 (left)]. Graphene 
normally can be synthesized by two main approaches, namely physical 
and chemical approaches. The chemical vapor deposition (CVD) 
technique has been commonly applied to produce large-scale, high-
quality graphene film with no oxygen content, as well as defect-free 
hexagonal lattice (Reina et al., 2009). Hong et al. employed the CVD 
approach to generate large-scale and few-layer graphene films on a 
300 nm-thick layer and then transferred them to a SiO2/Si substrate. 
Bea et al. developed monolayer graphene films of 30 inches by the 
CVD approach on a large copper substrate. The films showed low 
resistance of 125 Ω·m−1, superior to graphene grown on indium tin 
oxides. Unfortunately, this technique requires a very high temperature 
and vacuum environment, as well as exorbitant prices for only small-
size devices. Many graphene-based nanomaterials are built up mostly 
by chemical reactions for covalent bonding, such as graphene oxide 
[GO; Figure 1 (middle)] and reduced graphene oxide [rGO; Figure 1 
(right)]. The most popular approach to prepare graphene for 
bio-neurological studies is the chemical reduction of graphite GO to 
rGO, which involves severe oxidation of the material, followed by 
sonicated irritation to exfoliate the GO and reduction by chemical or 
thermal processes. Hummer’s method is widely used to produce GO 
by reacting graphite flakes with oxidizing agents/acids (Hummers and 
Offeman, 1958). In terms of health issues, especially in the biomedical 
field, green synthesis has gained considerable interest by using green 
reductants, such as L-ascorbic acid, D-glucose, and tea polyphenol 
(Xu et al., 2015).

At room temperature, the interactions between carbon atoms in 
graphene are strong. Electrons in the carbon atoms are not easily 
affected or scattered by the movement of surrounding carbon atoms; 
its conductivity also contributes to electron transfer (Bramini et al., 
2016). Additionally, its large surface area and potential for binding 
different biomolecules onto its surface make graphene a suitable 
nanomaterial for holding small-molecule drugs, genes, proteins, 
deoxyribonucleic acid (DNA), and small interfering ribonucleic acid 
(RNA) (Mousavi et al., 2019; Ma et al., 2014). In neuroscience, the 
electrical conductivity, biocompatibility, and mechanical, thermal, and 
optical properties of graphene (Table  1) are its most important 
characteristics. Graphene can enhance the properties of nanomaterials 
for various biomedical applications, including electrodes for neural 
recording, stimulation, and imaging (Sun et al., 2008; Wei and Wang, 
2021), neural cell and tissue scaffolding (Lee et al., 2011), photothermal 
therapy (PTT) (Robinson et al., 2011; Yang et al., 2012a; Peng et al., 

Abbreviations: 2D, two-dimensional; DNA, deoxyribonucleic acid; RNA, ribonucleic 

acid; PTT, photothermal therapy; AD, Alzheimer’s disease; PD, Parkinson’s disease; 

SNR, signal-to-signal ratio; 3D, three-dimensional; IR, infrared; NIR, near-IR; GO, 

graphene oxide; *rGO, reduced graphene oxide; PEG, polyethylene glycol; PEI, 

polyethyleneimine; Aβ, amyloid β-protein; TCPS, tissue culture polystyrene; DRG, 

dorsal root ganglion; GAP-43, growth-associate protein-43; GBM, glioblastoma 

multiforme; BBB, blood–brain barrier; FGO, functionalized GO; SCI, spinal cord 

injury; NSCs, neural stem cells.
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2023), and drug delivery (Mauro et  al., 2020; Dash et  al., 2021). 
Recently, researchers have discovered new applications of graphene in 
nerve tissue engineering (Magaz et  al., 2021) and neurological 
diseases, such as brain tumors, Alzheimer’s disease (AD), and 
Parkinson’s disease (PD) (John et al., 2015; Cho et al., 2022). These 
properties and applications suggest that graphene has a promising role 
as a biomaterial in neuroscience.

3. Mechanical properties and electrical 
conductivity of graphene in neural 
electrodes

Neural interfaces are typically implanted with electrodes that can 
record or stimulate target tissues or cells in the brain, thereby 
establishing connections with the nervous system (Keefer et al., 2008). 
However, current electrode materials and technology have limitations. 
The formerly used metal electrode has poor stability, high hardness, 
and greater electrical noise, and its insertion may lead to mechanical 
damage of neurons and surrounding soft tissues, obstructing 
electrophysiological recording (Szarowski et al., 2003). The sp2 bond 
structure provides graphene with high resistance to elongation, with 
Young’s modulus of 1,100 GPa and fracture strength of 125 GPa (Lee 
et  al., 2008). Bending the graphene sheet does not result in 
considerable distortion of these bonds. Thus, graphene-based 
electrodes are perfect for touching soft samples like nervous tissues 
(Palermo et al., 2016). Young’s modulus ranges from 100 Pa to 10 kPa, 
which results in great tensile stiffness and strength while remaining 
highly flexible. Moreover, the unique structure of conjugated sp2 bond 
in the graphene plane excites electrons from the valence to conduction 
bands with near-zero energy, like the zero band gap nature of metal, 
giving graphene an outstanding electrical conductivity (Jiang et al., 
2007; Li et  al., 2009). With great electrical conductivity and high 
mechanical flexibility, graphene can be a suitable biomaterial as a 
neuronal interface for stimulating and recording brain signals.

Graphene can be  mechanically deformed beyond the linear 
regime (Lee et al., 2008); this is particularly important for increasing 
mechanical compliance in in vivo microscopy techniques performed 
on freely behaving animals. However, one of the major problems of 
using graphene in in vivo studies is that it is ultra-flexible and difficult 

to implant surgically. Kuzum et  al. (2014) fabricated graphene 
electrodes on flexible polyimide substrates, increasing its stiffness for 
implantation the brain without causing discomfort. Applying oxygen 
plasma etching to pattern graphene could also provide stiffness to the 
electrode, allowing it to penetrate brain tissues. An alternative method 
is using a stiff carrier microneedle that attaches the flexible electrode, 
aiding it to reach the desired depth (Kim T. I. et  al., 2013). The 
microneedle is disengaged from the flexible substrate and withdrawn 
from the tissue once it reaches the required depth. This procedure only 
causes minimal invasive operation; however, the back-and-forth 
motion may increase the risk of inflammation during insertion. 
Researchers have recently exploited temporary stiffening of graphene 
electrodes with silk fibroin, which provides a rigid structure that 
reaches the desired depth (Weltman et  al., 2016). The silk fibroin 
coating dissolves quickly after insertion, enabling the graphene 
electrodes to return to their original flexibility.

Unfortunately, scaling down the microelectrode dimension while 
sustaining a high signal-to-signal ratio (SNR) for recording cellular 
activity is challenging. Studies have demonstrated effective in vivo 
neural recording by graphene electrodes compared to gold electrodes 
(Kuzum et al., 2014; Park et al., 2014). In these studies, the relatively 
low capacitance of a few graphene layers led to a high impedance with 
large noise, which is unfavorable for maintaining high SNR in 
microelectrode recording. Common methods for enhancing graphene 
conductivity use chemical doping approaches, such as 
micropatterning, to increase the number of active sites. Qu et  al. 
(2010) demonstrated that using graphene doping with nitrogen-
containing compounds could increase the electroactivity of graphene-
based electrodes. Moreover, researchers have fabricated graphene with 
conducting polymers, such as polystyrene sulfonate, polypyrrole, and 
poly-3,4-ethylene dioxythiophene; the synergistic effect increases 
charge transfer on the graphene surface. With great mechano-
electrical stability, this electrode accurately recorded 
electrophysiological signals of brain activity with increased SNR 
(Zhao et al., 2021; He et al., 2022). Recently, Bonaccini Calia et al. 
(2022) designed a linear array of graphene neural depth micro-
transistors to increase electrical conductivity and demonstrated that 
this microelectrode could concurrently and stably record direct 
current-shifts and high-frequency neuron activity in awake rodents, 
which is consistent with the results of Masvidal-Codina et al. (2021). 

FIGURE 1

Structure diagram of graphene and other forms. (left) graphene; (middle) graphene oxide; (right) reduced graphene oxide. Kitko et al. (2018), Bramini 
et al. (2016), Ding et al. (2020), López-Dolado et al. (2016), and Serrano et al. (2018) with permission from Elsevier Ltd., copyright 2016.
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By decreasing the impedance between graphene and electrolyte, Chen 
et al. (2013) fabricated a graphene surface with a mild steam plasma, 
thus increasing the SNR during neural recording.

The mechanical properties, electrical conductivity, and large 
surface area of graphene make it perfect material for developing ideal 
neural interfaces and more reliable electrodes, while highlighting the 
unique advantages of composites, demonstrating greater application 
potential in neural interfaces. However, more studies are required to 
investigate the long-term effects of graphene-based nanoelectrodes 
during in vivo recording validation.

4. The optical property of graphene in 
neural imaging and photothermal 
therapy

Traditional metal electrodes used for recording 
electrophysiological activities obstruct the vision field, produce optical 
shadows, and are more likely to introduce light-induced artifacts 
during the recording. Researchers have discovered that transparent 
graphene could solve this problem due to the unique band structure 
in the transmission spectrum of graphene that prevents the mentioned 
limitations. Theoretically, graphene allows the hot ballistic charge 
carriers produced by light (Gabor et al., 2011) to transfer their energy 
in a highly efficient carrier-to-carrier scattering process, with a mean 
path that can reach approximately 1 μm (Novoselov et al., 2004).

Graphene is highly transparent and absorbs 2.3% of incident 
visible light radiation (Kang et al., 2016), which allows for optimal 
optical access and avoids photoelectrical artifacts. These advantages 

are excellent in optical imaging applications, offering substantial 
improvements over conventional metal electrodes for the three-
dimensional (3D) imaging application. Graphene enables spatial–
temporal resolution for simultaneous imaging while recording 
physiological activity from the same target, especially for studying the 
wiring of neural circuits. Kuzum et  al. (2014) recorded calcium 
fluorescence images via graphene electrodes in the dentate gyrus 
region without inducing artifacts from laser light. They observed 
overlapping neural cell bodies around the electrode while recording 
synaptic potential in vivo. Driscoll et  al. (2021) used transparent 
graphene microelectrode arrays and successfully recorded 
simultaneous high-bandwidth electrophysiology and calcium imaging 
signals of brain network activity induced by epileptic seizures in vivo. 
Moreover, these cellular-scale methods enable the recording of 
electrophysiology and calcium fluorescence in CA1 pyramidal 
neurons in hippocampus seizures (Mulcahey et al., 2022). Moreover, 
inspired by the accomplishments of brain studies, integrating a 
transparent graphene sensor onto a designed abdominal window 
detected changes in the activity of the enteric nervous system through 
simultaneous optical and electrical recording in a live mouse (Rakhilin 
et  al., 2016). From monitoring the activity of isolated neurons to 
forming intermuscular nerve plexus, this approach can help 
understand how the nervous system processes information. Thus, this 
technology can decipher and intervene in sequential spatiotemporal 
patterns of how the temporal progression of electrophysiology changes 
are associated with the spatial evolution of recruited core during brain 
disease onset and evolution.

Graphene exhibits a resonant response to any frequency photons 
in the ultra-broadband spectral spectrum from ultraviolet to infrared 

TABLE 1 The applications of graphene properties in neural areas.

Property of 
graphene

Form of graphene Applications References

Mechanical properties 

and electrical 

conductivity

Polyaniline-graphite electrode Promotes damaged sites regenerate. Zheng et al. (2019)

Poly-3,4-ethylene dioxythiophene/graphene 

oxide composite film

It can be used an implantable device to modify 

the electrode site.

Ding et al. (2020) and Kitko et al. (2018)

Optical properties Combine ventral window with graphene 

sensor

The activity of the enteric nervous system is 

monitored and recorded by light stimulation.

Rakhilin et al. (2016)

Thermal properties Graphite lattice Uses in drug delivery for neurological diseases. Monaco et al. (2014) and de Melo-Diogo 

et al. (2018)

nGO-PEG The tumors in the body are drastically removed 

by near-infrared laser irradiation

Yang et al. (2012a) and Chen et al. (2013)

Graphene Photothermotherapy isolates the amyloid 

β-protein fibers in Alzheimer’s disease.

Li et al. (2013) and Bayer (2017)

Biocompatibility Hydrogels containing graphene Promotes neuron regeneration and support its 

differentiation.

D'Abaco et al. (2018), Javadi et al. (2018), 

and Liao et al. (2018)

Graphene Maintains the viability of neurons. Fischer et al. (2018)

Toxic properties Human umbilical cord Wharton’ s jelly-

derived mesenchymal stem/stromal cells 

grown on reduced GO

Cells to show smaller and elliptical shape and 

differentiate into nerve cells.

Jagiełło et al. (2019) and Dybowska-Sarapuk 

et al. (2020)

rGO The survival rate of A549 cells are reduced. Guo et al. (2014)

GO It leads to nervous system damage, increased 

risk of behavioral defects.

Guo et al. (2014),  Chen et al. (2013),  Li 

et al. (2017),  Pattammattel et al. (2017),  

Ding et al. (2020), and Xiao et al. (2016).

nGO-PEG, polyethylene glycol functionalized nano-graphene oxide; rGO, reduced graphene oxide; GO, graphene oxide.
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(IR) region (Wang et  al., 2008). Recently, Savchenko et  al. (2018) 
introduced a graphene-based optical actuator that uses light exposure 
to optically stimulate cells in a non-invasive manner, causing 
membrane depolarization. However, as a biomaterial, the optical 
absorption is low at 2.3%. Researchers have discovered that changing 
the physical architecture of graphene by increasing its flake or density 
can increase its optical absorption. For example, Rastogi et al. (2020) 
composed 3D fuzzy graphene with an out-of-plane shape, 
demonstrating great photothermal effects due to its high optical 
absorption in the near-IR (NIR) regime and non-invasively 
stimulating and mediating electrophysiological activity of neural 
spheroids. One practical concern about these optical stimulation 
methods is the possibility of off-target or adverse consequences due to 
the temperature increase in the surrounding neurons. Therefore, 
minimizing temperature fluctuations is preferable if the neurons are 
optically excitable. Anchoring graphene-based materials with 
appropriate biological ligands can specifically target different 
neural cells.

PTT has received widespread attention because it can thermally 
ablate cancer cells in a minimally invasive manner under an NIR laser. 
The broad optical absorption spectra are important in photothermal 
medical applications. Nanomaterials with strong absorption in the 
NIR regime can act as effective PTT absorbers that achieve therapeutic 
temperatures with less total light energy, reducing heat escaping from 
the target to healthy surrounding tissue and avoiding tissue damage. 
GO and rGO have been widely exploited as effective absorbers for 
NIR-based PTT in cancer therapy (Yang et al., 2012b; Akhavan and 
Ghaderi, 2013a). Clinical treatment requires specific and high-quality 
photothermal effects. Conjugating nanomaterials surface with 
modifying molecules, such as polymers and antibodies, can solve this 
problem. Yang et al. (2010) discovered that GO-polyethylene glycol 
(PEG) composite nanomaterials combined with the NIR fluorescent 
dye Cy7 could be successfully localized in target tumor in vivo and 
achieved ultra-efficient tumor ablation after laser treatment. Similarly, 
Akhavan et  al. (2012) attached rGO-PEG with arginine-glycine-
aspartic acid-based peptide and Cy3 to successfully target human 
glioblastoma cell line U87MG. This material exhibited high NIR 
absorption and resulted in 97% cell destruction in vitro. However, the 
rGO-PEG showed concentration-dependent cyto- and geno-toxicity. 
No toxic signal was found in the histological examination of GO-PEG 
during PTT by Liu operation. Another transition metal disulfide that 
is attracting more interest in the biomedical field is Tungsten disulfide 
because of its photothermal properties, high lubricity, and catalytic 
activity. Its high NIR absorption capacity has been applied to 
photothermal therapy of tumors (Appel et al., 2016). The development 
of graphene optical properties has promoted the in vitro and in vivo 
research of carbon nanomaterials (including graphene, carbon 
nanotubes, and diamond).

Photoacoustic and fluorescence imaging can also be combined 
with PTT for diagnosis. Photoacoustic imaging has few specific signals 
and cannot image deep tissues. Fluorescence imaging does not use 
ionizing radiation and has low tissue penetration. Thus, further 
research is needed to fully understand how to apply carbon 
nanomaterials better and fully in neurology, as their functions involve 
the interaction between their various properties. Therefore, improving 
the functionalization of nanomaterials, which can create better and 
less risky options for patients during clinical treatment of diseases, 
remains challenging.

5. Thermal property of graphene in 
photothermal therapy

Graphene has high thermal conductivity (κ) and great thermal 
management potential, indicating its development in nanoscale 
engineering for heat transport and management. Ma et al. (2017) 
found that the thermal conductivity of graphene significantly reduced 
with decreasing grain size by a thermal boundary of 
~3.8 × 109 W m−2 K−1. Kumar et al. (2015) reported that large-area GO 
produced a very high thermal conductivity of 1,390 Wm−1 K−1.

Researchers have suggested various effective approaches for 
modulating the thermal conductivity of graphene. Depositing 
nanoparticles on the surface of graphene can mediate its thermal 
management (Wang J. et al., 2013; Sadrolhosseini et al., 2019; Sun 
et  al., 2022). Chemical functionalization, such as through small 
coverage of fluorine (Chien et al., 2011; Pei et al., 2011), hydroxyapatite 
(Nie et al., 2022), polymer (Wang et al., 2020, Kang et al., 2022, Lei 
et al., 2022, Tan et al., 2022), hydrogen (Zhang et al., 2010, Jarrahian 
and Heidaryan, 2012, Zhang and Liu, 2019), and phenol (Bernal et al., 
2018), has been theoretically used to significantly enhance graphene’s 
thermal conductivity.

As thermal stability improves, graphene use has risen in the fields 
of clinical biomedical application and tailored nanomedicine for 
neurologic diseases. For example, graphite lattices in the graphene 
family of nanomaterials fuse to form disparate forms of molecules, 
with a potential role in drug and gene delivery for treating neurological 
diseases. Using two complementary strategies for conferring static or 
spatial stability can improve the thermal stability of graphene and 
allow cells to occupy stable graphene sheets (Hong et al., 2012). In 
2008, Liu et al. (2008) first synthesized GO-PEG composite to deliver 
the anticancer drug SN38 into the cancer cell interior. Zhang et al. 
(2010) further conjugated GO with folic acid and loaded it with 
multiple anticancer drugs to specifically target human MCF-7 cells. In 
addition to the delivery of therapeutic molecules, GO-conjugated 
polyethyleneimine (PEI) loaded with small interfering RNA or 
plasmid DNA could be used to reduce its target gene expression (Feng 
et al., 2011; Kim et al., 2011; Zhang et al., 2011). Additionally, Barrera 
et  al. (2020) functionalized rGO with iron oxide nanoparticle 
deposition, which increased thermal temperature. GO functionalized 
with ferrimagnetic vortex-domain iron oxide also showed high 
thermal conversion efficiency in vivo (Liu et al., 2020). The composite 
rGO-Fe3O4 increased the temperature by approximately 50°C in 
5 min, which is considered the cell-killing temperature, meaning it can 
accomplish advanced PPT. Cao et al. (2017) reported a system with 
GODs-PEG and porphyrin derivate (P). A GQD-PEG-P solution of 
100 μg/mL increased the temperature to 53.6°C while maintaining the 
temperature of control water at 33.2°C. GOD-PEG-P combined with 
PTT demonstrated excellent efficiency in killing cancer cells in vivo 
and in vitro. AD is characterized by neuronal loss in the cerebral 
cortex and subcortical areas and amyloid β-protein (Aβ) accumulation. 
Recently, Wang et  al. (2021) demonstrated that GO loaded with 
dauricine could inhibit the aggregation and misfolding of Aβ. 
Moreover, graphene-based PTT can effectively dissociate the Aβ fibrils 
upon NIR laser irradiation (Li et al., 2012).

These findings provided new ideas for combining PTT and 
graphene-based drug/gene delivery therapy and demonstrated a 
significant improvement over traditional surgical treatment method. 
Graphene-based materials showed high potential for the novel and 
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efficient treatment of neurological disorders. However, the interaction 
between graphene and cells may interfere with the different cell 
viability reduction rates in thermal therapy (Barrera et  al., 2020). 
Future research should focus on the molecular and cellular effects of 
graphene composites in thermal and delivery therapy, given its 
promising results.

6. Biocompatibility and toxicity of 
graphene in neural interaction

The first aspect to consider when developing graphene-based 
biomedical applications is their biocompatibility to avoid any adverse 
effects on living tissues (Li et  al., 2011). Graphene is highly 
biocompatible, making it an ideal choice for neural interface materials 
in biological tissues (Sahni et  al., 2013; Fanizza et  al., 2022). 
Furthermore, graphene can improve the efficiency of implants or 
scaffold materials to enhance cell differentiation and proliferation 
owing to its unique biocompatibility (Lee et al., 2011; Ulloa Severino 
et al., 2016; D'Abaco et al., 2018). However, the biocompatibility of 
graphene depends on its functionalization, which can also improve 
the biocompatibility of graphene-based materials. For example, 
chitosan is another biocompatible material, and its composite, 
chitosan-GO, showed better biocompatibility than GO scaffolds alone, 
with enhanced cell infiltration and reduced inflammatory reactions 
(Vlasceanu et al., 2020). Additionally, the hydrogen bond interaction 
between chitosan-GO composites can enhance the regeneration and 
activity of nerve cells (López Tenorio et  al., 2019). Hydrogel-
containing graphene are synthetic materials similar to living tissues 
and can promote neuronal regeneration and differentiation, which is 
valuable in developing synthetic materials for engineering neuronal 
tissues (Javadi et al., 2018).

Graphene biocompatibility and its effects on the performance of 
living cells have shown that graphene on top of matrix substrates does 
not impede the interaction between neurons and substrates, thus 
maintaining neuronal viability (Fischer et al., 2018). Li et al. (2011) 
investigated how graphene substrates affect neuritis, an important 
structure for neural functions, during the maturation of mouse 
hippocampal cultures compared to tissue culture polystyrene (TCPS) 
substrates to address the detailed interaction between graphene and 
tissues/cells in the neural system. The results showed that graphene, 

as a biocompatible matrix, effectively stimulated neurite sprouting and 
outgrowth. Neurons started to extend their neurites toward the 
periphery after being cultured on the graphene substrates (Figure 2A). 
The phase-contrast micrograph indicates that the original trajectory 
extended along the neurite to calculate its length. As shown in 
Figure 2B, neurite numbers in each cell on the graphene substrate 
significantly increased between 2–7 days, compared with those with 
TCPS treatment. The neurite lengths also increased with graphene and 
TCPS, but the average length with graphene was significantly longer 
than that with TCPS (Figure 2C).

However, in vivo studies have demonstrated that the immune 
system is highly sensitive to graphene and quickly responds by 
increasing anti-inflammatory cytokine synthesis (Duch et al., 2011; 
Dudek et al., 2016). Low concentration of graphene, GO and rGO 
caused serious inflammation in rats (Wang Y. et  al., 2011; 
Schinwald et  al., 2012; Chortarea et  al., 2022) and perturbed 
locomotor behavior in an in vivo zebrafish model (Cellot et al., 
2020). Graphene functionalization is also used to minimize its 
adverse effects in in vivo settings. Fabricating graphene with 
poly(ε-caprolactone) caused an acceptable degree of 
immunological response in vivo (Wang W. et al., 2019). Hung et al. 
(2021) fabricated GO with gold and observed incredible 
immunological compatibility and anti-inflammatory effects in vivo. 
GO coated with biomimetic baicalin effectively ameliorate the 
inflammatory response in vivo (Guo et al., 2021). Furthermore, 
500 mg/kg dose of dextran-coated GO had no significant effect on 
the immune system (Kanakia et al., 2014), and GO-PEG showed 
normal values of blood hematology analysis (Yang et  al., 2013; 
Chong et al., 2014). Recently, Ding et al. (2020) reported a time- 
and dose-dependent, stealth-but-activating effect of GO-PEG on 
macrophages, and a low dosage of GO-PEG resulted in a mild, 
transient, and bearable immunological response in vivo. Feito et al. 
(2019) demonstrated the mechanism underlying macrophage 
response to GO-PEG labeled with fluorescein isothiocyanate. 
GO-PEG labeled with fluorescein isothiocyanate does not cause 
macrophage polarization and promote the M1/M2 balance, 
ensuring an appropriate immune response, which is consistent 
with in vivo studies (Lee et al., 2008, 2020; Hung et al., 2021; Zou 
et al., 2021). Kurapati et al. (2018) showed that graphene could 
be degraded by myeloperoxidase from active neutrophils in vivo. 
The biodistribution of graphene quantum dots (GODs) in in vivo 

FIGURE 2

(A) Phase-contrast microscopic image of neurons. (B) The average number of neurites per cell on graphene and TCP. (C) The average length of neurite 
on graphene and TCP. Data are expressed as mean ± SEM (n = 288 for TCPS and n = 315 for graphene, **p < 0.01). Li et al. (2011) with permission from 
Elsevier Ltd., copyright 2011.
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mouse experiments did not accumulate in main organs with fast 
kidney clearance, probably due to their ultra-small size (Kanakia 
et al., 2014).

Of note, graphene-based materials in some medical and 
non-medical fields may exhibit toxicity in human cells, leading to 
cell death. For example, Jagiełło et al. (2019) investigated the in 
vitro effects of GO and rGO on human umbilical cord Wharton’s 
jelly-derived mesenchymal stem/stromal cells. GO had no cell 
toxicity despite its flake size. GO and rGO induced a prominent 
toxicity phenomenon in a dose- and time-dependent manner. 
Moreover, GO induced stronger toxicity to the cells than rGO 
(Wang K. et al., 2011; Kang et al., 2017). Interestingly, rGO with 
high reduction levels decreased cell proliferation and promoted 
cell necrosis. A study on graphene toxicity-induced cell necrosis 
reported that the mechanism underlying graphene toxicity is 
mainly related to reactive oxygen species production in cells, 
leading to DNA and protein damage and subsequently cell death 
through the necrosis pathway (Chatterjee et al., 2015; Sawosz et al., 
2015). Functionalization of GO and rGO using different surfactants 
plays a significant role in reducing toxicity. Wojtoniszak et  al. 
(2012) investigated GO and rGO toxicities using three surfactants, 
including PEG, sodium deoxycholate, and polyethylene glycol–
polypropylene glycol–polyethylene glycol (Pluronic P123). GO 
functionalized with PEG had the lowest toxicity (36.3%) compared 
with other surfactants. Cytotoxicity analysis revealed that toxicity 
depends on the type of surfactants and concentration of 
nanomaterials to maintain stabilization and avoid agglomeration. 
Recently, Dybowska-Sarapuk et al. (2020) suggested that reducing 
the number of functionalized surfactants of graphene to a proper 
range could reduce the risk of induced cytotoxicity.

rGO injection at centration of 0.004 μg/μL into the core of 
olfactory bulb in vivo does not affect de novo neurogenesis and 
neuronal survival, nor produce immune response (Defteralı et al., 
2016a). Intracerebral injection of GO in vivo does not induce 
neurotoxic effects and acute neuroinflammatory in brain structure 
(Portioli et  al., 2020). Intratracheal injection of GO at low 
concentration in mice caused persistent and severe pulmonary injuries 
(Duch et al., 2011; Singh et al., 2011). Oral administration of GO at a 
dose of 0.5–100 μg/mL in Caenorhabditis elegans caused irreversible 
damage to the nervous system, which is closely related to reactive 
oxygen species production (Wu et al., 2013; Zhao et al., 2018). Overall, 
toxicity may be attributed to the interaction between some physical 
and chemical properties of graphene materials, such as the dose, size, 
shape, type of functional groups, reactive oxygen species production, 
and administration route (intravenous or oral).

Another popular member of the carbon nanomaterials family, 
carbon nanotubes demonstrated no major toxicity on cell lines, 
organotypic slice cultures, and dissociated primary cultures (Lovat 
et al., 2005; Fabbro et al., 2012; Lee et al., 2015). Similar to graphene, 
the toxicity of carbon nanotubes is associated with their soluble forms 
because of improper functionalization. In an in vitro study, Simon-
Deckers et al. (2008) investigated the toxic effects of multi-walled 
carbon nanotubes, the most commonly used carbon nanotubes, on 
A549 human pneumocytes. This study demonstrated that nanotube 
toxicity, which is stronger than metal oxide nanoparticle toxicity, is 
mainly triggered by their entrance into cells and dispersion in the 
cytoplasm, regardless of their length. Similarly, in in vivo animal 
studies of multi-walled carbon nanotubes, exposure was induced 

through aspiration, inhalation, or intratracheal instillation, thereby 
inducing interstitial fibrosis and pulmonary inflammation (Porter 
et al., 2010; Poulsen et al., 2015). Moreover, Rahman et al. (2017) 
demonstrated that, due to their sizes, multi-walled carbon nanotubes 
can easily enter the pleural space, interstitium, and highly vascularized 
alveolar regions, demonstrating high-degree pulmonary 
biopersistence. These results indicate that the toxicity and safety of 
graphene must be considered.

Nonetheless, the results from in vitro or in vivo animal studies 
cannot be  directly applied to humans. Graphene-based materials 
would be  degraded to research tools if they only have good 
characteristics in experimental settings instead of being surgically 
applicable. Jakus et  al. (2015) established 3D printable graphene 
fabricated with biodegradable polyester polylactide-co-glycolid 
containing 20–60% solid content and discovered that it is 
intraoperatively suitable for surgical procedures in a human cadaver, 
showing the possibility of graphene bio-ink as a standout candidate 
among emerging medical devices. However, in vivo pre-clinical studies 
for evaluating biocompatibility and toxicity to establish a detailed 
standard for elements of graphene-based materials for their potential 
clinical applications are lacking. In summary, suggestions for 
overcoming the disadvantages of graphene will promote the future 
development of graphene-based materials.

7. Applications of graphene in the 
nervous system

7.1. Functions of graphene in neurons

Electrical stimulation during the early stage of neuronal 
development indicates the role of graphene in cell differentiation 
and phenotypic maintenance (Kam et  al., 2009; George et  al., 
2017). Biomaterial substrates have been investigated for supporting 
and controlling cellular growth in culture by mimicking natural 
neural cellular microenvironment. Moreover, various biomolecules 
can be added to promote neuronal growth and control neuronal 
survival. Several studies have demonstrated that graphene-based 
materials can act as biocompatible substrates to enhance neuronal 
growth, proliferation, and differentiation, as well as neurites 
sprouting and outgrowth, such as mesenchymal stem cells (MSCs), 
neural stem cells (NSCs), PC12 cells, dorsal root ganglion (DRG) 
neurons, retinal ganglion cells, and cortical neurons (Agarwal 
et al., 2010; Li et al., 2011, 2013; Nayak et al., 2011; Park et al., 2011; 
Wang et al., 2012, 2019b; Bendali et al., 2013; Sahni et al., 2013; 
Solanki et al., 2013; Tang et al., 2013; Akhavan and Ghaderi, 2013b; 
Hong et al., 2014; Shah et al., 2014; Yang et al., 2014; Lee et al., 
2015; Bramini et al., 2016; Guo et al., 2016; Rauti et al., 2016; Veliev 
et al., 2016; Defteralı et al., 2016b; Das et al., 2017; Rastogi et al., 
2017; Convertino et al., 2018, 2020b; Kitko et al., 2018; Fang et al., 
2019; Fu et al., 2019; Qi et al., 2019; Zhang et al., 2019; Lin et al., 
2020; Table  2). These outstanding results are probably the 
consequence of a complex interplay of electrical, mechanical, and 
chemical properties imposed by graphene, making it difficult to 
distinguish the microscopic origin of the effect of graphene on 
neurons. The topographic cues of graphene with many ripples and 
wrinkles may resemble the surrounding neural matrix, offering 
potential substrates for the growth of new neurons. The surface 
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chemistry of graphene plays a part in cellular communication 
between neurons and substrates. Meanwhile, the electrical 
conductivity of graphene is widely believed to play a critical role 
in promoting the outgrowth of neurons and neurites (Cellot et al., 
2009; Veliev et al., 2016; Pampaloni et al., 2018). However, a recent 
study found that both graphene films with high (below 1 kΩ−1) and 
low (up to 70 kΩ−1) conductivity favored neuron spreading without 
clear alteration, indicating that the high electrical conductivity of 
graphene is not the crucial property and the efficient range of its 
electric conductivity for graphene-based neuronal interfaces is 
broader than expected (Capasso et  al., 2021). The guidance of 
neurites induced by the graphene edge may be due to its chemical 
composition. After in vivo implantation or long-term culture for 
several weeks, the chemical coating would eventually dissolve or 
degrade, which might expose toxicity concealed by the coating on 
the surface of the graphene (Bendali et al., 2013).

7.2. Chemical vapor deposition-grown 
graphene

Zhang et al. (2010) found that graphene sheets synthesized via the 
radio frequency catalytic CVD approach induced cytotoxic effects on 
neuronal PC12 cells in a concentration and shape-dependent manner. 
Time-dependent caspase3 activation after exposure to CVD-grown 
graphene at 10 μg/mL dosage shows evidence of apoptosis. However, 
Nayak et  al. (2011) found CVD-grown graphene did not hamper 
hMSCs proliferation and accelerated their differentiation. Graphene 
film enhances the differentiation of hNSCs toward neurons (Park 
et al., 2011). CVD-grown graphene under low pressure promotes the 
adhesion and proliferation of hippocampal neurons but does not 
induce cell stress (Rastogi et al., 2017).

7.3. Graphene oxide and its derivative

GO can stimulate embryonic stem cells and NSCs to differentiate 
into neurons as well as promote the differentiation and growth of 
neuronal axons (Kim T. H. et al., 2013; Guo et al., 2017). GO exhibits 
a size-dependent effect on the differentiation of mouse NSCs (Lin 
et al., 2020) and hippocampal cells (Rauti et al., 2016). Some studies 
reported that GO impaired the excitatory transmission of primary and 
hippocampal neurons (Bramini et al., 2016; Rauti et al., 2016, 2019). 
However, Secomandi et  al. (2020) found that GO decreased the 
cultured amygdalar neurons and transiently increased their excitatory 
transmission. Further experiments should be  conducted to 
demonstrate the controversy over these different neurons after the GO 
application. Conductive materials for neural cells have been exploited, 
such as polyaniline, polythiophene, poly-3,4-ethylene dioxythiophene, 
and polypyrrole (Lei et al., 2014). Several studies functionalized GO 
with these conductive materials to enhance conductivity (Deng et al., 
2011; Zhang and Zhao, 2012; Shah et  al., 2014; Fu et  al., 2019). 
Conductive graphene-based composites have been successfully 
applied to improve recording with substantial SNR and accelerate 
electrical stimulation of neural cells. Nearly all experiments were 
conducted on the graphene-based substrates for 1–3 weeks. This 
procedure is useful for deciphering the long-term effects of these 
substrates on neurons. However, neurites sprouting and hippocampal 
neuron outgrowth cultured on the substrates increased maximally 
during the second day of observation, which is consistent with the 
results of Convertino et al. (2020b), reaching a non-significant level 
compared with the control culture. Future studies should focus on 
exploring the early development of neurons on the substrates and 
determining the elements that influence neurites outgrowth based on 
culture time. In addition, the degradation effect of graphene-based 
substrates on neurons should be investigated.

TABLE 2 The applications of graphene in neural areas.

Applications Form of graphene References

Promotes the differentiation of neural stem cells into 

neurons

Graphene-silicon dioxide nanoparticle mixture 

scaffold

Yang et al. (2014)

Induces the growth and differentiation of neurons 1. PLLA scaffold coated with GO Bhang et al. (2013) and Zhang et al. (2010)

2. Three-dimensional porous graphene scaffolds Jiang et al. (2016), Zhou et al. (2018), and Javadi et al. 

(2018)

Boosts nerve cell proliferation GO nanocomposite multilayer film Qi et al. (2019) and Zhang et al. (2016)

Electrical stimulation promotes neurite growth Scaffold materials based on graphene biocompatible 

conductive PPy and PAn

Ghasemi-Mobarakeh et al. (2011)

Decreases the release of non-specific drugs, improves the 

targeting efficiency, reduces toxicity

1. Graphene Chowdhury et al. (2015), Din et al. (2017), and Asghari 

et al. (2020)

2. Functionalized GO loaded with pirfenidone Mendonça et al. (2015) and Yang et al. (2015)

3. GSPI 409 Wang et al. (2013)

Improve the quality of the nerve repair Tubular prosthesis combining graphene with PCL 

434

Assaf et al. (2017)

Electrical stimulation repairs damaged nerves PLGA/GO nanocomposite materials 442 Feng et al. (2011) and Fu et al. (2019)

Lead to the pro-inflammatory effects Two-dimensional graphene Nezakati et al. (2014) and Song et al. (2022)

Lead to the pro- and anti-inflammatory effects Three-dimensional graphene

GO, graphene oxide; PLLA, poly-L-lactide; PPy, polymers polypyrrole; PAn, polyaniline; GSPI, silica-coated graphene nanosheet; PCL, poly (ε-caprolactone); PLGA, poly (lactic-co-glycolic 
acid).
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Interestingly, few studies have investigated how neurons respond 
to graphene and its derivates. The nanoscale mechanisms underlying 
graphene-induced neurite outgrowth of neural cells remain 
unknown. Graphene can increase the local accumulation of nerve 
growth factors to boost the elongation of peripheral neurons 
(Convertino et al., 2020a). In previous studies, graphene increased 
the level of growth-associated protein-43, an efficient marker of axon 
outgrowth, in both hippocampal neurons (Li et al., 2011) and PC12 
cells (Wang et al., 2019b), suggesting that central and peripheral 
neurons cultured on graphene-based substrates may be driven by the 
same mechanisms of neuritogenesis. Conductive materials enhance 
the cellular bioelectric property, through which electrical stimulation 
can facilitate and control neuritis outgrowth and axonal elongation 
(Uesaka et  al., 2005; Meng, 2014). Moreover, the hippocampal 
neurons demonstrated increased cell firing, and this change might 
be due to the alteration of the membrane ion currents by the material 
interface (Pampaloni et  al., 2018). Differentiated NSCs showed 
upregulated genes involved in the calcium signaling pathway, such 
as G protein-coupled receptors and Na/Ca exchangers (Park et al., 
2011), and increased spontaneous Ca2+ spiking (Tang et al., 2013). 
Thus, primary neurons exposed to GO flakes demonstrated impaired 
Ca2+ signaling and several proteins associated with intracellular 
trafficking (Rauti et al., 2016). Moreover, cellular neurogenesis may 
be induced by graphene via focal adhesion kinase and p38 mitogen-
activated protein kinase cascades (Lee et al., 2015), along with the 
activation of ERK1/2 phosphorylation (Lin et al., 2020). In addition, 
downregulating phosphatidylserines, which regulates the negative 
charge of the cytosolic side of the membranes, and upregulating 
phosphatidylethanolamines, which comprise membrane 
phospholipids of a synaptic vesicle, affect their fission and fusion 
(Gaffaney et  al., 2008; Morita et  al., 2012). The alteration in 
phosphatidylethanolamines/phosphatidylserines ratio may 
be  involved in the change in synaptic transmission described 
previously. These studies are in the early stage; despite the different 
techniques of synthesizing graphene and various biological cells 
studied, the interaction between graphene and neural cells should 
be  explored further for a better understanding and use of its 
biological efficacy. Overall, the understanding of graphene is 
advancing, providing a solid foundation for neuroscience research 
and the clinical application of graphene-based materials, given the 
advancement of biological tissue engineering and material science.

7.4. Drug delivery and graphene treatment 
for neurological diseases

Drug delivery to the brain may be ineffective for treating central 
tumors because the central nervous system is complex, increasing 
disease severity and major side effects without achieving satisfactory 
therapeutic effects (Meng et al., 2017; Fernandes et al., 2018; Saeedi 
et al., 2019). The current treatment modalities, including chemo- and 
photothermal-theory, have low efficacy and various side effects and 
risks and lack specific targeting. Nanocarriers are now superior 
approaches to cancer therapy. Graphene has been exploited as a drug 
loading material with effective potency and efficiency because of its 
π–π stacking, high specific surface, and hydrophobic and electrostatic 
interactions. Graphene and its derivatives have been developed into 
vectors of genes and drugs with functionalization as drug delivery 

systems because of its advantageous properties in achieving targeting 
and local delivery.

Graphene is a mode for intracellular administration. GO and rGO 
can deliver antigens that modify innate immune cells to trigger 
effective and adaptive immune responses for immunotherapy in vivo 
(Sinha et al., 2019; Wang X. et al., 2019; Parker et al., 2022). Yang et al. 
(2022) revealed that GO with antigen can be efficiently taken up by 
dendritic cells via receptor-mediated endocytosis, which enhances 
immune responses and increases delivery effectiveness both in vitro 
and in vivo. Meanwhile, Yan et  al. (2019) loaded rGO with IDO 
inhibitor, which can trigger immune responses, and successfully 
induced antitumor immunity. Fang et al. (2022) assembled GO and 
metal–organic framework, Fe-porphyrin, of which the porous 
structure and large surface area enabled drug delivery. The use of a 
metal–organic framework as a photosensitizer under laser irradiation 
enables effective synergistic treatment through PTT. Moreover, a study 
functionalized graphene with PEI to deliver drugs. PEI is a non-viral 
gene carrier that can interact with negatively-charged DNA or RNA 
to form a complex. Synthesis of PEI-GO nanocomplex via π-π stowage 
and hydrophobic interaction produced higher transfection efficiency 
and less toxicity than PEI alone, delivering gene and achieving a high-
drug load of insoluble drugs (Huang et al., 2016). These drug-delivery 
systems can improve targeting efficiency through functionalization 
with targeted genes (Chowdhury et al., 2015; Keles et al., 2016; Din 
et al., 2017; Asghari et al., 2020). For example, glioblastoma multiforme 
(GBM), a neurogenic tumor, is difficult to treat because of the 
intracranial location of the tumor. Jaworski et  al. (2013, 2015) 
discovered that apoptosis occurred in GBM cells cultured on graphene 
and rGO platelets, indicating the possible effectiveness of graphene in 
anticancer therapy. Arginine-producing nitric oxide can affect reactive 
oxygen in mitochondria, cause cell apoptosis (Jeong et al., 2010), and 
have a high affinity for graphene (Hughes and Walsh, 2015). Sawosz 
et al. (2015) added arginine to rGO and examined the anticancer effect 
of the complex on GBM cells. They revealed that adding arginine to 
rGO increased rGO activity and led to GBM cell apoptosis. Another 
study used GO and rGO to transport microRNA to GBM cells. These 
complexes had less harmful effects on the viral carrier, but more 
efficiency of microRNA delivery than the viral carrier. GO and rGO 
functionalized with microRNA-induced microRNA deregulation 
stress, regulated relative gene expression to apoptosis, and increased 
GBM cell apoptosis (Kutwin et  al., 2021). Wang Y. et  al. (2013) 
designed an initial drug-delivery system that used chemo-
photothermal treatment to target GBM cells. Coating graphene 
nanoparticles with mesoporous silica improved super absorption 
under NIR and drug loading efficiency compared with graphene 
nanosheets alone. A targeting peptide was designed and exploited as 
a GBM-cell targeting ligand; it modified mesoporous silica 
nanoparticles. Loading doxorubicin onto the targeting peptide 
conjugated-mesoporous silica covered-graphene system caused the 
specific and highest death rate of GBM cells with near-infrared 
irradiation than single photothermal- or chemotherapy 
(Figures 3A–E).

Two points must be considered when nanocarriers deliver drugs to 
the central nervous system. First, drugs must have the ability to penetrate 
the blood–brain barrier (BBB) to ensure the delivery of sufficient dosage 
to kill cancer cells. Second, the delivery should specifically target cancer 
cells, avoiding harmful effects on normal tissues. For example, 
subarachnoid hemorrhage occurs in severe neurological diseases, and 
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studies have demonstrated the feasibility of using functionalized GO 
(FGO) for effective drug delivery in such cases. The content of FGO 
nanotablets loaded with pirfenidone, which is used to treat subarachnoid 
hemorrhage, gradually increases with an increase in drug concentration 
(Figure 4A), making FGO a suitable medicine carrier that can be loaded 
with pirfenidone. The functionalization of transcription activator peptide 
and methoxy PEG introduced onto GO nanosheets aid BBB crossing and 
improve drug stability in blood circulation. Transcription activator 
peptide improved nanosheet ability to cross the BBB. Moreover, long-
chain polyethers of methoxy PEG prolonged the lifetime of pirfenidone 
in circulation and increased the permeability of nanomaterials through 
blood vasculatures. Furthermore, pirfenidone was released from FGO at 
a pH of 5 within 72 h and not at a pH of 7 (Figure 4B). Subarachnoid 
hemorrhage may trigger an inflammatory response, and the inflammatory 
microenvironment is an acidic site with a pH of 5.5. Therefore, the 
effective release of pirfenidone amount under acidic conditions indicates 
that the FGO drug-delivery system has a satisfactory therapeutic effect on 
inflammatory lesions (Yang et  al., 2015). The functionalization of 
graphene-based nanomaterials improves BBB penetration ability, 
increasing drug concentration gradients inside and outside blood vessels, 
and facilitating drug entry into the brain through capillary endothelium, 
providing a good carrier for targeted drug delivery in the brain. Similarly, 
Dong et al. (2016) examined the efficacy of targeting drug delivery with 
chemo-photothermal therapy on rats with GBM. Loaded onto 
transferring-conjugated GO-PEG, doxorubicin entered through the BBB 
and accumulated in the GBM region of the brain. Under NIR radiation, 
the tumor temperature significantly increased as the drug-delivery system 
is absorbed because of the GO’s aromatic structure. This photothermal 
effect could be mediated by applying the drug delivery later. The life of rats 
bearing GBM was also prolonged with targeted drug delivery utilizing 
nanomaterials. These characteristics indicate an admirable drug-delivery 
system for treating diseases. The saturable light absorption of graphene 
may also be useful for targeted delivery of improved graphene and its 
derivatives, which are accumulated in cancer cells after intravenous 
administration in treating neurogenic tumors. Thus, irradiating the tumor 
with NIR light will lead to the photothermal ablation of tumor cells, while 
retaining ordinary tissue with ambient temperature (He et al., 2016).

Furthermore, neurodegeneration diseases of the nervous system, 
including AD and PD, lack accurate and economic clinical diagnostic 
tools. No drugs have successfully treated these diseases in clinical settings. 
Therefore, associated biomarkers must be detected and quantified for 
diagnosing these diseases early. One of the most important contributions 
to neurological diseases is the aggregation of amyloid fibrils. Graphene-
based materials have been extensively explored to not only detect amyloid 
protein sensitively and quantitatively but also prevent the accumulation 
of amyloid, which might provide new insights into alternative diagnostics 
and therapy at the early stage of AD and PD. The conformation of Aβ 
peptides produced by β-secretase changes from alpha-helix to beta-sheet 
to create insoluble fibrils, within which heavy metal ions eventually result 
in amyloid plaques (Kayed et al., 2003). Beta-amyloid1-42 (Aβ1-42) is an 
important biomarker in AD and PD (He et al., 2018). Lopes et al. (2014) 
first demonstrated the progress of aggregating Aβ1-42 absorbed on the 
graphite electrode via its tyrosine oxidation record using differential pulse 
voltammetry. This experimental method offered a potential tool for 
detecting and preventing Aβ aggregation. Yousaf et al. (2019) reported a 
probe based on bovine-serum-albumin-capped fluorine functionalized 
GQDs that enabled spontaneous fluorescence-based monitoring of Aβ1-42 
in vitro with a 10 times higher detection rate than that of conventional 

thioflavin dye and effective detection of amyloid plaques in vivo. Nangare 
and Patil (2022) decorated GO with chitosan, which offers sites for Aβ1-42 
antibodies via layer-by-layer assembly on the surface of the plasmon 
resonance biosensor. This inimitable feature of biosensor achieved 
detection with a linear range of 2 fg/mL–400 ng/mL and a limit of 1.21 fg/
mL. Yu et al. (2021) used a silver probe and magnetic GO substrate 
capturing the antigen, which was formed into a typical sandwich 
structure, thus achieving a detection linear range of Aβ1-42 from 
100 pg. mL−1 to 10 fg mLd−1. Such a tool was successfully used and verified 
on AD human serum samples. However, the reported antibody against 
oligomers would possibly target monomers. Graphene-based 
electrochemical detection with a high specificity could also depend on 
DNA hybridization apart from antigen–antibody interactions. Bonanni 
et al. (2012) first examined the ability of GO to conjugate with DNA 
hybrids and discovered its promising role in DNA labeling. Song et al. 
(2022) conjugated GO with Aβ1-42-specific aptamer to generate a novel 
biosensor that could detect Aβ1-42 of 0.1 to 10 uM through surface-assisted 
laser desorption ionization mass spectrometry. MiRNA-137 was identified 
as a reliable biomarker for AD (Azimzadeh et al., 2017). Chang et al. 
(2021) modified GO with gold nanostar through an amine linker to 

FIGURE 3

(A–E) Qualitative results of confocal microscopy showing the 
viability of glioma cells by LIVE-DEAD staining. BF, bright field images, 
Green: live cells. Red: dead cells; Wang et al. (2013) with permission 
from ACS Publications, copyright 2013.
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capture miRNA-137 on the complementary sequence, achieving a 
detection limit at 10 fM with 1 fM sensitivity. The graphene surface can 
highly transfer the fluorescence quenching efficiency, making it a suitable 
broad-spectrum fluorescence quencher (Ma et al., 2017). Rahaie and 
Noroozi (2019) applied GO with SYBR green based on the hybridization 
chain reaction for detecting miR-137 and demonstrated that this designed 
biosensor achieved sensitive detection ranging from 0.05 nM to 5 nM with 
a limit at 82 pM. Moreover, Zhou et al. (2018) offered a strategy based on 
GO and entropy-driven strand displacement reaction. In this experiment, 
researchers released the bound Aβ1-42 oligomers using hairpin structure 
DNA probes, which hybridized with the fluorescein-labeled 
complementary probes. Continuous cycle reactions amplified the 
fluorescence signal until GO started to absorb the excess labeled probes. 
This method ensured ultrasensitive detection of Aβ1-42 oligomers at limit 
of 20 pM.

Inhibiting fibrillation is a prominent strategy for preventing or 
treating neurodegenerative diseases (Haataja et al., 2008). Graphene 
and its derivatives modulate the pattern of fibril formation. Gregory 
et  al. (2020) showed that graphene effectively mitigates amyloid 
fibrillation using hen egg-white lysozyme, a classical model of 
amyloid-forming protein, using the interfacial charge transfer 
associated with hydrophobic and π-π interactions. This result was 
consistent with the discovery made by Ban et al. (2018) using graphene 
oxide quantum dots. Baweja et al. (2015) also discovered that GO and 
rGO decreased the beta-strand propensity of Aβ amino acid residues, 
inhibiting alpha helix to beta-sheet transition of Aβ peptide and the 
electrostatic interactions contributed to its adsorption on GO and 
rGO. However, researchers have suggested that the oxidative degree 
of GO surface influences the interplay between materials and filament 
growth. He et  al. (2019) demonstrated that non-uniform GO in 
oxidation sites exhibited a remarkably stronger perturbation on Aβ 
fibril. Another study revealed that high oxidative GO-20 and GO-40 
inhibited fibril elongation, while low oxidative GO-10 accelerated 
fibril elongation. The details of how the oxidation degree of GO causes 
different effects in in vitro experiments will provide new insights into 
the design strategy for amyloidosis therapy. A density functional 
theory study recently demonstrated that GO with 12.5% oxygen can 
effectively reduce Aβ plaque in AD (Liu and Luo, 2021). In in vivo 
experiments, Xiao et  al. (2016) conjugated GODs with peptide 
glycine-proline-glutamate and administrated it to APP/PS1 transgenic 
mice. The deposition area of Aβ plaque reduced in the GODs with 

peptide glycine-proline-glutamate group compared with the control 
group. Besides, the learning and memory capacity was enhanced. Tak 
et al. (2020) synthesized GODs from the Clitoria ternatea flower and 
discovered that GODs effectively reduced AD-like symptoms in 
rodents. Many results support that graphene-based materials can 
be used as promising agents for treating neurodegenerative disease; 
however, there are limitations to consider. For example, several studies 
have demonstrated an apparent breakdown of Aβ fibril, and the 
resultant protein was not exclusively a monomer, raising concerns 
about the potential toxicity of the remaining smaller soluble oligomers. 
Further studies should explain the fate of these smaller oligomers in 
cells. The effect of graphene-based material concentration on 
neurodegenerative symptoms in vivo should also be determined.

In this review, we emphasized the potential, specific, and bright 
prospects of graphene for treating nervous system diseases. In the 
absence of ideal treatments for neurological diseases, such as brain 
cancer, AD, and PD, graphene-based nanotechnology can be used as 
a drug carrier to better control drug release, thereby improving drug 
delivery to the specific site and a tool to diagnose and treat these 
diseases. This technology should be further developed as matured 
gene or drug-targeted delivery systems and combined with 
physicochemical methods to obtain more satisfactory treatment 
results and provide a solid foundation for future neurotherapy 
development (Liao et al., 2018; Yao et al., 2019).

7.5. Graphene in nerve repair

The ability of graphene to repair nerves has been evaluated in 
several studies. The large surface area of graphene can increase its 
adsorption performance and act as an interface material for nerve 
repair (He et al., 2016; Domínguez-Bajo et al., 2017). For example, 
peripheral nerve injuries cause disconnections between spinal neurons 
and targeted organs. Autografting is a widely used approach if 
end-to-end neurorrhaphy is infeasible. With the recent developments 
in nanotechnology, Jakus et al. (2015) demonstrated that graphene-
based nerve scaffold has great in vivo biocompatibility, as previously 
described. However, the nerve conduits were only implanted 
subcutaneously for 30 days, with no further neural expression 
performances. Moreover, Assaf et  al. (2017) fabricated a tubular 
prosthesis made of graphene and polycaprolactone and examined the 

FIGURE 4

(A) The content of FGO loaded with pirfenidone was determined at the concentration of the drugs. (B) Graph of the release of pirfenidone from FGO 
by pH 5 and pH 7 in in a specific time point; Yang et al. (2015) with permission from Elsevier Ltd., copyright 2015.
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efficiency of the material on sciatic nerve repair in rats with 
disconnection. The prosthesis improved the number of myelinated 
axons in repaired nerves 12 weeks after surgery and contributed to a 
satisfactory regeneration outcome after a peripheral nerve injury. 
Furthermore, a relatively low mass ratio of the anterior tibialis muscle 
was observed, indicating the possibility of muscle atrophy. In addition, 
Qian et al. (2018b) conducted more detailed examinations to evaluate 
the long-term effects of graphene-related nerve conduit in sciatic 
nerve restoration, including counting myelinated axons, average 
myelinated axon diameter, the thickness of myelin sheath, and 
regenerated axon area. With the tubulization of the sciatic nerve defect 
in rats at 18 weeks after surgery, using polydopamine- and 
arginylglycylaspartic acid modified- and polycaprolactone 
functionalized-graphene via 3D printing fabrication, and layer-by-
layer casting method, four parameters in the tubulization group 
demonstrated no distinct difference compared with those in the 
autograft group. In addition, the locomotor and sensory function 
recovery were examined. The conduit group loaded with cells also 
showed similar results as the autograft group, indicating that muti-
layered 3D graphene can reverse muscle atrophy. Thus, these results 
demonstrated that graphene-based nanoscaffolds can cure long-term 
peripheral nerve defects by promoting axonal regeneration and nerve 
function recovery. Graphene foam/hydrogel scaffolds significantly 
promote the recovery of sciatic nerves in vivo with no obvious organ 
lesions or damage (Huang et  al., 2022). Qian et  al. (2018a) 
demonstrated that the GO/PCL nerve guidance conduit also 
successfully repaired sciatic nerve defects in rats, effectively promoting 
its functional and morphological recovery, and showed no obvious 
toxicity for the long-term. Loading graphene with brain-derived 
neurotrophic protein that contributes to axon pathfinding and 
neuronal migration can enhance the ability of graphene-based 
material in nerve repair. Huang et  al. (2021) loaded a graphene/
hydrogel scaffold with netrin-1, an axonal guidance cue, and 
successfully supported sciatic nerve regeneration. The performance of 
these kinds of graphene is superior to that of an autologous graft. 
Moreover, Pan et al. (2019) further immobilized PLGA/GO and brain-
derived neurotrophic factor and insulin-like growth factor-1, which 
are involved in nerve regeneration, and demonstrated that PLGA/GO 
fabricated with brain-derived neurotrophic factor and insulin-like 
growth factor-1 significantly boosted the functional locomotor 
recovery and the counting of neurons located at the injury sites in 
animal models of spinal cord injury (SCI). GO-modified poly(D,L-
lactide-co-caprolactone) significantly accelerates the functional 
recovery of sciatic nerve 8 weeks post-operation in vivo (Zhang et al., 
2020). These results suggest that engineered graphene-based materials 
provide a novel therapeutic approach to cure SCI as a nerve implant.

Moreover, macrophage recruitment increases after nerve injury, 
highlighting the importance of immune responses in tissue 
regeneration. In the context of neural tissues, several studies have 
investigated the effect of graphene-based scaffolds for nerve repair on 
immune cells, which are important for driving wound healing and 
tissue regeneration. López-Dolado et al. (2016) demonstrated that 
implanting 3D rGO scaffolds in SCI rats induced immune modulation 
and angiogenic responses without causing systemic toxicity. In vivo 
studies using SCI rats showed that implanting 3D rGO scaffolds in the 
injured spinal cord improved the structured lesion zones more than 
those left untreated, indicating the contribution of scaffolds in 
improving sealing and injury stabilization. Pro-regenerative 

macrophages were more obviously visible at the interface and 
functional new blood vessels inside the scaffolds than lesion regions 
without scaffolds 30 days after surgery (López-Dolado et al., 2015, 
2016). The immune signature may guide NSCs migration. 
Furthermore, whether graphene could elicit immune responses and 
how it affects NSC behaviors when interfaced with macrophages 
remain unclear. Thus, Jiang et  al. (2016) demonstrated that 3D 
graphene evoked mild neuro-immunity and caused macrophages to 
secrete some inflammatory cytokines without changing their cell cycle 
profiles and viability. These results were consistent with the findings 
of Serrano et  al. (2018), which showed that 3D graphene culture 
interfaced with macrophages promoted neurosphere formation and 
NSC migration from the neurospheres. In contrast, 2D graphene and 
TCPS interfacing with macrophages failed to achieve such results. 
Hence, the capacity of 3D graphene to govern NSCs migration might 
depend on its topographical structure by mildly 
activating macrophages.

The fabrication of graphene-based composite nanofibers can 
determine their function, providing versatile therapeutic approaches. 
Wang et al. (2019a) fabricated PLGA/GO nanofibers using methylene 
blue via physisorption, which is used to activate the autophagy 
signaling pathway and regulate the function of neural progenitor cells. 
They discovered that neural progenitor cells cultured on the PLGA/
GO loaded with methylene blue entered a quiescence phase to avoid 
apoptosis and diminish tau phosphorylation. Unlike similar GO 
fabrication into various patterns through microcontact printing, Min 
et al. (2017) synthesized GO and magnetic nanoparticles, which were 
used as a force, to transfer the GO film into the desired substrate. A 
mixed mode of GO driven by magnetic force can precisely guide the 
formation of synaptic connections between neurons in different 
directions, providing a different method for curing SCI.

Graphene plays an indispensable role in various neuroscience 
applications by promoting nerve regeneration and neural restoration 
and treating some nerve diseases. Factors that promote the repair of 
neurite injury sites may vary with cell type. Therefore, more studies 
are required to overcome these problems and transform the successful 
repair of damaged nerves into functional recovery in clinical treatment 
(Liu and Jan, 2020).

8. Conclusion

Carbon nanomaterials have gained attention because of their large 
surface area, mechanical stability, electrical conductivity, and 
biocompatibility. Graphene family materials have been studied and 
used in several technical and scientific fields, including 
neurobiomedicine. In this review, we  sketched the role of 
nanostructured carbon materials (particularly graphene) in 
neuroscience in in vitro and in vivo studies. A summary of the 
properties of graphene, including its mechanical and electrical 
properties, optical and thermal properties, biocompatibility, and 
toxicity, revealed that the characteristics of graphene and its derivatives 
vary from size, structural dimensions, and layer number-to-surface 
chemistry. Summarizing the applications of graphene and its 
derivatives, including neural culture, drug delivery, diagnosis and 
treatment of neuronal diseases, and nerve repair (Table 3), we found 
that their applications depend on the differences in functionalization, 
purification, and chemical and morphological formations. Therefore, 
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TABLE 3 The function of graphene in neurons.

Substrate Coating Culture system Days in 
culture

Effects Reference

Graphene None Mice dorsal root ganglion 

neurons

3 Graphene significantly promoted axonal elongation and 

dampen neuronal spiking.

Convertino et al. (2020a)

GO None Mouse neural stem cells 24 h GO triggered positive neuronal differentiation via 

phosphorylation of ERK1/2 with the downregulation of 

TRPC2 gene.

Lin et al. (2020)

Graphene None neural stem cells 5 Cells proliferation increased along with metabolic 

reconfiguration.

Fang et al. (2019)

poly(lactic-co-

glycolic acid)/GO

None Mice neural stem cells 7 Neuronal differentiation, proliferation significantly 

increased with significant neurite elongation.

Fu et al. (2019)

poly(lactic-co-

glycolic acid)/GO

insulin-like 

growth factor 

1

Neural stem cells 7 NSCs survival, proliferation, and differentiation 

remarkably enhance.

Qi et al. (2019)

Graphene Silk fibroin PC12 cells 4 Cell spreading and differentiation were promoted. And 

neurites outgrowth significantly increased by 74.5%.

Zhang et al. (2019)

Graphene Silk fibroin 

and hydrogels

PC12 cells 6 Neurite-related gene expression markers, including 

GAP43 (growth associated protein 43) and SYP 

(synaptophysin) increased. Therefore, the composite 

hydrogels with graphene improved the PC12 cell 

proliferation, differentiation and neurites growth.

Wang et al. (2019)

Graphene None Retinal ganglion cells 7 Graphene reduced the number, but increased basal 

activity, of functional cation channels of retinal 

ganglion cells with great neurites outgrowth.

Fischer et al. (2018)

Graphene None Rat dorsal root ganglion 

neurons

17 There were dense axonal networks on coated graphene 

with neurites outgrowth

Convertino et al. (2018)

Graphene None Rat hippocampal neurons 8–10 Graphene modulated the distribution of extracellular 

ions at the interface with neurons to affect neuronal 

excitability.

Pampaloni et al. (2018)

Graphene None Rat hippocampal neurons 12–18 Graphene increased cell membrane cholesterol and 

potentiate neurotransmission. And the increase of 

neurites was small.

Kitko et al. (2018)

Ink Graphene None mesenchymal stem cells 3 Cellular differentiation and paracrine activity 

significantly enhanced.

Das et al., 2017

Graphene None Rat hippocampal neurons 9 Cell adhesion and proliferation were promoted. And 

graphene did not affect the mitochondrial morphology, 

mitochondrial membrane potential or the autophagy 

levels.

Rastogi et al. (2017)

Graphene None Mouse hippocampal 

neurons

5 Neuronal attachment, outgrowth and axonal 

specification increased.

Veliev et al. (2016)

GO Poly-L-Lysine Hippocampal neurons 7 GO down-regulated neuronal synaptic signaling 

without affecting cell viability.

Rauti et al. (2016)

Graphene Laminin Rat neural stem cells 7 The alteration of passive and active bioelectric 

properties of NSCs was accompanied by the increased 

their differentiation by graphene. Furthermore, 

graphene promoted synapse proteins expression, spine 

density and synaptic activity.

Guo et al. (2016)

Thermally reduced 

graphene

None Mouse neural stem cells 4–15 The morphological differentiation was favored. 

Moreover, it promoted the long survival of neurons.

Defteralı et al. (2016b)

Graphene Poly-D-lysine Rat cortical neurons 14 The viability, morphology and functionality of neurons 

unchanged.

Bramini et al. (2016)

(Continued)
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many discrepancies exist between experimental results owing to 
various involved elements, such as potential toxicity and induced 
immune responses, which directly determine the possibility of further 
bioapplication. Fortunately, such experimental outcomes have 
increased enormously with great progress in scientific and 
clinical fields.

The observed discrepancies in in vitro and in vivo studies suggest 
that current studies have several limitations. First, compared with the 
number of in vitro studies, in vivo studies exploring the basic 

properties of graphene, specifically its biocompatibility and toxicity 
are limited. Lack of consistency between in vitro and in vivo results 
may downgrade graphene into only a research tool. Regarding in vivo 
study models, nearly all animal models are limited to mice, and no 
other species have been considered in exploring graphene applications. 
Second, most studies suggest that nanomaterials induce a mild 
immune response. However, researchers are yet to identify the 
standard method of administration. Furthermore, whether 
nanomaterials act the same way when eliciting an immune response 

TABLE 3 (Continued)

Substrate Coating Culture system Days in 
culture

Effects Reference

GO Poly-D-lysine Rat cortical neurons 14 The viability of cortical neurons did not change. 

However, excitatory transmission was impaired with 

enhanced inhibitory transmission and it was 

companied by alteration of Ca2+ dynamics.

Bramini et al. (2016)

Graphene Polymethyl 

methacrylate

Human neuroblastoma 

cells

7 Neurite outgrowth enhance with upregulation of a key 

genes of cell neurogenesis, neurofilament light chain.

Lee et al. (2015)

GO None Mouse embryonic stem 

cells

10 Dopamine neuron differentiation enhanced and related 

gene expression also increased.

Yang et al. (2014)

polycaprolactone/

GO

None Neural stem cells 7 Selective guidance of NSCs differentiation toward 

oligodendrocyte increased.

Shah et al. (2014)

Graphene polymethyl 

methacrylate

Rat PC12 cells 7 Neural cells proliferation and neurite outgrowth 

enhanced.

Hong et al. (2014)

Graphene Laminin Human neural stem cells 14 NSCs differentiation increased with enhanced 

spontaneous firing activity. But neurite number 

unchanged.

Tang et al. (2013)

GO/ silica 

nanoparticles

None Human neural stem cells 14 Neuronal differentiation enhanced and axons growth 

increased.

Solanki et al. (2013)

Graphene None Adult retinal ganglion 

cells

6 Adult neurons can survive and grown neurites. Bendali et al. (2013)

Graphene Laminin Mouse neural stem cells 5 NSCs proliferation increased with upregulation of Ki67 

expression.

Li et al. (2013)

Graphene/TiO2 None human neural stem cells 21 Neurons differentiated significantly increased. Akhavan and Ghaderi 

(2013a)

Graphene None Rat cortical neurons 20 Pristine graphene supported neurons survival, growth 

and adhension. Robust growth of neurites was 

observed.

Sahni et al. (2013)

Graphene Poly-D-lysine 

and laminin

Retinal ganglion cells 3–6 Neuronal viability and cell adhension enhanced. 

Neurites sprouting increased.

Bendali et al. (2013)

Graphene Fluorine Mesenchymal stem cells 7 Mesenchymal stem cells proliferation and 

differentiation increased

Wang et al., 2012

Graphene Laminin Human neural stem cells 3–21 NSCs differentiation enhanced and neurites outgrowth 

also increased.

Park et al. (2011)

Graphene Poly-L-lysine Mouse hippocampal 

neurons

2–7 Neurite sprouting and outgrowth significantly 

enhanced and expression of growth- associate 

protein-43 also increased.

Li et al. (2011)

Graphene Polymethyl 

methacrylate

Human mesenchymal 

stem cells

15 Human mesenchymal stem cells differentiation 

remarkably increased

Nayak et al. (2011)

rGo Poly-L-lysine PC12 cells 5 PC12 cells proliferated well and neurites extended and 

outgrew.

Agarwal et al. (2010)

GO, graphene oxide; rGO; reduced graphene oxide; PC12 cells, pheochromocytoma 12 cells; NSCs, neural stem cells; TRPC, transient receptor potential canonical; TiO2, titanium dioxide.
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via different routes of administration in vivo remains unknown, 
although the toxicity and pharmacokinetics of nanoparticles are 
closely dependent on the administration route. Third, most studies, 
whether in vitro or in vivo, did not perform in-depth investigations on 
the underlying mechanism involved in the relationship between cell 
differentiation and graphene-based substrates, such as induced 
morphologic interplay and cellular modulation pathways. Without 
these fundamental definitions, determining the role of graphene in 
biomedical applications may be challenging.

The following are proposals for future experiments for improving 
graphene and its derivatives development: First, the main 
consideration of nanomaterials in biomedical application is their 
biocompatibility. Further studies must focus more on biocompatibility 
and toxicity in vivo because the results from in vitro studies cannot 
be directly applied to humans. Moreover, the graphene-based implant 
as an electrode or scaffold should also be  further investigated to 
observe its long-term effect in vivo. More animal models should 
be considered to clarify the relationship between different species and 
graphene. Second, graphene can exhibit long-term and short-term 
toxic effects on the same cell and can potentially cause long-term 
damage to cellular structures. This review highlighted that graphene 
toxicity is highly dependent on excretion, functionalization, size, and 
structural dimensions. Therefore, comparing graphene toxicity 
between different experiments is difficult, given its diversity in shape, 
surface, size, and fabrication. Thus, the fabrication and terminology 
of graphene and the examination of toxicological methodologies must 
be  standardized. This will better aid the understanding of the 
physicochemical properties and potential toxicity of graphene in vivo 
and in intro, allowing its practical application in humans. Third, future 
studies should incorporate graphene with various optical components 
to probe deeper brain tissues and understand how brain circuits 
process information because a graphene electrode with a two-photon 
microscope can record the whole cortical surface in neuroscience 
investigation. Moreover, electrical stimulation has been clinically 
applied in rehabilitation after nerve injury. Graphene-based conduits 
have shown great potential in nerve repair as scaffolds. Future studies 
should measure the potential of combining electrical stimulation and 
graphene-based conductive scaffolds in clinical nerve repair.

This review sheds light on the safety and biological properties of 
graphene that must be considered before the utilization of graphene-
based therapy for human benefit. This may pave the way for using 
graphene and its derivatives as powerful materials with versatile 
scientific and clinical applications.
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