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The cerebral cortex varies over the course of a person’s life span: at birth, the

surface is smooth, before becoming more bumpy (deeper sulci and thicker gyri)

in middle age, and thinner in senior years. In this work, a similar phenomenon

was observed on the hippocampus. It was previously believed the fine-scale

morphology of the hippocampus could only be extracted only with high field

scanners (7T, 9.4T); however, recent studies show that regular 3T MR scanners

can be su�cient for this purpose. This finding opens the door for the study of

fine hippocampal morphometry for a large amount of clinical data. In particular, a

characteristic bumpy and subtle feature on the inferior aspect of the hippocampus,

which we refer to as hippocampal dentation, presents a dramatic degree of

variability between individuals from very smooth to highly dentated. In this

report, we propose a combined method joining deep learning and sub-pixel level

set evolution to e�ciently obtain fine-scale hippocampal segmentation on 552

healthy subjects. Through non-linear dentation extraction and fitting, we reveal

that the bumpiness of the inferior surface of the human hippocampus has a clear

temporal trend. It is bumpiest between 40 and 50 years old. This observation

should be aligned with neurodevelopmental and aging stages.
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1. Introduction

Numerous radiological studies of sub-cortical morphology have shown many brain

disorders to be correlated with hippocampal shape (Styner et al., 2004; Thompson et al.,

2004; Apostolova et al., 2006; Wang et al., 2006; Scher et al., 2007; Colliot et al., 2008;

Nestor et al., 2013; Gao et al., 2014; Gao and Bouix, 2016), volume (Fleisher et al., 2008),

or metabolic properties (Kraguljac et al., 2013). The hippocampus also exhibits important

related variations in healthy individuals. For example, spatial memory declines with age

and this is consistent with a decreasing trend in hippocampal volume (Bohbot et al., 2004;

Konishi et al., 2017). Moreover, the hippocampal structure also correlates with the function

of establishing semantic associations in memory (Henke et al., 1999). As people age, the
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rate of hippocampal atrophy increases, with the greatest increase

after middle age (Fraser et al., 2015). These comparable global

features of non-clinical and clinical conditions (Convit et al., 1997;

Schuff et al., 2009) provide an important measurement for the

evaluation of hippocampal abnormalities and functions.

Morphological and functional assessment of fine-scale

structures are still considered challenging tasks. The hippocampus

is known to be among the few structures where neurogenesis

continues to take place after birth. Similar to the formation of

any other cortical gyrus/sulcus, the proliferation and stacking

of cells in hippocampal neuronal layers requires space-efficient

outward folding of the hippocampal surface. Furthermore, it is

worth noting that hippocampus neurogenesis-associated features

exhibit both qualitative and quantitative age-related alterations

(Knoth et al., 2010). This work aims to investigate the macroscopic

morphological appearance and its age-dependent variability across

the life span of the hippocampus.

The structure of hippocampal dentation is of particular interest

due to its apparent rugged ridges, which are in the CA1/subiculum

on the inferior aspect of the hippocampal body and extend through

the inferior medial aspect of the tail (Duvernoy, 2013). Consulting

neuroanatomy textbook (Duvernoy et al., 2005; Arslan, 2014;

Ribas, 2018; ten Donkelaar et al., 2018), the dentated appearance

is obvious and exhibits great variability of shape as shown in

Figure 1. Unfortunately, this variability has been largely overlooked

in previous image based studies.

Such morphological variation mostly involves the CA1 regions.

CA1 neurons are known to be involved in episodic memory

(Bartsch et al., 2011) and a positive correlation between cortical

gyrification and cognitive functioning was found (Luders et al.,

2008). Further quantitative studies related to episodic memory

(Beattie et al., 2017) have used ultra-high resolution MRI data to

explore the highly variable long axis of hippocampal dentation and

its functional role in episodic memory.

Quantitative feature generation would be a valuable tool

for the intuitive, concise, and personalized characterization of

hippocampal dentation. Moreover, hippocampal dentation varies

across individuals, over time and along the inferior surface. This

variation makes it significant for quantifying the relationship

between hippocampal dentation and other factors, such as

age, clinical, or non-clinical conditions. More importantly, the

quantitative analysis of fine-scale structures allows us to leverage

advanced machine learning methods and enables us to explore data

sets more extensively.

There are two main reasons why current research is insufficient

to quantify hippocampal dentation changes. First, quantitative

research methods usually require a large data size, but the limited

acquisition of high resolution image data with hippocampal fine-

scale structure leads to difficulties in large-scale research. The main

reason for this is because clinical 3T scanners find it difficult to

acquire sufficient resolution and the currently finite availability

of ultra-high field scanners (7T or greater) (Wisse et al., 2012;

Kim et al., 2013; Derix et al., 2014) or post-mortem specimens

(Yushkevich et al., 2009). Second, compared to global structure,

fine-scale structure is difficult to characterize by most handcrafted

feature representation in feature engineering (Bengio et al., 2013) or

automatic extraction of features through deep learning networks.

This may be due to the small, hard-to-measure structural geometry

and the challenge of properly delineating regional boundaries.

Additional challenges stem from dentate variability along the

different sagittal slices of hippocampal dentation.

The above aspects have made it difficult to conduct a

quantitative analysis of the dentated shape of the hippocampus. The

most closely related work by Kilpattu Ramaniharan et al. (2022)

visualized dentation after using the up-samplingmethod and ASHS

software. They counted dentation and explored its association with

memory dysfunction in patients with temporal lobe epilepsy that

have hippocampal sclerosis. Beattie et al. (2017) visualized the

dentation using ultra-high resolution structural MRI and using a

visual rating scale, accessed by human observers, which showed that

the extent of dentation varied considerably across individuals and

was positively correlated with memory recall and visual memory

recognition. The raters in that study needed to examine all sagittal

slices to observe dentation visible through the entire width of

the hippocampus. This work is labor-intensive, highly subjective,

and can suffer from high intra- and inter- reader variability.

Therefore, this rating scheme cannot be generalized reliably to a

large number of subjects across multiple institutions. A computed

aided quantification and analysis framework for evaluating the

hippocampal dentation is therefore needed to provide objective

fine-scale morphometry.

This analysis framework consists of two components. First,

an effective and efficient segmentation algorithm is needed

that is capable of capturing fine-scale dentations. It has been

shown previously that such local and subtle features under the

hippocampus can be reconstructed from clinical 3T MRI by a

multi-atlas based technique (Chang et al., 2018). However, the

multi-atlas warping technique (Nestor et al., 2013) could not fulfill

the further need for a large population study due to it being

extremely time-consuming. More recently, the use of a 3D deep

convolutional neural network for hippocampus segmentation has

achieved high precision, measured by a global metric such as the

Dice coefficient (Thyreau et al., 2018). Part of its training labels was

from the FreeSurfer algorithm (Fischl, 2012). Using the synthetic

data and augmentation algorithm, the Dice average coefficients

are above 90%. Later, in a hippocampal segmentation study of a

stroke population, Zavaliangos-Petropulu et al. (2022) used deep

learning based Hippodeep method (Thyreau et al., 2018) and make

a comparison with FreeSurfer. Rather than achieving annotation

with the help of Freesurfer, Goubran et al. (2020) trained the CNN

using 259 bilateral manually delineated segmentations to achieve

better performance. Guo et al. (2020) proposed a longitudinal

classification-regression model for segmenting the hippocampus

in infant brain MRIs. Work by Liu et al. (2020) proposed a

joint automatic hippocampal segmentation and AD classification

method. For refined segmentation by exploiting space information,

Pang et al. (2019) proposed a method based on iterative local

linear mapping (ILLM) with representative and local structure-

preserved feature embedding. To improve segmentation quality,

Van Opbroek et al. (2018) and Ataloglou et al. (2019) explored

different transfer learning techniques.

Even though current CNN based hippocampus segmentation

methods have achieved global accuracy measures, they still lack

the ability of the 3T images to capture fine-scale dentations.
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FIGURE 1

Inferior view of four hippocampus. (A, B): bumpy group; (C, D): smooth group. The arrowheads indicate the prominent dentations and their

approximate orientations.

Moreover, to conduct large scale statistical morphological studies,

the generalization capability of the CNN needs to be strengthened

to handle the image intensity fluctuations among different scans,

machine-dependent noise, and bias field in-homogeneity, etc. To

address such issues, Memmel utilized the data from different

domains with the GAN framework to disregard domain-specific

information (Memmel et al., 2021). For hippocampus segmentation

across different datasets, few studies have considered how to

solve this with the help of domain adaptation in an end-to-

end framework directly. In response, our proposed framework

can be adopted in these similar studies. To further improve the

framework, some research by Strudel et al. (2021) and Valanarasu

et al. (2021) initially used the transformer block to extract features

and process the long range relationship of these features. To utilize

these techniques we need to improve the feature extraction ability

of the design framework before subsequent discriminator and

segmentation steps, noting that based segmentation operation is the

foundation to help for the subsequent fine-scale segmentation and

accurate shape analysis.

Once the hippocampus is successfully segmented and its

fine-scale morphology features are extracted, we need to design

a technique that specifically compares the dentated structures

underneath the CA1 region. Previously, the analysis of shapes is

usually conducted between two groups of shapes, trying to identify

the region where the two groups of shapes differ significantly (Gerig

et al., 2001; Shen and Makedon, 2006; Styner et al., 2006; Cates

et al., 2008; Shen et al., 2009; Shen, 2010; Riklin Raviv et al., 2014;

Hong et al., 2015; Gao and Bouix, 2016). However, the scenario is

different in this work as we have already identified certain regions

on the shape, as well as the possible pattern of variation. We are

more explicitly interested in the magnitude of the dentated pattern

between the two groups. To this end, we have to design a suitable

approach to handle the problem at hand.

As an exploratory proposition, we hypothesize that the level

of dentations may be involved in neurogenesis with age, reflected

by variation of dentated structure along its long axis. This work

presents a novel domain adaption segmentation and regression

model of quantitative features on a relatively large dataset of 552

subjects (1,104 hippocampi) (IXI dataset, 2018). As a key step

in the successful application of machine learning for quantitative

estimation (Bengio et al., 2013), to handle the great variability of

hippocampal dentation, we combined the advantages of domain

adaption segmentation in the field of deep learning and propose

a new feature representation method for dentation analysis.

Using deep learning methods, we have designed a transformer

based approach to segment and extract the hippocampus. This

approach is then combined with the learned grayscale information

of the hippocampus, and multi-scale segmentation is performed

to obtain fine-scale segmentation. Once the dentated structures

are extracted, we then measure the magnitude of the dentation

structure by first identifying the long axis of the hippocampus. This

is done under a point cloud representation of the shape. Then,

specifically engineered for the dentation under the CA1 region,

a non-linear fitting of the sinusoidal function is performed; the

observation that the dentation presents an arciform or sinusoidal

appearance allows us to quantify the convolution bymagnitude and

frequency of the sinusoidal function. Moreover, using simulated

annealing, we can find the most optimal model parameters.

Our work contributes to the field in three ways: (1) A deep-

learning based robust segmentation algorithm is used to extract the

fine-scale hippocampal morphological feature at the sub-pixel level

on a large dataset. (2) This study demonstrates that certain fine-

scale hippocampal morphological features vary with aging. (3) To

our knowledge, even though rich hippocampal shape studies have

been conducted previously, this is the first fine-scale quantitative

analysis on hippocampal dentation based on a clinically available

dataset. Our method aims to study the differences in hippocampal

shape of a healthy population over an age range from people

aged in their mid-20s to 80 years old. The construction of an

analytical baseline and the development of a technique for robust

and quantitative image analysis will open possibilities for future

comparisons between non-clinical and clinical groups.

2. Materials and methods

To use the hippocampus segmentation algorithm, 41 3T MR

images with the hippocampus manually traced out were used

to train the segmentation model. These 41 cases are from the

EADC-ADNI Harmonized Protocol project (Apostolova et al.,

2015; Boccardi et al., 2015; Frisoni et al., 2015). We also performed

segmentation validation with real 7T MR images based on samples

from Alkemade et al. (2020). For aging hippocampus morphology

research, the hippocampi of 552 healthy subjects (age range: 20–

79, mean age = 48.2 ± 16.0 years) from the IXI dataset were

analyzed (IXI dataset, 2018). The age distribution of the subjects is

summarized in Table 1. The 1,104 3T T1 weighted MP-RAGE MR

images of 552 subjects were used. Before data analysis, all the scans
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were resampled to isotropic 1 mm resolution, and we named that

native resolution.

As shown in the flowchart in Figure 2, the main pipeline

consists of three parts. First, an automatic and robust segmentation

algorithm was proposed to capture the fine-scale morphology

of the hippocampus based on common 3T MR images. Then,

the characteristic fine-scale dentation is extracted from the

segmentation through a non-linear regressor. After that, the level

of the dentations is quantitatively analyzed against age to identify

temporal changes. In what follows, we detail all three major

algorithm components.

2.1. Fine-scale semantic segmentation

The multi-atlas-based methods used in Chang et al. (2018)

have the disadvantage of involving a large computation time when

applied to a large-scale dataset for study. Therefore, we propose a

new deep-learning-based fine-scale segmentation method to obtain

fine-scale dentation of the hippocampus from 3TMR scans relating

to 552 subjects. However, there are some serious issues to solve

TABLE 1 The amount of MRI acquisition subjects in each age range from

the IXI dataset.

Age range (years) Num. subjects

20–29 100

30–39 99

40–49 89

50–59 98

60–69 117

70–79 49

Total 552

before such fine-morphological analysis can be efficiently applied

to such a large cohort.

The first issue is that the large amount of image data used

to segment the multi-atlas-based approach used in previous

approaches, such as Chang et al. (2018), is too time-consuming to

be practically useful. Toward this goal, the recent development of

deep learning methods provides a promising alternative to multi-

atlas approaches.

Second, the large IXI cohort analyzed does not have anymanual

annotation. We, therefore, need to utilize carefully validated

annotation from the EADC-ADNI dataset (Apostolova et al., 2015;

Boccardi et al., 2015; Frisoni et al., 2015) for training, and apply the

trained model to the IXI dataset. This inevitably introduces a cross-

dataset discrepancy between the training and testing images, and

adequate domain adaptation is necessary.

Third, and most importantly, even the expert-curated

hippocampus annotation in Apostolova et al. (2015), Boccardi et al.

(2015), and Frisoni et al. (2015) does not capture the fine-scale

hippocampus dentations and a deep learning model trained on

such annotation is not capable. To perform the sub-pixel fine-scale

morphometry, we have to depart from the constraint of the

learned space and extend the segmentation to a much higher

resolution level.

To address the above issues, in this sub-section, we propose

the hippocampal domain adaption fine-scale segmentation method

to capture the fine-scale hippocampus dentation structure from

the clinically available 3T MR images. The algorithm pipeline is

illustrated in Figure 3.

2.1.1. Semantic segmentation
The deep-learning-based semantic segmentation method

formulates the dentation annotation task as a pixel-classification

problem. The core encoder-decoder framework consists of a stack

of sequentially connected convolutional layers and long-range

skip connections. The locations of the feature information in a

FIGURE 2

The overall flowchart of the proposed fine-scale segmentation and morphometry. (A) Hippocampus are segmented from the 3T MR images and the

dentation and obtained from fine-scale segmentation. (B) After that, geometry features are extracted and age-based associations are explored.

Dotted boxes of the same color indicate that they belong to the same content in the pipeline. Note that this only represents the overall flow of the

manuscript. The detailed and high resolution figures for each portion here will be shown in the subsequent part.
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FIGURE 3

Overview of the fine-scale segmentation framework. The 3D MR images in the source and target domain pass through procedures (A, B),

respectively. In procedure (A), CE and Dice Loss are computed based on source annotation to optimize the semantic segmentation framework. The

multi-feature from di�erent level layers also passes through the MSA layers and outputs the convergence feature. Next, images from the target

domain were fed into procedure (B). Before obtaining a fine-scale segmentation map, we adopt a module to constrain the extracted feature map

between two di�erent domains. The domain adaptation operation is illustrated in the block with a green edge. Finally, the possibility map from the

target domain is forwarded through fine-scale segmentation (the blue block) to output the final annotation.

higher layer are computed based on the locations of tensors of the

next lower layers as they are connected through a layer-by-layer

up-sampling operation. However, due to the locality nature of the

convolution operation, the receptive field is limited along with the

depth of layers and the size of the convolutional kernel. As a result,

only higher layers with big receptive fields can model long-range

dependencies in the vanilla encoder-decoder architecture. More

recently, the multi-head self-attention mechanism (MSA) of the

vision transformer shows a more effective strategy for learning

long-range contextual information. As a result, we utilize a

transformer-based MSA framework to overcome this limitation,

which is motivated by Xie et al. (2021).

As shown in Figure 3, we bridge the transformer layer to

the design of encoder architecture and aim to help engage lower

and higher contextual features directly and capture the long-

range dependency of pixels effectively. With such an encoder

partition, the multi-scale features extracted from convolution are

concatenated before being forwarded through MSA. However,

Xie et al. (2021) sets the hidden size in residual blocks of the

hierarchical encoder to 384 to keep the same hidden size in the

feed forward network of MSA. At the same time, the small kernel

size 3 used shows a lower capture ability, while the larger kernel

size can capture dependencies between information units further

away in the earlier layers. It only accepts inputs of the same size

(48×192×192), which is not conducive to the segmentation of

small organs, such as the hippocampus. In contrast to Xie et al.

(2021), we squeeze the channels of the residual blocks to 192 as

half of the original 384 channels and further adopt several groups

of larger kernel-sized convolutions to expand the dependencies

capture ability of inner-place units. Moreover, we engage the last

three layers of contextual feature output from the encoder together

to get finer-scale spatial information. In short, we improve by

replacing the channel complexity with spatial complexity. We also

modified the size limit of the input to be able to take a smaller

size of 643 than 48×192×192 in dimensions 2 and 3 as input and

focus more on the target hippocampal region. In the next step,

these extracted features are passed to the MSA layers to aggregate

hierarchical long-range dependency.

It should bementioned that there is a mismatch between the 3D

image tensor and the 1D sequence when bridging the transformer

layer. As linear projection processes the information in a sequence-

to-sequence manner, the feature maps produced by the encoder

from every stage must be flattened into a 1D sequence before

feeding into transformer layers. Also, it has to face the problem
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of losing spatial information when it is being flattened. So we

add the 3D positional encoding sequence to supplement position

information to solve this problem. Furthermore, to improve

the computational efficiency, we utilize the set of key sampling

locations (denoted as rp) in the image around the reference

location. As a result, the MSA layers can be formulated as:

MSA
(
{

fl
}L

l=1
, zq, rp

)

= 9
(

Concat
(

h1, h2, . . . , hN
))

(1)

where N is the number of the heads (denoted as hi and set as 6),

and flattened feature maps
{

fl
}L

l=1
are extracted from the L stages of

the left encoder. zq is the feature representation of query q, which

is gotten from
{

fl
}L

l=1
and position embedding feature, 9(·) is the

Linear projection operation to weight and aggregate the features.

In the Decoder part, the output sequences of transformer

layers are separated and reshaped according to the size of feature

maps from the encoder at each stage. The processed features from

each stage are then concatenated with processed features from the

deconvolutional layers of the preceding stage. Finally, they are fed

into a residual block followed by a 1 × 1 × 1 convolutional layer

with a proper activation function (softmax) for computing the

segmentation probabilities of the hippocampus.

To efficiently illustrate the workflow, we denoted the semantic

segmentation framework as S. It takes the cropped sub-volumes of

image volumes from Source Domain (denoted as Is :�3 ⊂ R
3)

as input, and generates an output of the same shape (denoted as

PS :�3 ⊂ R
3). Plus, all these volumes were resampled to isotropic

of 1 mm3 before segmentation. The corresponding annotation of Isi
are also denoted as Ls :�3 ⊂ R

3,�3 → 0, 1, 2. In order to optimize

S and get better parameterWS, we utilize the segmentation loss Ls,

which is defined as:

Ls = λ1 ∗
1

N

N
∑

i=1

−yij log
(

pij
)

︸ ︷︷ ︸

Lce

+
1

N

N
∑

c=1

−
2
∑

i pijyij
∑

i pij +
∑

i yij
︸ ︷︷ ︸

Ldice

(2)

where pij and yij refer to the segmentation predicted probability and

corresponding category segmentation for voxel i, j. N means the

voxel number. The segmentation loss function can be minimized

end-to-end by getting optimized WS. Finally, the output channel

of the network is set as 3, for the left, the right hippocampus,

and the background. This semantic segmentation framework

is intended for images from the ADNI dataset with observed

distribution, and the next step is to address the problem of

obtaining hippocampal annotation for images from the IXI dataset

with unobserved distribution.

2.1.2. Image normalization through domain
adaption

The MR images of the large IXI cohort to be analyzed are

acquired from different machines and are of different protocols

from the training MRI cohort where the hippocampus is labeled.

Since MR images across machines do not share reference voxel

values, the training images may have different intensity values

and/or texture patterns from the testing ones.

As a result, we have to normalize the distribution of the images

from the IXI dataset (the target domain) with those in the training

and validation ADNI datasets (the source domain). To that end,

we train our segmentation model with a discriminator network to

make the adaption between the two sets.

Denote the two sets of images from the source and target

domains as Is and It , respectively. We forwarded the source image

Is to the semantic segmentation network S and calculate the

difference between output and annotations for an optimal S. Then,

we predicted the segmentation output Pt for the target image It .

Since our goal is to make segmentation predictions Ps of source

and Pt of target images close to each other, we used these two

predictions from the segmentation framework as the input to the

discriminatorD to distinguish whether the input is from the source

or target domain.

Optimizing the adversarial loss on the target prediction, the

network propagates loss gradients from D to S, which encourages S

to generate similar segmentation distributions in the target domain

to the source prediction. With the proposed method, we formulate

the adaptation task containing discriminator loss functions:

Ltotal = Lseg + λadvLadv (3)

where Lseg is the semantic segmentation loss using ground truth

annotations in the source domain, and Ladv is the adversarial

loss that adapts predicted segmentations of target images to the

distribution of source predictions. The λadv is the weight used to

balance the two losses.

For the discriminator, we use an architecture similar to Tsai

et al. (2018) but utilize the extracted feature from transformer

layers and the final softmax segmentation possibilitymap to explore

more spatial information. Furthermore, only one discriminator is

utilized in our framework. The discriminator network consists of

convolution layers followed by an adaptive average pooling unit

and a full connection layer for the binary classification as illustrated

in Figure 3 (green block). The discrimination cross-entropy loss

can be written as:

Ladv (E) = −
∑(

(1− z) log (D (E)) + z log (D (E))
)

(4)

For discrimination, z is set to 0 if the sample is gotten from

the source domain and z is set to 1 if the sample is from the

target domain.

2.1.3. Fine-scale segmentation
Although a rich amount of deep-learning based hippocampus

segmentation schemes exist, one of their shortcomings is that at

the native image resolution the fine dentation morphology is not

captured in the manual annotation. Moreover, as the deep-learning

based methods depend more on the training annotation, it is

apparent that if certain shape features do not exist in the training

set, it is unlikely they will be captured accurately in the external

testing images.

On the other hand, the probability map of the hippocampus

obtained above contains valuable information about the

approximate morphology. Since we aim to extract the fine

morphology, it is valuable to escape the realm learned by the
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deep learning framework and explore the fine-scale morphology

features unseen in the training images. This is detailed below.

To refine the surface of the hippocampus, we employ the fine-

scale method (denoted as SR(·)) to fine-tune the probability map

MT
:�s → [0, 1] from S at the native resolution. However, when

such a data-driven method is carried out in a high-resolution space,

it will consume more than 100 times in computer memory and

complexity compared to native resolution. To reduce such a burden

and make the computation practical, we only handle the region of

interest focal to the hippocampus according to the possibility map

MT of target domain image IT to get RT . This step of cropping is

performed automatically by the program. By doing this, we can

perform segmentation on a sub-millimeter level morphological

feature contained in the grayscale information and get the final

result Ssr . The operation can be denoted as:

Ssr = SR
(

Crop
(

MT
))

(5)

More explicitly, we get the sampled observation in isotropic

0.2 mm/voxel resolution by the factor H being set as 5 and

up-sampled the images through convex 3D interpolation while

balancing the consumption and efficiency in the morphology study.

To construct the hippocampus in high resolution space with

fine location, first, we define the high confidence region as C:=
{

x ∈ �s/H
:MT(x) > η

}

, where higher η ∈ [0, 1] values indicates

the voxel belonging to hippocampus with higher confidence and

�s/H is the new images after H times cubic spline up-sampling.

However, such a strongly constrained C does not make full use of

the hippocampal surface context information of images in the high

image space, which might even crudely omit some dentations.

To address this issue, we used the following variational

approaches to refine the hippocampal surfaces. We denote the

family of evolving surface as ζ ⊂ R
3, ζ = ∂C, and for surface

optimization, we define an energy functional as:

E(ζ ) := −

∫

x in ζ

αMT(x)dx+ β

∫

ζ

dA (6)

where the x traverses the space inside the closed surface ζ , and the

joined
∫

ζ
dA is the total surface area. The α and β are the positive

weight. Calculating regional statistic force and edge-based force, the

flow of the surface is controlled by the partial differential equation

below:

∂ζ (p, t)

∂t
= [L((p, t))− αMT(ζ (p, t))+ βν(p, t)]V(p, t) (7)

where V is defined as the inward unit normal vector field on ζ ,

p is the spatial parameterization of surface and ν is the mean

curvature of the surface. In Equation (7), Laplacian of Gaussian

function (LoG) is defined as L((p, t)) for edge based force. To

balance the force of edge evolution, the joined term on the right of

LoG is the regional statistic force. The surface optimizing Equation

(7) does not necessarily reside in the learned space of the neural

network. This means it escapes from the learned space, which

does not have the fine morphology, and the surface evolves and

converges to the locations that process strong edge appearance and

close to the probability map MT with high confidence (control by

setting η value).

Both the deep-learning and fine-tuning processes above are

fully automated. As a result, the final surface will not only

achieve high local similarity measures such as the Dice coefficient

but will also successfully capture the fine-scale hippocampal

dentations, which is the critical shape feature for subsequent

morphology studies.

2.2. Dentation feature extraction and
analysis

The goal of dentation analysis is to quantitatively explore the

denotational shape variation between different groups. To this end,

we first extract the dentation region by projecting the shape to a

proper plane. Then, the dentation could be modeled as sinusoidal

curves, whose parameters are obtained by non-linear fitting. Once

the parameters of the curves have been found, the dentations across

different groups are compared.

As can be seen from Figure 4, the dentations reside on the

inferior surface of the CA1 section and are one or more relatively

parallel ridges. Based on such observation, if one could project

the 3D dentation structure along its ridge, the resulting 2D

silhouette should have a sinusoidal appearance. It is workable

to only capture the magnitude and frequency of such sinusoidal

waves to characterize the dentations. Following the ideas above, the

proposed method contains the following steps.

2.2.1. Point cloud representation
The fine-scale segmentation method provides a very detailed

extraction of the hippocampal structure and allows a detailed

analysis of the dentation structure. Following the ideas above, we

first project the 3D shape to a plane that optimally reveals the

dentation in the 2D plane. To aid the projection step, we represent

the extracted hippocampus using a point cloud. Following Gao

and Tannenbaum (2010), the point cloud is a collection of

data points defined by a given coordinate system, which carries

the morphological information of hippocampal structure. The

segmented hippocampus region can be denoted as a binary image

J :R3 → 0, 1. J can therefore be considered as a probability density

function (pdf) of a random variable which uniformly distributed in

the hippocampus region. Next, we extract samples from such a pdf.

Due to the irregular shape of J’s support, we employ the rejection

sampling for the sample extraction. As a result, each hippocampus

is represented as a cloud of points X = xi ∈ R
3 that are further

processed in the subsequent sections.

2.2.2. Medial axis representation
Looking laterally, the dentation features (or lack thereof) are

evident underneath the gyrus region. One needs to project the 3D

shape to the correct 2D view, identify the inferior boundary, and

then quantitatively represent the dentation feature for comparison

across ages. In this context, principal component analysis (PCA)

is a suitable and effective linear dimension reduction technique to

serve the purpose of extracting the AP axis and the inferior surface

of the hippocampus.
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FIGURE 4

Examples of variation in degree of dentation. (A) Depicts a high degree of dentation with many prominent, or arciform dentations. (B) Depicts a few

arciform dentations. (C) Shows few, less prominent sinusoidal dentation. (D) Shows a hippocampus with no apparent dentation. Arrowheads indicate

individual dentation. Dashed red lines illustrate the contour of arciform (A) and sinusoidal (C) dentation.

In practice, PCA projects the data points to the subspace, which

maximizes the variance to keep the structure of interest in the

volume as much as possible. The first few eigenvectors that yield

the largest eigenvalues often explain most of the variance in the

data. The shape of the hippocampus has the longest axis in the AP

direction. After that, the lateral width of the hippocampus is about

3 cm whereas the thickness in the superior-inferior direction is the

smallest, which is less than 1 cm. As a result, when performing

the PCA on the points in the hippocampus, the eigenvector

corresponding to the largest eigenvalue is expected to be roughly

the AP direction but slightly tilted up. Following that, the second

mode should be in the left-right direction and the third eigenvector

should be perpendicular to the “sheet” of the hippocampus.

As a result, if we project all the 3D points in the hippocampus

along the second direction onto the plane spanned by the first and

third eigenvectors, we could observe the dentations clearly in the

2D view. This is shown in Figure 5.

2.2.3. Sinusoidal dentation modeling and fitting
As shown in Figure 5, hippocampus dentation on its inferior

surface is observed to have many arciform or sinusoidal

prominence in the dotted red circle. A similar variation pattern

in 3D is reflected in the 2D geometry after the projection. This

variation of appearance can be approximated by a sinusoidal fitting

model, which allows for a quantitative description by measuring

dentation with two parameters of magnitude and frequency. The

core of the quantitative analysis is to find model parameters that

can reflect the prominence of dentation in the hippocampal sub-

region, which has inter-subject variation. In this work, a non-linear

fittingmodel was established to explore and characterize this simple

dentation variation. We compute the model parameters that lead to

an optimal adaptation of the variation to the set of observations.

Specifically, we fit a sinusoidal function to the silhouette of the

inferior surface of the hippocampus and measure the parameters

of the sinusoidal function. Mathematically, we build a two-

dimensional Cartesian coordinate for each hippocampus. This

coordinate has its origin at the center of mass of the hippocampus.

Next, two axes are pointing to the eigenvectors with the largest and

smallest eigenvalues from the PCA method, respectively. Visually,

this forms a plane cutting through the hippocampus vertically along

its major axis. All points in the hippocampus are projected onto this

plane, forming a 2D region as shown in row 3 of Figure 5.

The silhouette of the inferior hippocampal surface is therefore

denoted as a function in this coordinate system. The sinusoidal

fitting is cast as an optimization problem:

J (A,w,φ, b) :=

∫

x

(

y (x) − [A sin (wx+ φ) + b]2
)

dx (8)

In Equation (8), there are four fitting parameters: amplitude

(A), frequency (f = w/2π), phase (φ), and bias (b). Among them,

amplitude and frequency are the two key parameters that describe

the height and the density of dentations.

For ease of understanding, we will obtain the height and width

of the hippocampal dentation and display it graphically. As shown

in Figure 5E, the height H is twice the amplitude A, so H = 2A,

and the hippocampal bump width can be expressed as L = 1/f .

Therefore, the goal is to find parameters to minimize J to obtain

the optimal parameter magnitude and frequency and this is a

non-linear optimization problem.

In order to address this non-linear optimization problem,

simulated annealing (SA) (Khachaturyan et al., 1981) was employed

to find the optimal parameters A, w, φ, b. SA is a probabilistic

approach for getting the proximate global optimum of a given non-

linear function. Compared with the general greedy algorithm, the

SA introduces random factors, which may accept a solution worse

than the current solution with a certain probability. Thismeans that

SA is able to jump out of the local optimal solution and approximate

the global optimal solution.

The following annealing criteria are used to allow for accepting

a “worse” solution:

e
−1D/T > R (0, 1) (9)

where 1D is the difference of cost implied by the balance, the

temperature is initialized high and gradually “cool” to simulate the

heating process, and R (0, 1) is randomly distributed on [0,1].
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FIGURE 5

Hippocampal 3D point cloud representation, with the resulting plane of interest. Rows (A, B) show the hippocampal results from fine-scale

segmentation. Row (C) shows the corresponding point cloud representation of hippocampus. The red arrows showed the second major sight of

view in 3D space. The red bounding boxes are axis-aligned bounding boxes of point cloud and the green bounding boxes are oriented bounding

boxes based on the PCA of their convex hull. Row (D) are results after dimension reduction processing and dentation can be seen in it. Row (E)

shows measurements of the height and width of hippocampal dentition after PCA. H represents the peak and trough distance of the curve, and L

represents the length of one bump of the curve.

2.3. Experiments and evaluations

2.3.1. Experimental setup
For this study, obtaining accurate fine-scale segmentation

results is the prerequisite for accurate longitudinal analysis. It is

therefore critical to evaluate the fine segmentation performance of

the proposed framework. To that end, the proposed framework

was compared against the following state-of-the-art (SOTA)

techniques: Hippodeep (Thyreau et al., 2018) proposed a CNN

trained on hippocampal segmentation from multiple cohorts

including 2,500 T1 MR scan images. HippMapp3r (Goubran et al.,

2020) proposed and trained a 3D CNN using 259 bilateral manually

delineated segmentation acquired at multiple sites on different

scanners. In addition, to acquire better performance of encoder and

decoder, we utilized the based segmentation framework proposed

in Xie et al. (2021). Therefore, it is also included in comparison

experiments.

We performed our experiments on the two datasets. The

EADC-ADNI dataset (Apostolova et al., 2015; Boccardi et al., 2015;

Frisoni et al., 2015) containing 41 manually labeled subjects was

randomly divided into a training group (N = 30) a validation

group (N = 11). IXI dataset (2018) contains 552 subjects and all

of them were utilized as test groups. The proposed frameworks

were trained on the training group, the validation group, and

the test group for evaluation. To evaluate the performance of

hippocampal segmentation on the IXI dataset, we randomly

selected 150 subjects from the IXI dataset for testing. To

obtain the corresponding manual annotation and to reduce the

workload, we first obtained the annotation with the FSL-FIRST

(Patenaude et al., 2011) as the initial segmentation and then

manually corrected the segmentation results to serve as the correct

manual annotation.

2.3.2. Evaluation metrics
To evaluate the hippocampal segmentation results against

expert manual annotation, quantitative measurements of Dice

similarity coefficient (DSC), Jaccard, Precision, Recall (shown in

Equation 10), Hausdorff distance, and 95th percentile of the

distance (95% HD; shown in Equations 11, 12) were used: all of
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which are standard metrics and are defined as:

Recall =
TP

TP + FN
, Precision =

TP

TP + FP
,

DSC =
2TP

2TP + FP + FN
, Jaccard =

TP

TP + FP + FN
(10)

h95 (X,Y) = K95
x∈X min

y∈Y
|x− y|,

HD95 (X,Y) = max
(

h95 (X,Y) , h95 (Y ,X)
)

(11)

HD (X,Y) = max(max
x∈X

min
y∈Y

|x− y|, max
y∈Y

min
x∈X

|y− x|) (12)

In it, TP denotes the true positive, which means the predicted

voxel coincides with the ground-truth; FP denotes the false positive,

which means the predicted voxel falls outsides the annotation

region of ground-truth; FN denotes the false negatives, which

means the predicted background voxel is inside the ground-truth.

h95 (X,Y) is the 95th ranked minimum Euclidean distance between

boundary points in X and Y . While DSC captures a volumetric-

overlapping between the segmentations and the reference standard,

the HD and 95thHDmeasure the point-wise distance.

2.3.3. Network training
All experiments were implemented in Python3.7 Pytorch

backend (version 1.9) and trained on an NVIDIA RTX A6000

graphics card with 48GB of memory. In the training phase, all the

network architecture was trained on the EADC-ADNI dataset with

hippocampal annotation for 2,000 epochs with a batch size of 8.

In the discriminator network, the convolutional kernel size is set

as 4 and the stride is set as 2. To balance the training loss λce

and λdice, the parameter λ1 is set as 0.1. And following (Tsai et al.,

2018), λadv is set as 0.001. For optimization, the Adam optimizer

was adopted with a learning rate of 10−4 for gradient update. As

the hippocampus occupied only a small region in the brain scan

images, to focus on the local feature around the hippocampus, each

labeled MRI volume was randomly cropped to 64×64×64 voxels

for model input as mentioned in Tian et al. (2021).

The sampled subjects from these two datasets are acquired from

the different MR scanners at different study sites. This results in

different voxel spacings, directions, and intensity ranges. Hence,

before training, all the images were resampled to an isotropic

voxel spacing of 1 mm/pixel according to the subjects from the

EADC-ADNI dataset using the SimpleITK toolkit.

2.3.4. Examining group di�erences across age
groups

To quantitatively measure the dentation within difference

groups, we investigated the above two measurements (frequency

and amplitude) in each age group and made comparisons across

the groups. Finally, for quantitative analysis, we tested for

statistically significant differences among age groups by performing

student t-tests.

3. Results

In this section, we present and compare the hippocampal

segmentation results of various methods on two datasets.

Furthermore, to verify the robustness of the method, we also apply

the framework to 7T MR scans to obtain fine segmentation results.

After that, based on the proposed fine-scale segmentation method,

we performed the fine-scale hippocampal morphometry study on a

group of 552 healthy subjects.

Section 3.1 shows the training and validation results of different

segmentation methods on the EADC-ADNI dataset. The results of

the proposed fine-scale segmentation algorithm are presented in

Section 3.2. Section 3.3 shows the obtained segmentation results

based on the proposed framework and manual annotation in 7T

scans. Finally, we used the fine-scale hippocampal segmentation

from Section 3.2 to perform morphological analysis of the

hippocampus of healthy subjects across different age groups, in

Section 3.4.

3.1. Segmentation evaluation of
EADC-ADNI dataset

3.1.1. Segmentation results at native resolution
In this section, we demonstrate the comparison between the

proposed method and some of the SOTA segmentation algorithms

on the EADC-ADNI dataset at the native image resolution. The

results of ablation experiments of the proposed framework are

also presented.

Figure 6 is a visualization of the algorithm results and manual

annotations. It shows that the HippoDeep algorithm is missing

some parts of the hippocampal head. This may be caused by the

fact that the amygdala is sharing a very similar appearance with

the hippocampus. As a result, a conservative algorithm would try

to avoid leaking into the amygdala region, resulting in slight under

segmentation of the hippocampal head. Along a similar vein, the

HippMapp3r algorithm is missing some parts of the subiculum.

The other algorithms are giving relatively satisfying results, except

that the CoTr is missing bits of the CA3.

Table 2 shows the quantitative analysis results of the

hippocampal predictions of various methods compared with

the original labels of the EADC-ADNI dataset.

First, comparing the comparison of the segmentation

results obtained from different segmentation algorithms, the

proposed framework has a maximum improvement of 6.8%

in DSC metrics (left hippocampus, compared to HippMapp3r)

and a minimum improvement of 6.3% (left hippocampus,

compared to HippMapp3r). HippMapp3r has the highest

average precision. But this may be because it is more likely

to under-segment the hippocampus, which is consistent with

the visual appearance in the bottom panel in Figure 6. It is

noticed that the HD95 and HD of the CoTr framework are

better than those of the proposed method. However, CoTr

sometimes suffers under-segmentation in the hippocampus

region with lower DSC performance than that of ours in

the experiment.
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FIGURE 6

Visual contour and comparison of di�erent segmentation methods on two examples subjects. The first and second rows are from the first subject,

and the third and fourth rows are from the second subject. The first and third rows display the coronal slices of the left and right hippocampus, while

the second and fourth rows display segmentation in sagittal slices. Manually traced ground truth is displayed in the penultimate column on the right.

Annotation getting from FSL and manual correction results are shown in the right most column. The reason for including this “FSL+manually”

column is to enable the consistent comparison of the dataset without too many manual annotations: see text in Section 3.1.2 for details. The red

arrows indicate the over- or under-segmentation error.

TABLE 2 Performance comparison of segmentation results of EADC-ADNI dataset in native resolution using di�erent methods.

Framework Left_Right DSC↑ Jaccard↑ Recall↑ Precision↑ HD95 (mm)↓ HD (mm)↓

Hippodeep (Thyreau et al., 2018) Right 0.827± 0.027 0.706± 0.038 0.792± 0.052 0.868± 0.016 1.63± 0.49 4.23± 1.08

Left 0.831± 0.024 0.712± 0.034 0.799± 0.052 0.87± 0.026 1.70± 0.45 4.08± 1.15

HippMapp3r (Goubran et al., 2020) Right 0.808± 0.012 0.678± 0.017 0.702± 0.02 0.953 ± 0.012 1.89± 0.26 4.34± 0.88

Left 0.812± 0.018 0.684± 0.026 0.71± 0.029 0.949 ± 0.012 1.63± 0.27 3.59± 0.61

CoTr (Xie et al., 2021) Right 0.862± 0.012 0.757± 0.018 0.878± 0.027 0.847± 0.017 1.47± 0.17 3.36± 0.51

Left 0.862± 0.01 0.758± 0.015 0.892± 0.028 0.835± 0.024 1.44± 0.09 3.42± 0.39

Proposed (w/o Disc) Right 0.873± 0.008 0.774± 0.013 0.893± 0.015 0.854± 0.019 1.41± 0.01 3.32 ± 0.59

Left 0.873± 0.011 0.774± 0.017 0.907± 0.02 0.842± 0.022 1.41± 0.16 3.09 ± 0.44

Proposed (w Disc) Right 0.876 ± 0.008 0.779 ± 0.012 0.906 ± 0.018 0.848± 0.018 1.41 ± 0.01 3.38± 0.63

Left 0.875 ± 0.012 0.778 ± 0.019 0.910 ± 0.024 0.844± 0.027 1.37 ± 0.20 3.35± 0.69

The upward arrow indicates that higher values are better and the downward arrow indicates that lower is better. The best results are marked in bold.

Second, to verify the effectiveness of each component of the

proposed framework, two ablation experiments are conducted and

the results are shown in Table 2. (1) The proposed framework

without the discriminator is improved based on CoTr. Compared

to CoTr, our proposed framework without the discriminator

part achieved a higher overlap evaluation score and lower

segmentation error around the edge of the hippocampus (increased

by 0.3 mm in HD metric on the left). (2) Comparison of

the models with and without the discriminator: we found that

the former achieves the best performance in most evaluation

metrics. In summary, these two ablation experiments demonstrate

the effectiveness of our proposed framework for improving

the segmentation performance of the hippocampus at the

native resolution.

3.1.2. Constructing consistent hippocampus
annotations between two datasets

Although the EADC-ADNI dataset contains the 3D manual

annotation, the IXI dataset, unfortunately, does not. Therefore,

to conduct a consistent comparison between the two datasets,

we have to create a consistent reference for both. Since directly

labeling the hippocampus would be time-consuming, following

(Liu et al., 2020), we used the results from FSL-FIRST (Patenaude

et al., 2011) as the initial segmentation and make manual

corrections afterward. This created consistent 3D reference

annotations for the two datasets. Next, they are collectively named

FSL+manually labeled.

Table 3 presents the quantitative analysis results of the

hippocampal segmentation of various methods compared with the
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FSL+manually label of the EADC-ADNI dataset. As can be seen,

the proposedmethod can obtain the highest DSCmetric.Moreover,

the highest segmentation accuracy was obtained for both sides’

hippocampi measured by the Jaccard, Recall, and HD95 metrics,

similar to the case in Table 2. Although the DSC of our proposed

method in Table 3 are approximately 3% lower than those in

Table 2, this reduction is also observed in the other segmentation

models. The performance of these segmentation models on the

other metrics also shows a consistent change from Table 2 to

Table 3, with Recall decreasing and Precision increasing. Moreover,

the evaluation results in Table 2 are higher than those in Table 3

because in Table 2 those annotations for validation and training

are drawn manually from the same group of annotation experts.

Therefore, a reduction in the evaluation metrics is caused by the

variability of the two different manual annotations.

It is noteworthy that all the above segmentation results were

obtained at the native image resolution. Although they all achieve

quite high evaluation metrics, as can be seen in Figure 7C, at the

sub-pixel level, the bumpy structure can be clearly seen. However,

on the reconstructed surface, the staircase appearance does not

indicate the correct local morphology. This is because all the

methods above are based on training annotations. However, under

the native resolution, even manual annotation can not correctly

characterize the bumps. Because the function space limited by the

native resolution determines the morphological characterization

capability. Such a surface space limitation should be addressed, for

the segmentation to correctly characterize the bumps/dentations.

To solve this problem, we need the help of fine-scale segmentation

to get the fine-scale annotations.

3.1.3. Fine-scale segmentation for EADC-ADNI
dataset

The fine-scale segmentation results for the EADC-ADNI

dataset are shown in Figure 7E. It can be seen that the smooth

curves accurately delineate the bumpy hippocampal structure. The

last row in Table 3 shows the quantitative analysis results of the

fine-scale segmentation results compared with the FSL+manually

label of the EADC-ADNI dataset. As seen in that row, the value

of the DSC metric increased by about 2% and the precision

value also increased compared to Table 3. This may be due to

the curvature regularization at a much higher resolution. While

it successfully regulates the surface evolution from generating

singularities, inevitably, it will shrink the total volume slightly and

result in a more conservative segmentation.

It can also be seen from the quantitative results in the last row of

Table 3, the fine-scale segmentation results have improvements in

the DSC and Jaccard similarity coefficients compared to the native-

resolution-based results. This is consistent with the visualization

results shown in Figure 7, since these two metrics are volume-

based evaluation metrics. Nevertheless, it still cannot reflect the

changes in dentation segmentation significantly. Because fine-

scale segmentation is reflected more on improving the accuracy

on the boundary, rather than on the volumetric measurement.

Therefore, surface-distance-based metrics, such as HD, can better

demonstrate improvements in fine-scale segmentation. However,

a full 3D delineation across the thousands of slices at a much T
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FIGURE 7

Visualization comparison of hippocampal segmentation results obtained at native image resolution and fine scale in EADC-ADNI dataset. (A) Shows

the MR image of hippocampus at native resolution; (B) shows the segmentation results of hippocampus at native resolution in green contour line; (C)

shows the MR image after interpolation at fine scale; (D) shows the native resolution hippocampus segmentation overlaid on the fine-scale MR

image after interpolation; (E) shows the fine-scale hippocampus segmentation overlaid on the fine-scale MR image.

FIGURE 8

Visual contour and comparison of di�erent segmentation methods on two example subjects from the IXI dataset. The first and second rows are from

the first subject, and the third and fourth rows are from the second subject. Yellow and green outlines indicate left and right hippocampus

segmentation. Manually traced results are displayed in the last column on the right. The red arrows indicate the over- or under-segmentation error.

higher resolution in a consistent manner is extremely tedious, if

not impossible. To solve that dilemma, we use two-dimensional

Hausdorff distance (2D HD) at certain characteristic slices for

quantitative evaluation.

The characteristic sagittal slice that best reflects the bumpy

features on the surface of the hippocampus is selected at

fine-scale resolution. Then, the boundaries of hippocampal

dentation are outlined manually. After that, for comparison,

the fine-scale hippocampal annotation on the same slice was

extracted. The Hausdorff distance between its boundary and

the manually drawn contour was calculated. The results are

shown in Table 3 (the “2D HD” column). As can be seen,

the segmentation of dentation at fine scale is significantly

improved reflected by this evaluation metric. This indicates

that the fine morphology is better captured at such a fine-

scale resolution than that at the native image resolution.

It is also consistent with the visualization results shown

in Figure 7, with more accurate dentation annotation at the

fine scale.

3.2. Segmentation evaluation of IXI dataset

The ultimate goal of performing fine-scale segmentation is

to extract the detailed hippocampal morphology, which can be

used for cross-sectional and/or longitudinal comparisons among

different groups of subjects. With such a goal in mind, while the

EADC-ADNI dataset has manual annotation at the native image

resolution, we have to deploy the algorithm to a much larger set

for the morphometry. Unfortunately, such a dataset of 552 healthy

subjects does not have a complete reference annotation.

In this section, the fine-scale segmentation is carried out and

evaluated on such a much larger dataset.

3.2.1. Segmentation comparison at native
resolution

As mentioned above, since the IXI dataset does not provide

annotations of the hippocampus, following (Liu et al., 2020),
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we obtained the hippocampus segmentation with the help

of FSL software and manual correction as the reference

ground truth in IXI dataset. Then, it is used to evaluate

the segmentation performance of the proposed framework

and other SOTA algorithms on the IXI dataset. The

experiments described next are based on the randomly

selected 150 sample subjects from the IXI dataset as the

research objects.

Figure 8 shows the visual comparison of the segmentation

results given by different segmentation models at the native image

resolution. It shows that Hippodeep fails to capture the head

of the hippocampus. Likewise, HippMapp3r does not perform

well in the same example subject. The output of CoTr is

incomplete but unlike the previous examples, it omits the caudal

part of the hippocampus. Improved from CoTr, our proposed

basic segmentation framework (without discriminator) is not

constrained by the input size and can output more complete

segmentation results.

The reason for the under-segmentation of the IXI

dataset by these above methods may be that they were

not directly trained by the annotations of the IXI dataset,

and the distribution of hippocampal samples on the IXI

dataset has not been seen before. In contrast, the proposed

framework with discriminator can utilize the new images

to adaptively improve the generalization ability of the

model. Therefore, the proposed framework performs well

in these samples, and its output is visually closer to the

ground-truth annotations.

Table 4 shows the quantitative results using different methods

on the 150 sample objects of IXI dataset. Combining the

visualization results in Figure 8 and the quantitative analysis results

in Table 4, we have the following findings.

First, the Dice score of Hippodeep is higher than that of

HippMapp3r. However, Hippodeep has certain unsatisfactory

segmentation as shown in Figure 8, resulting in a larger standard

deviation. Additionally, the precision of the segmentation of

HippMapp3r is the highest among all methods. As can be

seen in Figure 8, the output of HippMapp3r was more likely

to be located within the hippocampal region. Therefore, the

segmentation results of HippMapp3r have lower false positives

and thus the highest precision. As for the evaluation results

based on HD and 2D HD distance metrics, the proposed model

achieves the best results on the left hippocampus than that

on the right. Furthermore, compared with other frameworks,

our proposed segmentation model achieves the best results on

the other evaluation metrics. In particular, it is approximately

5% higher than the evaluation metric of HippMapp3r on

DSC. To sum up, according to the quantitative and qualitative

comparison results, the proposed framework’s output is more

satisfactory than hippocampal segmentation results on the

IXI dataset.

Moreover, another advantage over state-of-the-

art methods (Hippodeep and HippMapp3) is that

only 30 subjects from another dataset (EADC-ADNI

dataset) are used for training, while the testing set in

this study involves a different cohort with 150 sample

subjects. This shows the generalization capability of the

proposed method.
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FIGURE 9

Visualization comparison of hippocampal segmentations at native image resolution vs. fine scale in IXI dataset. (A) The MR image of the

hippocampus at native resolution. (B) The segmentation of hippocampus at native resolution; (C) shows the MR images after interpolation; (D) shows

the native resolution hippocampus segmentation overlaid on the fine-scale MR image after interpolation; (E) shows the fine-scale hippocampus

segmentation overlaid on the fine-scale MR image.

3.2.2. Evaluation of fine-scale segmentation
The above results are based on the native image resolution.

To accurately analyze the change of dentation, we applied the

fine-scale segmentation method to obtain the segmentation and

compare them with manual annotation at native resolution and

fine-scale, visually shown in Figure 9. Similar to Figures 7B, D, it

can be seen from Figures 9B, D that the segmentation model can

only output rough stepped edges at the native image resolution, but

fails to capture the edges of the hippocampal dentation. Further,

compared with the segmentation results in Figures 9B, D, the

Figure 9E shows that the proposed method can better capture

the dentation structure of the hippocampus, resulting in finer

segmentation results.

The last row of Table 4 shows the quantitative analysis of the

fine-scale segmentation results. Compared to the performance at

native resolution, overlap-based metrics (i.e., DSC, Jaccrd, Recall,

and Precision) did not show significant changes. But the distance-

based metrics (i.e., HD95, and HD) decrease significantly. Among

them, the HD metric can be lowered by up to 0.8 mm (about

20% for the right hippocampus). To measure the improvement

of boundary fineness by fine-scale segmentation methods, we also

focused on the results for 2D HD. There is also a 0.5 mm (about

28%) drop for the right hippocampus in the 2D HD metric

for dentation.

Combining the overlap-based and distance-based metrics

shows that the fine-scale segmentation algorithm does not have a

great impact on the segmentation accuracy of the overlapped region

of the hippocampus. Instead, the algorithm can change the edges

of the segmented objects, thereby improving the accuracy of the

dentate segmentation.

Finally, we applied the proposed method and obtained fine

segmentation results for all 552 case samples based on the

IXI dataset. Some of the visual results are shown in Figure 10.

The bumps on the inferior side of the hippocampus can be

captured in the presented samples and they look different among

different age groups. However, the “bumpiness” across different

age groups can not be easily assessed by eye, and we need to use

quantitative metrics to do so. This is subject to the topic of the

next section.

Since the most important bumpy dentation information can be

observed in the 2D slices, we segmented the volumetric data and

validated the accuracy in 2D.

3.3. Validation with 7T MR images

To validate our segmentation accuracy on 1 mm/pixel MR

scans against high-resolution 7T MR scans, we mimic lower

resolution images using 7T MR scans, applied the proposed

method, and validated the result against the manual contour

of the inferior surface slices which shows the most prominent

bumps at high resolution. For analysis, we selected three samples

from the dataset provided by Alkemade et al. (2020) for testing.

Since the most important bumpy dentation information can be

observed in the 2D slices, we segmented the volumetric data

and validated the accuracy in 2D. First, we down-sampled the

7T MR images with a resolution of 0.641 to 1 mm. We then

applied the proposed segmentation framework to obtain fine-

scale segmentations. The segmentation results were presented in

Figure 11. Observing Figures 11B, C, it can be seen that the native

segmentation results at 1 mm resolution in Figure 11B cannot

accurately capture the boundaries of hippocampus dentation well,

though it can be observed in Figure 11C, the original high-

resolution slices. Conversely, the fine-scale segmentation results

shown in Figure 11E, obtained with the proposed framework,

exhibited a high degree of consistency with the manual annotation

in Figure 11D. Quantitatively, the DSC obtained on the three slices

were 0.892, 0.897, and 0.861, respectively, while the 95th percentile

of the Hausdorff distance measured 0.641, 0.640, and 0.906

mm. These results demonstrate that our fine-scale segmentation

approach yields accurate outcomes, which closely align with

the true 7T segmentation results obtained from high resolution

MR scans.
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FIGURE 10

Fine-scale segmentation by the proposed method in di�erent age groups from the IXI dataset (2018). Black triangles indicate hippocampal dentation.

3.4. Shape analysis of the hippocampal
dentation in fine scale

Sections 3.2 and 3.1 above validated the segmentation accuracy

of the proposed framework. The ultimate goal of the present

work is to quantitatively analyze the fine-scale dentation feature

underneath the hippocampus using the methods in Section

2.2. First, we quantitatively validated the hippocampal dentation

analysis method in Section 2.2 on some simulated shapes

in Section 3.4.1. We then applied the validated methods on

the real fine-scale segmentation results in Section 3.4.2 and

identified the trends of hippocampal dentation through different

age groups.

3.4.1. Quantitative validation of hippocampal
dentation analysis on simulated shapes

In this section, we quantitatively evaluate the hippocampal

dentation analysis method used in Section 2.2 and show its accuracy

in capturing the magnitude and frequency of dentation patterns.

Since there is no established ground truth for themeasurements

of the dentation patterns, it would be difficult to evaluate

the accuracy if we directly apply the methods to the real

anatomical structures. As a result, following the ideas in Gao

et al. (2014), we generated a series of simulated shapes,

with known varying dentation patterns in their magnitudes

and frequencies. Such shapes are then used to evaluate the

analysis method.
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FIGURE 11

Visualization comparison of hippocampal segmentations in 7T MR scans. (A) The MR image of the hippocampus at resampled 1 mm resolution. (B)

The obtained segmentation of the hippocampus at 1 mm resolution overlaid on (A); (C) shows the MR images at native 0.641 mm resolution from 7T

scans; (D) shows the manual annotation overlaid on the 7T MR images; (E) shows the fine-scale hippocampus segmentation with resolution 0.2 mm

overlaid on the native 7T MR image with resolution of 0.641 mm.

FIGURE 12

Simulated 3D hippocampal dentation. There are 16 combinations of dentation simulations with di�erent amplitudes (A, ranging from 0.1 to 0.4 mm)

and frequencies (F, ranging from 0.1 to 0.25 bump/mm).

To proceed, we simulated the dentations with dentation

amplitudes and frequency ranges concerning (ten Hove and

Poppenk, 2020) on a cuboid, as shown in Figure 12. Then, following

the proposed shape analysis method, we extracted both the

amplitudes and the frequencies. Corresponding to the simulation

example in Figure 12, the visual examples of the results obtained

from dimensionality reduction and curve fitting are shown in

Figure 13. Based on the fitted curve, we computed the dentation

frequencies and amplitude. Finally, the computed amplitudes and

frequencies are compared with their ground truth. The evaluation

results are shown in Table 5.

As can be seen from Table 5, the fitting error of the frequencies

is below 1%. This is partially because the shapes are quite ideal.

However, the error of the amplitude detection is larger, with a

maximum error of about 0.019 mm. It can also be observed

from Table 5 that the amplitudes are often time underestimated.

However, when the amplitude is larger than 0.2 mm, the statistical

error in Table 5 is greatly reduced to around 4.5%. As the amplitude

increases to 0.4 mm, the fitting error is lower than 1%. Consistent

with this, it can also be seen from Figure 13 that the fitted curve is

almost the same as the actual curve.

The above quantitative analysis of errors shows that, based on

dimensionality reduction and curve fitting, the proposed shape

analysis method has relatively larger errors when the bumps are

shallow. With the gradual increase of the bump amplitude, the

error decreases to about 1%. After this validation of the simulated

data was completed, we then applied the method to the real

segmentation results.

Frontiers inNeuroscience 17 frontiersin.org

https://doi.org/10.3389/fnins.2023.1162096
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Yang et al. 10.3389/fnins.2023.1162096

FIGURE 13

Visual examples of dimensionality reduction and curve fitting. Blue points represent the result of the 3D simulation model after dimensionality

reduction. The red wavy curve represents the fitted curve.

3.4.2. Quantitative analysis of hippocampal
dentation —The hippocampus is the bumpiest in
people in their 40s

Utilizing the proposed segmentation method, we captured

the fine-scale dentations on the IXI dataset. Shape analysis was

subsequently performed on the annotated data from the IXI

dataset, consisting of 552 healthy subjects, using the method

described in Section 2.2. Figure 14 shows the variation in

hippocampal dentation amplitude and frequency sub-stratified

by age. The higher the amplitude, the higher the hippocampus

dentation. Higher frequencies indicate narrower dentation in

the hippocampus.

As depicted in Figure 14, the dentations under the

hippocampus are most pronounced in the age group of people

between 40 and 50 years old. First, there were more variations of

amplitude in the 40 to 50 age group, which ranged approximately

from 0.09 to 0.2 on both sides in Figures 14A, C. On the other

hand, the change in frequency trended in the opposite direction to

the change in amplitude but still reached its lowest point at the age

of 40 to 50, and ranged from 0.11 to 0.16.

Figure 14 shows inter-group statistical analysis and the

differences by two sample independent t-tests. The temporally

aligned blocks for six groups reveal distinct (P < 0.05) patterns

in hippocampus dentation. The most notable differences between

groups were the amplitude of left hippocampus dentation (group

40–50/others).

4. Discussion and conclusion

This work has presented a complete pipeline of fine-

scale hippocampus segmentation and dentation analysis. Results

indicated that this is an efficient method for accurate sub-

millimeter hippocampus segmentation and dentation shape

variation analysis in 3T MR images in different age groups.

The proposed method addressed the two main difficulties of

obtaining fine-scale annotation of the hippocampus efficiently from

clinically available image data instead of ultra-high field MR scans

and exploring the relationship between hippocampal longitudinal

dentation and age in normal and healthy groups.

For hippocampus segmentation, the proposed algorithm

based on 3D deep neural networks improved the segmentation

performance and efficiency, which fulfilled the need to obtain

annotation of the hippocampus of a large cohort with 552 sample

subjects. Only a small sample size of 30 volumes was used for

model training and hippocampus segmentation tasks. To solve

the problem of the difference in the distribution of training and

testing samples, we improved from the CoTr model and utilized

the domain adaptation method to improve the performance

of validation and testing on the second dataset. For example,

the segmentation performance of the tail in the hippocampus

was improved. This deep learning based semantic segmentation

method provided accurate initial segmentation for the subsequent

fine-scale segmentation. Furthermore, to compare the change of

hippocampal segmentation results at the native resolution and

the fine scale, we applied distance-based evaluation metrics. The

reduction ofHD and 2DHD showed that, with the help of fine-scale

segmentation algorithms for morphological analysis, segmentation

results could better capture the outline of the whole hippocampus

and its dentation.

To the best of our knowledge, this is the first quantitative

investigation of fine-scale hippocampus morphometry across a

wide range of age groups. This initial study reveals noticeable

patterns of shape changes. Dentation of the hippocampus is

present during the initial stages of life and continues to change

as the individual grows. These changes are commensurate in

relative extent with the temporal structural evolvement of the

hippocampus within the first few decades up to the age of 50. By

contrast, the dentational region undergoes a lower rate of change,

leading to a relative degree of loss in the inferior regions of the

hippocampus. Although the total change rate of dentational regions

presents concavity or convexity for the corresponding quantitative

parameters, the reverse is not true for people in older age groups:

in these individuals, with severe tissue loss, dentation has a more

irregular outline.

These findings are consistent with continuous variability across

the full spectrum of neurogenesis, as is increasingly being verified

from the molecular structure level (Alvarez-Buylla and Lim, 2004;

Lim and Alvarez-Buylla, 2016). Another study, in Wu et al. (2013),

has demonstrated that the structural brain network also peaks

between 40 and 50 years of age.
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TABLE 5 Quantitative error analysis results between the fitting and the actual setting frequency (F) and amplitude (A).

Actual F (bump/mm)

Actual A (mm) 0.1 0.2 0.3 0.4 MAE (F)

0.1 0.082 (0.101) 0.193 (0.099) 0.297 (0.1) 0.401 (0.1) 0.001

0.125 0.082 (0.124) 0.19 (0.124) 0.299 (0.124) 0.398 (0.125) 0.001

0.2 0.082 (0.2) 0.191 (0.199) 0.295 (0.2) 0.394 (0.2) 0

0.25 0.08 (0.251) 0.189 (0.249) 0.294 (0.25) 0.396 (0.25) 0.001

MAE (A) 0.019 0.009 0.004 0.003 \

In parentheses are the fitted frequencies.

FIGURE 14

Cross-age group assessments. (A, C) Box-plots of left hippocampal dentation amplitudes and frequency variation with age; (B, D) Box-plots of right

hippocampal dentation amplitudes and frequency variation with age. The bridges of di�erent colors span between the two groups, indicating that

their di�erence is statistically significant. *P < 0.05 (indicated in red); **P < 0.005 (indicated in green); ***P < 0.001 (indicated in blue).

Our findings support the idea that the temporal profiles

of dentation in healthy subjects may be the consequence of

neurogenesis at the specific site of brain regions. It has also

been demonstrated that adults preserve neural stem cells, which

produce new neurons within some restrained areas. These

cell populations could be viewed as displaced and modified

neuroepithelium, pockets of cells, and local signals that retain

enough embryonic nature to maintain neurogenesis for life. These

findings suggest a selective cortical variation that is consistent with

the extent and dynamics of neurogenesis, with the most active

growth happening during embryonic development, followed by

continuous generation, decreasing slowly with age (Knoth et al.,

2010; Sanai et al., 2011; Göritz and Frisén, 2012). However, regions

of neurogenesis exhibit pathological distinctions between healthy

subjects and some neurodegenerative disease patients, and these

distinctions are evident throughout the course of a disease. For
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example, in Huntington’s disease, it has been found that postnatally

generated neurons are absent in the advanced stages of disease

(Zuccato et al., 2010; Walker et al., 2011). Accordingly, serious

consideration should be given to which factors might result in

distinctions of neurogenesis activity, and whether there is any

associated phenotype, just as Huntington’s disease subjects seemed

to reveal a more pronounced rate of atrophy within specific

regions of interest. Similarly, longitudinal model-based estimation

of variations and distinct phenotypic variability of dentation

compared to healthy subjects could not be neglected during some

neurodegenerative conditions.

A key advantage of this work is that it develops methods for

quantifying the continuous phenotypic variability of dentation,

which ranges from completely absent to pronounced among

healthy adults. The proposed method extracts prominent

change patterns from 3D volume data, which are critical for

subsequent evaluation and to provide an effective feature

expression. Compared to previous cross-sectional studies (Beattie

et al., 2017), our work dispenses with a burdensome and

subjective visual rating process. The non-linear fitting model

provides two parameters—amplitude and frequency—to permit

quantitative analysis of variation. However, the framework can

only integrate dentation contour to a sinusoidal locus where the

modeled average rate of change of mass data can support the

model-based estimation.

The amplitudes and frequencies we measured are smaller

than those found in ten Hove and Poppenk (2020). There may

be several reasons for this: first, the IXI dataset we used are

vanilla T1-MPRAGE sequence, which are not designed to highlight

the hippocampal dentations. Second, in Section 2.2, we used

a linear projection to map the 3D shape to 2D curves, which

were later fitted with a sinusoidal function. In this process,

the direction of projection may not be perfectly aligned with

the ridge of the dentation due to its non-planner/non-linear

nature. Furthermore, the inferior surface of the hippocampus

is not a flat plane. The combination of these factors could

decrease the amplitude of dentation in the 2D view and

subsequent sinusoidal fitting. Further research investigating better

bump extraction and parameterization approaches, such as the

principal curve analysis and/ormachine learning based approaches,

is ongoing.

As the first systematic temporal study of hippocampal fine-

scale dentation that includes analyses of 3T clinical data and

comprehensive neuroanatomical measures, a few limitations to

the present work have to be noted. Even though we validated

that the dentations found in the proposed method are not

interpolation artifacts, as seen in Chang et al. (2018), it is

preferable to obtain paired 3T and 7T datasets for further

validation of the dentation delineation. Moreover, the imaging

data in this study were acquired from public databases. To

enhance the robustness and generalization of the estimation

model, promoting more studies spanning different databases from

different sites and large-scale analysis to integrate these data is

required. For instance, after the axis extraction, the non-linear

fitting is susceptible to the local minimum. Even though the

simulated annealing can ameliorate this situation to some extent,

further improvements in dentation feature extraction need to be

undertaken in future research.

In addition to the healthy subjects studied here, future

directions of this research should also explore the potential

diagnostic and prognostic utility of patterns of dentation in disease

states, as well as serving as an outcome measure for interventions,

such as epilepsy, Alzheimer’s disease, and schizophrenia.
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