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Context: Postherpetic neuralgia (PHN) is a refractory neuropathic pain condition 
in which new treatment options are being developed. Repetitive transcranial 
magnetic stimulation (rTMS) may have the potential to reduce pain sensations in 
patients with postherpetic neuralgia.

Objectives: This study investigated the efficacy on postherpetic neuralgia by 
stimulating two potential targets, the motor cortex (M1) and the dorsolateral 
prefrontal cortex (DLPFC).

Methods: This is a double-blind, randomised, sham-controlled study. Potential 
participants were recruited from Hangzhou First People’s Hospital. Patients were 
randomly assigned to either the M1, DLPFC or Sham group. Patients received 
ten daily sessions of 10-Hz rTMS in 2 consecutive weeks. The primary outcome 
measure was visual analogue scale (VAS) assessed at baseline, first week of 
treatment (week 1), post-treatment (week 2), 1-week (week 4), 1-month (week 6) 
and 3-month (week 14) follow-up.

Results: Of sixty patients enrolled, 51 received treatment and completed all 
outcome assessments. M1 stimulation resulted in a larger analgesia during and 
after treatment compared to the Sham (week 2 – week 14, p  < 0.005), as well 
as to the DLPFC stimulation (week 1 – week 14, p  < 0.05). In addition to pain, 
sleep disturbance was significantly improved and relieved by targeting either the 
M1 or the DLPFC (M1: week 4 – week 14, p < 0.01; DLPFC: week 4 – week 14, 
p < 0.01). Moreover, pain sensations following M1 stimulation uniquely predicted 
improvement in sleep quality.

Conclusion: M1 rTMS is superior to DLPFC stimulation in treating PHN with 
excellent pain response and long-term analgesia. Meanwhile, M1 and DLPFC 
stimulation were equally effective in improving sleep quality in PHN.

Clinical trial registration: https://www.chictr.org.cn/, identifier ChiCTR2100051963.
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Introduction

Postherpetic neuralgia (PHN) is a typical neuropathic pain 
condition affecting the lesioned skin regions following the healing 
of skin rashes (Pickering et al., 2014). Postherpetic neuralgia is 
very difficult to manage, even with the use of a variety of 
medications (Sampathkumar et  al., 2009; Sawynok and Zinger, 
2016). Of note, the response rate of medication therapy is not 
satisfactory, especially in older adults (Bonezzi and Demartini, 
1999). Other treatment options are therefore needed, such as a 
vaccine for prevention (Oxman et al., 2005) and noninvasive brain 
stimulation technologies for pain relief (Ma et al., 2015; Attal et al., 
2016; Pei et al., 2019).

Transcranial magnetic stimulation (TMS) is a safe and 
noninvasive form of brain stimulation. Repetitive TMS (rTMS) is 
capable of inducing neuroplastic changes which has been proposed 
for the treatment of neuropathic pain (Lefaucheur et al., 2014, 2020; 
Wang et al., 2023). Only two studies have specifically investigated 
the effects on postherpetic neuralgia, with the results indicating a 
clear analgesic effect of high-frequency rTMS over the motor cortex 
(M1) (Ma et al., 2015; Pei et al., 2019). However, these two studies 
were conducted by the same group and reported a short-term 
response rate of ~40% with pain reduction ≥25% but not the widely 
accepted 30% rule (Lefaucheur and Nguyen, 2019). Overall, the 
analgesic efficacy of motor cortex rTMS needs to be re-evaluated and 
improved in postherpetic neuralgia.

In addition to the M1, the dorsolateral prefrontal cortex 
(DLPFC) has been increasingly used as an alternative target in the 
management of neuropathic pain (Borckardt et al., 2009; Nardone 
et al., 2017; Leung et al., 2018; Che et al., 2021). The analgesic 
effect of DLPFC stimulation is suggested to be  mediated by 
top-down pain modulation, with decreased activity being 
observed along the thalamus, midbrain and medulla (Martin 
et  al., 2013; Taylor et  al., 2013). Moreover, a line of evidence 
indicated that DLPFC is also able to modulate neural substrates 
associated with the emotional aspects of pain, such as the insular 
cortex and the anterior cingulate cortex (ACC; Lorenz et al., 2003; 
Tracey and Mantyh, 2007; Ye et al., 2022). This is directly relevant 
to postherpetic neuralgia in which refractory pain may lead to 
disappointment, anxiety and other emotional distress (Mauskopf 
et  al., 1994; Schmader, 2002). However, a recent large trial 
provided compelling evidence that DLPFC was not superior to 
sham stimulation in pain management (Attal et al., 2021). It is 
worth noting that participants were mainly with traumatic/
surgical nerve lesion or sensory polyneuropathy in this compelling 
trial, whereby a few patients with postherpetic neuralgia 
were enrolled.

Overall, the clinical efficacy of motor cortex rTMS on 
postherpetic neuralgia needs to be re-evaluated and independently 
investigated given the refractory nature of pain and its adverse 
influence on quality of life. We  have also presented the first 
investigation of DLPFC stimulation in postherpetic neuralgia. 
Clinical effects were systematically assessed, including not only pain 
sensations but anxiety, depression and sleep quality. It is hypothesised 
that M1-rTMS would be  particularly effective in reducing pain 
sensations, and the DLPFC stimulation would have a unique effect 
on emotional distress.

Methods

Participants

A power analysis based on VAS pain score was initially conducted 
using G*Power (Faul et al., 2009) (F tests, ANOVA: repeated measures, 
within-between interaction, Alpha = 0.05, Beta = 0.95, Cohen’s 
d = 0.59). Results indicated that 51 participants would ensure 95% 
statistical power. A total of sixty patients were enrolled considering 
potential dropout rates (~10%) (Attal et al., 2021).

Potential participants were recruited from the Affiliated Hangzhou 
First People’s Hospital. The inclusion criteria were: (1) IASP diagnosis 
of postherpetic neuralgia (Scholz et al., 2019); (2) at least 3 months 
after the onset of pain; (3) at least moderate pain intensity (≥3 assessed 
by visual analogue scale, VAS); (4) 18 years or older; (5) no adjustment 
in medication from 2 weeks before the allocation to the end of the 
trial; (6) capable of receiving TMS treatment and fulfilling 
clinical assessments.

The exclusion criteria were: (1) contradictions to TMS treatment 
(Rossi et  al., 2011), such as metal implants or seizure; (2) severe 
mental disorders (HAMD ≥35 or HAMA ≥29); (3) aphasia or 
cognitive disorders (MMSE ≤24); (4) severe disorders caused by other 
conditions, e.g. tumour; (5) severe heart or lung misfunctioning or 
extremely weak. The withdraw criteria were changes in medication 
after allocation or that patients decided to withdraw from the study.

Study overview

We conducted a double-blind, randomised, sham-controlled trial 
registered in the Chinese Clinical Trials registry (ChiCTR-IOR- 
14005304). Patients were randomly assigned to either M1, DLPFC or 
Sham group according to a centrally stratified computer-generated 
randomisation protocol. Patients received ten daily sessions in 2 
consecutive weeks delivered by a trained staff (HW). Clinical 
assessments were performed at baseline, after first week of treatment 
(week 1), post treatment (week 2), 2 weeks (week 4), 1 month (week 
6) and 3 months (week 14) follow-up. All assessments were performed 
by a single trained and blinded staff member (YH). All participants 
voluntarily participated in this study and signed an informed consent 
before the treatment. Ethical approval was obtained from the Ethics 
Committee of Hangzhou First People’s Hospital (IIT-20220301-0039). 
This study was conducted in accordance with the Code of Ethics of the 
World Medical Association (Declaration of Helsinki).

TMS treatment

Each session started with the assessment of resting motor 
threshold (RMT), using a figure-eight coil connected to an RT-50 
stimulation system (Sichuan Junjian Wanfeng Medical Equipment Co) 
delivering single pulses to the hand region of the M1 at 0.2 Hz. RMT 
was determined by the minimum intensity to evoke motor-evoked 
potentials (MEPs) >0.05 mV in 5/10 trials and re-examined in each 
session. Each rTMS session delivered 3,000 pulses at 10 Hz with 5-s 
trains and 25-s intervals at 100% RMT (Attal et al., 2016; Ayache 
et al., 2016).
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rTMS was delivered either to the contralateral M1, the left DLPFC 
or a Sham condition. The M1 and DLPFC was located using the 
hotspot and Beam F3 methodology, respectively (Beam et al., 2009). 
The M1 target was contralateral to the painful side or corresponded to 
the left hemisphere in case of bilateral pain based on previous rTMS 
studies in analgesia (Lefaucheur et al., 2020; Attal et al., 2021; Wang 
et al., 2023). Meanwhile, the left DLPFC was stimulated according to 
most prior studies of pain (de Oliveira et al., 2014; Nardone et al., 
2017; Cheng et al., 2023). The Sham stimulation was performed using 
a sham coil which does not produce a magnetic field but has the same 
appearance and auditory sensations as a real coil. Coil position was 
measured relative to the nasion and inion to facilitate consistent 
re-positioning of the coil between sessions (Chung et al., 2019; Ye 
et al., 2022).

Clinical assessment

The outcome measures were reported according to the IMMPACT 
recommendations for chronic pain clinical trials (Dworkin et al., 2008). 
The primary outcome measure was pain intensity measured by visual 
analogue scale (VAS). The secondary outcome measures included the 
short-form McGill Pain Questionnaire (SF-MPQ) (Melzack, 1987), the 
Pittsburgh Sleep Quality Index (PSQI) (Buysse et al., 1989), Hamilton 
Depression Rating Scale (HAMD-24) (Hamilton, 1967), Hamilton 
Anxiety Scale (HAMA-17) (Hamilton, 1959) and the Mini–Mental State 
Examination (MMSE) (Folstein et al., 1975). Patients’ evaluation of the 
treatment was measured by the Patients’ Global Impression of Change 
(PGIC) (Guy, 1976). We have also evaluated pain response rate (pain 
reduction >2 or >30% in VAS) (Dworkin et al., 2008; Lefaucheur and 
Nguyen, 2019) and insomnia remission (<5) (Buysse et al., 1989; Aloba 
et al., 2007) following treatment.

Safety assessments were performed at each treatment and 
follow-up session. Headache and scalp discomfort were considered as 
mild side effects which were most common in rTMS treatment (Attal 
et  al., 2021). Potential serious adverse effects were evaluated by 
monitoring patients’ vitality, physical and mental health.

Data analysis

Intent to-treat (ITT) analysis was set to include all randomised 
patients. Multiple imputation algorithm was initially performed, 
which is a highly recommended methodology in dealing with missing 
data (McCoy, 2017).

Statistical analysis

Data were analysed in SPSS (v.25.0 Chicago, Illinois, 
United States). Demographic variables were initially examined with 
one-way ANOVA or χ2 tests. A series of tests were performed to check 
the assumptions of using a mixed design ANOVA. Specifically, 
Shapiro–Wilk test was performed to check the normality of the 
outcome measures in different combinations of our two factors. 
Levene’s test for homogeneity of variances and Mauchly’s Test of 
Sphericity were also performed. Results validated the use of mixed 
ANOVA (ps > 0.05).

Two-way mixed-design ANOVAs were then performed to 
examine the effects of treatment group (M1, DLPFC and Sham), time 
and their interaction on the primary and secondary outcome 
measures. Post-hoc pairwise comparisons were Bonferroni corrected 
at p ≤ 0.05. χ2 tests were performed to compare the effects on patients’ 
evaluation of the treatment (PGIC), and bivariate correlation analyses 
were used to examine the associations between outcome measures. 
We also performed χ2 tests to examine the relationship between pain 
response and PGIC.

According to the large neuropathic pain trial (Attal et al., 2021), 
we also calculated the Number Needed to Treat (NNT) based on no 
less than 50% reduction in VAS. NNT was calculated using the 
formula 1/(% improved with active minus % improved with sham).

Results

Clinical characteristics

A total of 105 patients were screened, of which 55 were excluded 
due to noting meeting the inclusion criteria (n = 19) or not willing to 
participate in (n = 26; Figure 1). Sixty participants were enrolled in 
and equally randomised to three groups. Four patients withdrew from 
the DLPFC group due to no clear effect (n = 2, within week 1) or loss 
of follow-up (n = 2, at 2-week follow-up). In the Sham group, five 
patients withdrew due to no clear effect (n = 2, within week 1) or loss 
of follow-up (n = 3, 2 at 2-week follow-up, and 1 at 4-week follow-up). 
All twenty patients in the M1 group were evaluated throughout. Data 
of twenty patients in each group were analysed with ITT methodology.

Demographic information is presented in Table  1. The pain 
sensations were severe (~7 in VAS), mainly located in the trunk and 
face/head regions. Nearly all the participants have used Pregabalin 
and/or Gabapentin for analgesia. Three groups showed no difference 
in gender, age, lesion hemisphere, predominant pain area, medication, 
VAS, sleep quality, HAMA, HAMD or MMSE. It is noted that the 
patients allocated to the M1 group had longer disease duration than 
the DLPFC group (Pcorrected = 0.044).

Treatment efficacy

In terms of the primary outcome of VAS, mixed-design ANOVA 
revealed a significant interaction effect (F5.13, 146.19 = 8.93, p = 0.001, 
� p
2
0 24� . ). Post-hoc comparisons indicated that M1 stimulation 

resulted a larger analgesia during and/or after treatment compared to 
the Sham (week 2: MeanM1 = 4.30, MeanSham = 5.66; Pcorrected = 0.002; 
Week 4: MeanM1  = 4.45, MeanSham  = 6.10; Pcorrected  = 0.001; week 6: 
MeanM1  = 4.15, MeanSham  = 6.04; Pcorrected  = 0.001; week 14: 
MeanM1  = 4.25, MeanSham  = 6.18; Pcorrected  = 0.001), as well as to the 
DLPFC condition (week 1: MeanM1  = 4.80, MeanDLPFC  = 5.86; 
Pcorrected  = 0.035; week 2: MeanM1  = 4.30, MeanDLPFC  = 5.82; 
Pcorrected  = 0.001; week 4: MeanM1  = 4.45, MeanDLPFC  = 5.50; 
Pcorrected  = 0.049; week 6: MeanM1  = 4.15, MeanDLPFC  = 5.49; 
Pcorrected  = 0.005; week 14: MeanM1  = 4.25, MeanDLPFC  = 5.54; 
Pcorrected = 0.011). Both the DLPFC and Sham group resulted in smaller 
VAS compared to the baseline (all Pcorrected  < 0.05), but no group 
difference was observed between these two groups at any time (all 
Pcorrected > 0.05; Figure 2A).
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In SF-MPQ, mixed-design ANOVA revealed a significant 
interaction effect (F4.23, 120.59 = 9.81, p = 0.001, � p

2
0 26� . ). Post-hoc 

comparisons indicated the same results as VAS, in which M1 
stimulation resulted in less pain during and after treatment compared 
to the Sham (week 1: MeanM1 = 8.85, MeanSham = 11.00; Pcorrected = 0.043; 
week 2: MeanM1  = 7.90, MeanSham  = 10.38; Pcorrected  = 0.026; week 4: 
MeanM1  = 7.70, MeanSham  = 11.22; Pcorrected  = 0.001; week 6: 
MeanM1  = 7.60, MeanSham  = 11.52; Pcorrected  = 0.001; week 14: 
MeanM1 = 7.75, MeanSham = 11.44; Pcorrected = 0.001), as well as to the 
DLPFC condition (week 1: MeanM1  = 8.85, MeanDLPFC  = 11.15; 
Pcorrected  = 0.028; week 2: MeanM1  = 7.90, MeanDLPFC  = 10.83; 
Pcorrected  = 0.006; week 4: MeanM1  = 7.70, MeanDLPFC  = 11.20; 
Pcorrected  = 0.001; week 6: MeanM1  = 7.60, MeanDLPFC  = 11.13; 
Pcorrected  = 0.003; week 14: MeanM1  = 7.75, MeanDLPFC  = 11.21; 
Pcorrected  = 0.003). Both the DLPFC and Sham group resulted in 
significant pain reduction compared to the baseline (all Pcorrected < 0.05), 
but no group difference was observed between these two groups at any 
time (all Pcorrected > 0.05; Figure 2B).

The Number Needed to Treat (NNT) analyses revealed 2.5 and 2.5 
for the M1 group at post-treatment and 3-month follow-up, 

respectively. Meanwhile, no patients reported a pain reduction over 
50% in the DLPFC group and thus NNT was not calculated.

In terms of sleep quality (i.e. PSQI), mixed-design ANOVA 
revealed a significant interaction effect (F4.41, 125.72 = 13.46, p = 0.001, 
� p
2
0 32� . ). Post-hoc comparisons indicated that, compared to the 

Sham stimulation, both the M1 (week 1: MeanM1  = 5.92, 
MeanSham  = 8.66; Pcorrected  = 0.001; week 2: MeanM1  = 4.70, 
MeanSham  = 8.51; Pcorrected  = 0.001; Week 4: MeanM1  = 4.65, 
MeanSham  = 9.14; Pcorrected  = 0.001; week 6: MeanM1  = 4.50, 
MeanSham  = 9.20; Pcorrected  = 0.001; week 14: MeanM1  = 4.55, 
MeanSham = 9.20; Pcorrected = 0.001) and DLPFC stimulation (week 1: 
MeanM1  = 6.25, MeanDLPFC  = 8.66; Pcorrected  = 0.002; week 2: 
MeanM1  = 4.96, MeanDLPFC  = 8.51; Pcorrected  = 0.001; week 4: 
MeanM1  = 4.83, MeanDLPFC  = 9.14; Pcorrected  = 0.001; week 6: 
MeanM1  = 4.76, MeanDLPFC  = 9.20; Pcorrected  = 0.001; week 14: 
MeanM1  = 4.76, MeanDLPFC  = 9.20; Pcorrected  = 0.001) significantly 
increased sleep quality during and after the treatment (Figure 2C).

There was no effect of Group, Time or Group × Time interaction 
on HAMD (all p > 0.05), HAMA (all p > 0.05) or MMSE (all p > 0.05; 
Supplementary material).

FIGURE 1

CONSORT flow diagram of this study.
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In the analysis of pain response rate (pain reduction >2 or >30% 
in VAS), M1 stimulation resulted in larger response rates than the 
Sham group from post-treatment to all follow-up periods (week 2: 
Pcorrected = 0.003; week 4: Pcorrected = 0.003; week 6: Pcorrected = 0.001; week 
14: Pcorrected = 0.001). M1 group also reported a higher response rate 
during the treatment (week 1, Pcorrected = 0.042; week 2, Pcorrected = 0.003) 
compared to the DLPFC stimulation (Table 2).

In terms of insomnia remission (<5), both the M1 and DLPFC 
stimulation resulted in higher remission rates than the Sham group 
from 2-week to 3-months follow-up (M1: week 4 – week 14, 
Pcorrected = 0.009, 0.001, 0.001; DLPFC: week 4 – week 14, Pcorrected = 0.009, 
0.001, 0.001). No group difference was observed between the M1 and 
DLPFC group (all Pcorrected > 0.05; Table 2).

In the effects on patients’ evaluation of the treatment (PGIC), χ2 
tests (yes or no improvement) indicated that more patients reported 
improvement in the M1 group than the Sham group at 3-month 
follow-up (χ2 = 8.29, Pcorrected = 0.030; Figure 3B). This effect was not 

significant at post-treatment (week 2; Pcorrected > 0.05; Figure 3A). No 
other significant difference was observed between groups (all 
Pcorrected > 0.05). When data were categorised based on “much to very 
much improved” (Attal et al., 2021), no group difference was observed 
(all Pcorrected > 0.05; Figures 3A,B). It is noted that pain response (yes/
or) was not associated with PGIC (yes/or) in either group or timepoint 
(all Pcorrected > 0.05).

Correlation analyses

Bivariate correlation analyses corrected for multiple comparisons 
indicated that VAS scores during (week 1) and immediately after the 
treatment (week 2) were positively associated with sleep quality (i.e. 
PSQI) in all the follow-up periods in the M1 group (VASWeek1-
PSQIweek4: Pcorrected = 0.030; VASWeek1-PSQIweek6: Pcorrected = 0.010; VASWeek1-
PSQIweek14: Pcorrected = 0.005; VASWeek2-PSQIweek4: Pcorrected = 0.012; VASWeek2-
PSQIweek6: Pcorrected  = 0.004; VASWeek2-PSQIweek14: Pcorrected  = 0.004; 
Figure 2D). Meanwhile, sleep quality during (week 1) and immediately 
after the treatment (week 2) was not able to predict VAS scores in the 
follow-up timepoints (all Pcorrected > 0.05).

Safety assessment

There was no serious adverse effect by monitoring patients’ 
vitality, physical and mental health. There was a slight chance to 
experience mild headache (5, 15, 10% in the M1, DLPFC, Sham 
group) and/or mild scalp discomfort (15, 20, 15% in the M1, DLPFC 
and Sham group), but three groups showed no difference and the 
sensations dissolved within minutes or hours. Overall, the treatments 
were safe and well-tolerated by this treatment protocol (Wang 
et al., 2023).

Discussion

This double-blind, randomised, sham-controlled study was 
designed to investigate the analgesic efficacy of motor cortex- and 
DLPFC-rTMS in postherpetic neuralgia. Results indicated an 
excellent analgesic response following motor cortex rTMS with the 
effect being maintained up to 3 months. This analgesic effect was 
supplemented by improvement in patients’ global impression of 
change. In addition to pain, there was also a significant improvement 
and remission in sleep disturbance by targeting either the motor 
cortex or the DLPFC, although DLPFC stimulation was not superior 
to sham stimulation in reducing pain sensations. We further provided 
interesting findings on the dynamic relationships between pain and 
sleep quality following motor cortex rTMS, in which pain sensations 
uniquely predicted improvement in sleep quality. These treatment 
protocols were safe with a slight chance to experience mild headache 
or scalp discomfort.

Our results indicated that motor cortex rTMS significantly 
reduced pain experience in postherpetic neuralgia, demonstrated by 
a consistent reduction in both VAS (Figure  2A) and SF-MPQ 
(Figure 2B). Meanwhile, DLPFC stimulation was not superior to sham 
stimulation although both groups reduced pain experience to some 
extent. Attal et al. (2021) have provided compelling evidence that 

TABLE 1 Demographic information of participants.

Measure M1 
(n = 20)

DLPFC 
(n = 20)

Sham 
(n = 20)

F/χ2 p

Age, y 1.032a 0.363

Mean ± SD 68.50 ± 8.19 70.80 ± 9.05 67.05 ± 7.67

Sex 5.25b 0.097

Male 14 12 7

Female 6 8 13

Lesion hemisphere 5.31b 0.084

Right 11 7 4

Left 9 13 16

Course of disease, m 3.79a 0.035

Mean ± SD 18.50 ± 23.57 5.65 ± 3.22 10.55 ± 14.67

VAS 0.719a 0.492

Mean ± SD 7.20 ± 0.83 7.10 ± 1.12 6.85 ± 0.88

Sleep quality 0.164a 0.849

Mean ± SD 10.65 ± 2.50 10.25 ± 2.22 10.50 ± 1.93

HAMA 1.025a 0.365

Mean ± SD 4.25 ± 1.16 3.95 ± 1.10 3.75 ± 1.07

HAMD 0.437a 0.648

Mean ± SD 4.30 ± 1.38 3.90 ± 1.48 4.15 ± 1.23

MMSE 0.051a 0.950

Mean ± SD 27.65 ± 1.23 27.55 ± 1.10 27.55 ± 1.10

Predominant pain area, n (%)

Upper limbs 2 (10) 0 4 (20)

Lower limbs 1 (5) 1 (5) 1 (5)

Face/head 4 (20) 5 (25) 2 (10)

Trunk 13 (65) 14 (70) 13 (65)

Medication use, n (%)

Pregabalin 16 (80) 15 (75) 15 (75)

Gabapentin 3 (15) 5 (25) 3 (15)

Others 1 (5) 0 2 (10)

aOne-way ANOVA; bχ2 test; y indicates year; m indicates month.
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motor cortex rTMS is able to reduce neuropathic pain but DLPFC 
stimulation had no clear benefits. Neuropathic pain in that 
multicentre, larger trial was mainly caused by traumatic/surgical nerve 
lesion or sensory polyneuropathy. Building on this study, our data 

provided further evidence that motor cortex rTMS is also superior to 
DLPFC stimulation in the management of postherpetic neuralgia. 
More importantly, the analgesic effect of rTMS was maintained up to 
3 months following treatment (Figures  2A,B). This result extends 
previous findings in which only a short-term analgesia was observed 
following rTMS treatment (Che et al., 2021). Overall, our findings 
indicate that rTMS over the motor cortex has clear clinical relevance 
for postherpetic neuralgia with potential long-term analgesia.

It is also important to highlight that the response rate of pain was 
improved in our data compared to previous rTMS studies on 
postherpetic neuralgia. Previous studies reported a 40% response rate 
(average across different baseline pain groups) at the end of treatment 
(Ma et al., 2015; Pei et al., 2019). Meanwhile, our data reported an 
excellent 65% response rate from post-treatment extending to 
3-month follow-up (Table 2). In one way, the increased response rate 
could result from severe pain sensations at baseline. Baseline pain was 
found to have a positive impact on rTMS analgesia in postherpetic 
neuralgia (VAS ≥7: rate = 51.95%; VAS <7: rate = 30.45%) (Ma et al., 
2015; Pei et al., 2019). Our participants reported an average of 7.2 in 
VAS which may facilitate the analgesic effects induced by rTMS. In 
another way, we have doubled the dosage by delivering 3,000 (vs. 

FIGURE 2

Treatment effects on pain, sleep and their association. (A,B) Motor cortex rTMS resulted in a larger pain reduction than the DLPFC and Sham 
stimulation after 1-week treatment to 3-month follow-up. DLPFC was not superior to Sham stimulation in pain sensations. Orange asterisks indicate 
M1-DLPFC comparisons, and grey asterisks indicate M1-Sham comparisons. (C) Motor cortex and DLPFC stimulation equally improved sleep quality 
compared to Sham stimulation after 1-week treatment to 3-month follow-up. Orange asterisks indicate DLPFC-Sham comparisons, and blue asterisks 
indicate M1-Sham comparisons. (D) Pain sensations during and after M1 treatment was able to predict sleep quality in all the follow-up periods, but not 
vice versa. This effect was not observed in the DLPFC condition. *Pcorrected < 0.05, **Pcorrected < 0.01, ***Pcorrected < 0.001. Error bars indicate standard error of 
means (SEM), and the blue backgrounds indicate treatment period. VAS, Visual Analogue Scale; SF-MPQ, Short-Form McGill Pain Questionnaire; PSQI, 
Pittsburgh Sleep Quality Index.

TABLE 2 Pain response and insomnia remission rates.

Week 
1

Week 2 Week 
4

Week 6 Week 
14

Pain response

M1 50%a* 65%a**b** 55%b** 65%b*** 65%b***

DLPFC 10% 10% 30% 30% 30%

Sham 15% 10% 5% 0% 0%

Insomnia remission

M1 20% 45% 50%b** 60%b*** 60%b***

DLPFC 10% 45% 50%c** 60%c*** 60%c***

Sham 5% 10% 5% 5% 5%

a: Significant difference between M1 and DLPFC; b: Significant difference between M1 and 
Sham; c: Significant difference between DLPFC and Sham. *Pcorrected < 0.05, **Pcorrected < 0.01, 
***Pcorrected < 0.001.
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1,500) pulses per session compared to the literature on postherpetic 
neuralgia (Ma et al., 2015; Pei et al., 2019). Indeed, there is evidence 
that high-dose motor cortex rTMS is more effective than lower-dose 
stimulation for treating neuropathic pain (Cruccu et al., 2016; Mori 
et al., 2022). Unfortunately, sessions of 3,000 pulses have rarely been 
administrated in neuropathic pain conditions (but see Ayache et al., 
2016; Che et al., 2021), although it has long been cleared by the Food 
and Drug Administration (FDA) for treating major depression 
disorders. Our findings together suggest that high-dose motor cortex 
rTMS may lead to excellent response particularly in postherpetic 
neuralgia with severe pain sensations.

In addition to pain sensations, our data also demonstrated 
significant benefits on sleep quality. Interestingly, both the M1 and 
DLPFC stimulation significantly improved sleep quality in patients 
with postherpetic neuralgia (Figure  2C). More importantly, both 
groups achieved a 60% remission rate even at 3-month follow-up 
(Table  2). The two previous studies on postherpetic neuralgia 
demonstrated a protective effect on sleep quality after motor cortex 
rTMS (Ma et al., 2015; Pei et al., 2019). However, sleep quality was 
assessed with a single question in these studies. Our study 
systematically evaluated sleep quality with the well-recognised 
Pittsburgh Sleep Quality Index (PSQI) (Buysse et  al., 1989). This 
assessment tool also allows to analyse remission in which our data 
demonstrated an excellent remission rate even at 3 months following 
treatment. It is worth noting that Attal et al. (2021) also observed an 
improvement in sleep quality by both M1 and DLPFC stimulation in 
their large trial on neuropathic pain, although this effect was not 
statistically different from sham stimulation. By using a more 
systematic assessment tool, our findings therefore confirmed the 
benefits on sleep quality in patients with postherpetic neuralgia, and 
this effect could be achieved by either targeting the motor cortex or 
the DLPFC.

We also provided novel findings on the dynamic relationship 
between improvement in pain sensations and sleep quality following 
rTMS treatment. Specifically, pain sensations during and after M1 
treatment were able to predict sleep quality in all the follow-up periods 
(Figure 2D). Meanwhile, early sleep quality was not able to predict 
follow-up pain sensations vice versa. It is widely accepted that patients 
with neuropathic pain are more likely to develop sleep disorders 

(Cheatle et al., 2016; Mehta et al., 2016). Our samples of postherpetic 
neuralgia indeed demonstrated the comorbidity of pain (VAS > 7) and 
sleep disturbances (PSQI > 10). Our data thus presented unique and 
dynamic associations between pain and sleep quality following M1 
stimulation, in which improvement in sleep quality is likely to result 
from the improvement in pain sensations. Meanwhile, it remains 
unknown what led to the improvement in sleep quality in DLPFC 
stimulation without clear effects on pain sensations. More evidence is 
thus needed surrounding the mechanisms of DLPFC stimulation on 
sleep. Overall, these novel findings on pain-sleep dyad have direct 
implications for managing sleep disorders in chronic pain conditions. 
Moreover, these findings could have implications for improving sleep 
quality with rTMS beyond chronic pain as we have demonstrated the 
efficacy of alternative targets (Nardone et al., 2020; Lanza et al., 2023).

Patients’ Global Impression of Change (PGIC) indicated that 
more patients reported improvement in the M1 group compared to 
sham stimulation at 3-month follow-up (Figure 3A). When data were 
categorised based on much to very much improvement (Figure 3B), 
our results were consistent with the larger trial conducted in 
neuropathic pain (Attal et al., 2021). These findings further confirm 
the efficacy of motor cortex rTMS in postherpetic neuralgia as well as 
the importance of this self-reported, global measure of change in 
capturing clinically relevant pain relief (Dworkin et al., 2008). Our 
data on the NNT analyses revealed a 2.5 and 2.5 at post-treatment and 
follow-up, respectively, in the M1 group, consistent with the large 
neuropathic pain trial (Attal et al., 2021).

It is noted that there were no significant changes in anxiety, 
depression or cognition following either stimulation target 
(Supplementary material). These results did not deviate from the 
widely accepted antidepressant effects of DLPFC-rTMS in major 
depression disorders (Fitzgerald et al., 2003; Blumberger et al., 2018), 
whereby our patients were not sufficiently depressed. These results 
were also consistent with the larger neuropathic pain trial (Attal et al., 
2021) which reported similar baseline depression scores to ours and 
found no effect on depression by rTMS. It is noted that there is a high 
comorbidity between chronic pain and depression (Von Korff et al., 
1988; Bair et al., 2003). There is no conclusive evidence that TMS 
targeting the M1 alone in chronic pain helps with depression (Leung 
et al., 2020). Meanwhile, in some of the pain studies that used the 

FIGURE 3

Patients’ Global Impression of Change. (A) More patients reported improvement in the M1 group compared to sham stimulation at 3-month follow-up. 
(B) Data on much to very much improvement revealed group difference although it did not reach statistical significance. *Pcorrected < 0.05. PGIC, Patients’ 
Global Impression of Change.
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DLPFC as the target for chronic pain, there was noted improvement 
in depressive symptoms along with chronic pain (Short et al., 2011; 
Leung et  al., 2020; Li et  al., 2022). Overall, more well-controlled 
studies are required with varied treatment locations and a more 
prolonged treatment course.

It remains an open question the mechanisms driving the analgesic 
effects of motor cortex rTMS (for a review see Moisset et al., 2016). It 
is largely accepted that motor cortex rTMS may be able to activate 
brain regions involved in the descending pain modulation (Lefaucheur 
et al., 2004; Passard et al., 2007; Onesti et al., 2013; Dall'Agnol et al., 
2014). This distant and diffuse pattern of brain activation is also 
consistent with the presentation of diffuse and non-somatotopic 
analgesic effects induced by motor cortex rTMS, as demonstrated by 
many previous studies (Nahmias et al., 2009; Mhalla et al., 2011; Attal 
et  al., 2021) as well as results from the current study (i.e. focal 
stimulation but pain relief in distinct body areas). The presence of 
long-term effects in our data and others (Attal et  al., 2021) also 
indicate neuroplastic changes induced by repetitive sessions of 
TMS. Indeed, there are quite some studies that reported neuroplastic 
changes following motor cortex rTMS in neuropathic pain 
(Lefaucheur et al., 2006; Hosomi et al., 2013; Liu et al., 2021; Teixeira 
et al., 2021).

There were some limitations in this study. Patients allocated to the 
M1 group had a longer course of disease than patients in the DLPFC 
group. Nonetheless, the three groups were comparable in baseline 
pain, emotional assessments, as well as sleep quality. Moreover, a 
longer course of disease potentially indicates the refractory nature of 
postherpetic neuralgia, but our results demonstrated an excellent 
analgesic response by motor cortex rTMS anyway. Overall, the 
different course of disease may not challenge the results presented 
here but it is needed to be carefully controlled in future trials. In 
addition, a neuronavigation system was not feasible in our clinic. A 
navigation system would be able to increase targeting accuracy and 
consistency over the treatment courses (Ayache et  al., 2016; Attal 
et al., 2021).

Our findings also provide insights for future studies. Accelerated 
forms of TMS using theta-burst stimulation (AiTBS) have recently 
been demonstrated to increase treatment efficacy as well as to shorten 
treatment durations in depression (Cole et al., 2020, 2021). These 
protocols represent a promising development in TMS treatment 
(Caulfield et al., 2022; Weissman and Daskalakis, 2022). It is expected 
to see AiTBS trials in neuropathic pain conditions considering the 
duration of rTMS protocols and medium efficacy in pain management 
(Lefaucheur and Nguyen, 2019). In addition to treatment protocols, 
this study also highlights the need for mechanistic evidence in TMS 
analgesia. In one way, neuroplastic evidence is limited to corticospinal 
pathways recorded with TMS-induced changes in electromyography, 
such as motor-evoked potential (MEP), short- (SICI) and long-
interval intracortical inhibition (LICI; Parker et al., 2016). Concurrent 
TMS electroencephalography (TMS-EEG) represents a promising 
technology to evaluate local and distributed neuroplastic changes in 
the central nervous system following TMS treatment (Rogasch et al., 
2014; Cash et  al., 2017; Che et  al., 2019). In another way, neural 
pathways underlying motor cortex analgesia remains to be determined 
and specified with functional Magnetic Resonance Imaging (fMRI). 
Identification of brain networks mediating rTMS analgesia would 
be valuable to increase treatment efficacy with functional connectivity 
guided, personalised targeting methodologies and treatment (Cash 
et al., 2020, 2021a,b).

In conclusion, in this double-blind, randomised, sham-controlled 
trial, motor cortex rTMS is superior to DLPFC stimulation in treating 
postherpetic neuralgia with excellent pain response and long-term 
analgesia. Meanwhile, motor cortex and DLPFC stimulation were 
equally effective in improving sleep quality in postherpetic neuralgia. 
These findings bear direct clinical implications given the refractory 
pain and reduced quality of life in postherpetic neuralgia.
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