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STDP-based adaptive graph
convolutional networks for
automatic sleep staging

Yuan Zhao, Xianghong Lin*, Zequn Zhang, Xiangwen Wang,

Xianrun He and Liu Yang

College of Computer Science and Engineering, Northwest Normal University, Lanzhou, China

Automatic sleep staging is important for improving diagnosis and treatment,

and machine learning with neuroscience explainability of sleep staging is shown

to be a suitable method to solve this problem. In this paper, an explainable

model for automatic sleep staging is proposed. Inspired by the Spike-Timing-

Dependent Plasticity (STDP), an adaptive Graph Convolutional Network (GCN) is

established to extract features from the Polysomnography (PSG) signal, named

STDP-GCN. In detail, the channel of the PSG signal can be regarded as a

neuron, the synapse strength between neurons can be constructed by the STDP

mechanism, and the connection between di�erent channels of the PSG signal

constitutes a graph structure. After utilizing GCN to extract spatial features,

temporal convolution is used to extract transition rules between sleep stages,

and a fully connected neural network is used for classification. To enhance

the strength of the model and minimize the e�ect of individual physiological

signal discrepancies on classification accuracy, STDP-GCN utilizes domain

adversarial training. Experiments demonstrate that the performance of STDP-GCN

is comparable to the current state-of-the-art models.

KEYWORDS

sleep stage classification, graph convolutional network (GCN), spike-timing-dependent

plasticity (STDP), domain adaptation, Polysomnography (PSG)

1. Introduction

A proper sleep cycle plays a vital role in maintaining one’s mental and physical wellbeing.
However, with the increasing mental stress of modern life, sleep disorders have become an
issue that cannot be overlooked. Sleep quality and sleep disturbances are usually assessed
by dividing the sleep state according to the patient’s Polysomnography (PSG) throughout
the night, PSG records various human physiological signals such as Electroencephalography
(EEG), Electromyogram (EMG), Electrooculogram (EOG) and Electrocardiogram (ECG).
The Rechtschaffen and Kales standard (Wolpert, 1969) and American Academy of Sleep
Medicine (AASM) standard (Berry et al., 2012) are commonly used to classify PSG signals as
a standard code for classifying sleep states. One person’s overnight PSG recording is a very
large amount of data, manually labeling such a large number of PSG signals is a very single
and tedious task, and it is prone to errors, which is unbearable for clinically diagnosed sleep
disorders. Therefore, it is crucial to identify and categorize sleep state staging in order to
properly diagnose sleep-related disorders. Automatic sleep staging can greatly improve the
efficiency and accuracy of sleep state classification, and greatly liberate human resources so
that experts can focus more on diagnosing and treating diseases.
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There has been a lot of valuable work on automatic sleep state
classification in recent years, automatic sleep staging mainly uses
traditional machine learning methods in the early stage, such as
Support Vector Machine (SVM) (Alickovic and Subasi, 2018) or
Random Forest (RF) (Memar and Faradji, 2018), which have high
requirements for handcrafted features. Since traditional machine
learning methods require complex feature engineering, researchers
began to use deep learning for automatic sleep staging and achieved
high accuracy (Supratak et al., 2017; Phan et al., 2019; Bakker
et al., 2022; Li et al., 2022; Martín-Montero et al., 2023; Zhang
et al., 2023). Although deep learning methods have achieved high
accuracy, they have not fully exploited the topology of functional
connections in different brain regions. The brain is a complex
network of structurally and functionally interconnected regions,
localized dysfunction often propagates and affects other regions
leading to large-scale network changes. The recent development
of graph neural networks (GNN) (Kipf and Welling, 2016) has
led researchers to explore the use of GNN to extract spatial
features of PSG signals, the GraphSleepNet (Jia et al., 2020) uses
GCN to extract EEG signals by using EEG signals as nodes of
GNN, which achieves state-of-the-art performance compared to
previous methods.

In addition, the automatic sleep staging task also face a
challenge, which is the trained model often performs well on
the training data set, but the performance of the model is
often unsatisfactory due to individual differences or measurement
equipment errors in actual application. The physiological signals
of different subjects vary greatly, so it is necessary to consider
improving the adaptability of the model to different data
distributions. Some efforts have tried to use domain adaptation to
improve the adaptability of the model (Tzeng et al., 2014; Ganin
et al., 2016; Jia et al., 2021a) and have achieved good results. The
basic idea of Domain Adaptation is to map the source domain and
target domain data into a feature space. By finding a unified metric
in the same feature space, the feature distribution of the source
domain and target domain data is as close as possible, which can
improve the performance of the model based on source domain
data feature training on target domain data.

The current method has achieved high accuracy in automatic
sleep staging tasks, but the following challenges still need to be
solved: (1) The feature extraction ability of the model needs to
be improved. In particular, the current model does not make full
use of the functional connection between brain regions and the
interdependence between different modes of data in PSG data. (2)
The graph-building algorithm of the GNN model is often based on
back-propagation while ignoring the interpretability of the graph-
building algorithm. (3) It is necessary to effectively improve the
adaptive ability of themodel to the data. Due to the huge differences
in physiological signals between individuals, models with good
performance in training data sets often perform poorly in actual
deployment.

The establishment method of graph structure is the core to
solving the first two challenges, which due to a graph of different
brain regions can be seen as an explainable result, as brain region
connections with abnormal patterns can help explain the causes of
sleep disorders (Griffa et al., 2013). Building an explainable graph
structure is difficult due to: (1) Pre-defined graphs cannot adapt

to functional connectivity of brain regions in different sleep stages;
(2) Graph generation algorithms trained by end-to-end may learn
unsuitable parameters with small amounts of train data, and this
approach is less explainable.

To address the difficulty of building graphs for GNN, we
adaptively compute graph structures through a neuroscience
mechanism. When using GNN for automatic sleep staging, we
assume that each PSG channel corresponds to a node in the graph,
and the connections between channels correspond to connections
between different brain regions. The connections between brain
regions are made up of connections between neurons, and neurons
are connected through synapses, so it is reasonable to build
connections between brains through the strength of synapses.
The synapses adjustment rule between neurons has made a lot
of progress in neuroscience (Fornito et al., 2015), such as the
Hebbian theory proposed by Hebbian (Hebb, 1949), which shows
that the weight between two neurons increases if the two neurons
activate simultaneously, and reduces if they activate separately,
which is often summarized as “Cells that fire together wire
together". But Hebbian theory doesn’t make predictions about the
firing of presynaptic neurons after postsynaptic neurons, which is
solved by spike-timing-dependent plasticity (STDP). The concept
of STDP was first proposed by Taylor (1973), Bi and Poo (1998)
discovered that postsynaptic synapses that were activated within 5–
20 ms before the spike were strengthened, whereas synapses that
were activated within a similar time window after the spike was
weakened, STDP core idea is to calculate the weight of the direct
connection of two neurons according to the sequence of the two
connected neurons firing pulses (Dan and Poo, 1992). These rules
about weight adjustment between neurons motivate us to apply
weight adjustment rules between neurons to build graph structures.

In this paper, we propose an adaptive GCN based on Spike-
Timing-Dependent Plasticity, named STDP-GCN. The connection
between various PSG signal channels forms a graph structure, and
the channel of the PSG signal may be thought of as a neuron, the
STDP process used to build the strength of the synapses between
neurons, which builds the graph. The transition rules between sleep
stages are extracted using temporal convolution after the GCN, and
classification is performed using a fully connected neural network.
In particular, domain adaptation is applied in the classification
network to improve the adaptive ability of the STDP-GCN. We
summarize the main contributions of this paper:

• An explainable STDP adaptive graph learning algorithm
is proposed. The STDP adaptive graph learning algorithm
employs the STDP mechanism from neuroscience to
dynamically establish inter-channel dependencies without
any labeling and exhibits exceptional performance.

• The proposed STDP-GCN can capture both temporal
and spatial features of PSG separately through spatio-
temporal graph convolution. Furthermore, it can reduce
discrepancies between individual physiological signals and
enhance performance through domain adaption.

• Through comparative experiments on the ISRUC-S3
dataset and SLEEP-EDF-153 dataset, the proposed STDP-
GCN demonstrated the highest accuracy compared to
existing models.
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2. Related works

2.1. Sleep stage classification problem

The human sleep process can be divided into three main
parts: Wake, Rapid Eye Movement (REM), and Non-rapid Eye
Movement (NREM) according to AASM standard (Berry et al.,
2012). The main features of REM are rapid eye movements and
relaxation of body muscles, while NREM is characterized by
shallower, slower, and more uniform breathing, slower heart rate,
lower blood pressure, and no obvious eyeballs. NREM can be
divided into three stages: N1, N2, and N3 to assess the depth of
sleep. This article divides sleep states into five categories (Wake, N1,
N2, N3, and REM) according to the AASM standard.

The PSG signal is divided into epochs of the 30s, and each
epoch is labeled as a sleep state. According to the AASM standard,
experts use the features of the PSG data of the current epoch and the
previous and previous epochs to mark the sleep state of the current
epoch, because sleep state transition patterns are very valuable, for
example, it usually enters the N1 stage after wake stage.

In this paper, the sleep stage classification problem can be
defined as input multiple epochs, which is defined as X =

(xi−c, ..., xi, ..., xi+c) ∈ RM×N×L, output a sleep state of the current
epoch ŷ, where c indicates the temporal context, andM = 2c+ 1 is
the number of temporal contexts, N is the number of nodes in the
PSG, L is the number of features per channel.

2.2. Automatic sleep staging methods

Recent years have seen a significant amount of research in
the academic field surrounding automatic sleep staging, due to
its crucial role in the diagnosis of sleep disorders. Designing
features for PSG signals manually through traditional methods is a
challenging task due to the complexity of the signal features, which
makes deep learning particularly effective in the task of automatic
sleep staging.

With the rapid development of deep learning, Convolutional
Neural Networks (CNNs) and Recurrent Neural Networks (RNNs)
are widely used in automatic sleep staging. Zhang and Wu (2017)
propose a new model called Fast Discriminant Complex-valued
Convolutional Neural Network (FDCCNN) for extracting features
from raw EEG data and classifying sleep stages. Chambon et al.
(2018) introduced a deep neural network to perform temporal sleep
stage classification from multimodal and multivariate time series,
which can be learned end-to-end without computing spectrograms
or extracting manual features. Phan et al. (2019) propose a
hierarchical recurrent neural network named SeqSleepNet, which
is designed to run on multi-channel time-frequency image inputs
to solve the automatic sleep staging problem. Perslev et al. (2019)
propose U-time to analyze physiological time series segmentation
of sleep data. Cai et al. (2021) propose a novel graph-time
fusion dual-input convolutional neural network approach to detect
sleep stage. Perslev et al. (2021) introduce A deep learning-based
automated sleep staging system (U-SLEEP) that provides accurate
segmentation of A wide range of patient cohorts and PSG protocols
that were not considered when building the system. Jia et al. (2021b)

propose the SalientSleepNet, which is a multimodal significant
wave detection network for sleep staging.

Although deep learning achieves high performance, it ignores
the interdependencies between PSG signal channels. Jia et al. (2020)
propose a new deep graph neural network GraphSleepNet for
automatic sleep stage classification, which can adaptively learn the
internal connections between different EEG channels. Thus, it can
better serve the spatio-temporal graph convolution network (ST-
GCN) for sleep stage classification. The lack of interpretability
in the above methods highlights the need for a model with
explainable features, as interpretability is crucial for understanding
the underlying cause of sleep disorders in neuroscience.

3. Methodology

The overall architecture of STDP-GCN is shown in Figure 1.
The main ideas of STDP-GCN are as follows: (1) Build the graph
structure using an adaptive STDP graph learning algorithm; (2)
After a spatio-temporal GCN aggregates the signal, and a fully
connected network is used for classification. Models are carefully
designed to get the best results in this paper.

3.1. STDP Graph Learning

The process of STDP graph learning algorithm is: (1) encode
PSG signals into pulse sequences; (2) calculate the connection
weights between pulse sequences according to STDP algorithm,
so as to obtain the interdependence between PSG channels.
This section first introduces the encoding algorithm and STDP
algorithm, and then introduces the STDP graph learning algorithm.

Encoding: STDP learning needs the spike train as input, so
the raw PSG signal needs to be converted into a spike train at
first. Encoding continuous signals is typically accomplished using
analog-to-spike encoding algorithms, including Threshold Based
Representation (TBR), Ben’s Spiking Algorithm (BSA) (Schrauwen
and Van Campenhout, 2003), and Moving Window (MW) (Petro
et al., 2020). Typically, BSA algorithms are employed to transform
audio data into a spike train. However, as PSG signals are also
distributed across the frequency spectrum, some studies (Nuntalid
et al., 2011; Medini et al., 2015). have utilized BSA algorithms to
encode PSG signals. So the BSA algorithm is well suited to encode
PSG signals. In this paper, the BSA algorithm is used to convert
the PSG signal into a spike train. The BSA algorithm is based on
encoding a signal using an FIR filter. The Finite Impulse Response
(FIR) filter is widely used in digital signal processing, the main
function is to leave a useful signal, we set the cutoff frequency of
FIR to 0.8 and the length to 20 according to the BSA algorithm. By
computing two error values Eq.(1) and Eq.(2) at each time instant
τ , which can be defined as

error1 =
∑M

k=0
abs

(

s
(

k+ τ
)

− h
(

k
))

, (1)

error2 =
∑M

k=0
abs

(

s
(

k+ τ
))

, (2)

here s is the original signal and h is an FIR filter of lengthM. If
Eq.(1) is less than Eq.(2) minus the threshold, then encode a spiking
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FIGURE 1

The framework of STDP-GCN. The STDP graph learning approach views each channel in the PSG as a neuron, with the STDP mechanism

determining the strength of connections between neurons to form a graph structure across the PSG channels. The graph structure is then used for

graph convolution, followed by temporal convolution to learn the sleep stage transition rules, and a fully connected neural network is applied for

classification.

FIGURE 2

Ben’s Spiking Algorithm. The blue curve is an EEG signal, and the red

vertical line is the spike sequence encoded by the EEG signal

according to the BSA encoding algorithm.

and subtract the filter from the input. The signal can be recovered
from the spike train by a convolution between the spike train and
the FIR filter. The origin signal and its spike train encoded using
BSA are shown in Figures 2, 3.

Spike-timing-dependent plasticity: After encoding the PSG
signal into a spike train, the STDP algorithm is used to learn the
correlation between the pulse sequences. STDP learning rules are a
synaptic plasticity mechanism discovered in biological experiments
(Bi and Poo, 1998). A typical neuron consists of a cell body (soma),
dendrites, and a single axon. Dendrites receive action potentials
from other neurons and transmit them to the body of the cell.
Axon’s function is to transmit information to different neurons.

FIGURE 3

Trace STDP rules. spikepre and spikepost are the EEG signals and their

spike trains encoded by BSA, W shows how the weights change

according to the spike trains.

Under the STDP process, the synapse will strengthen if the
firing spike of the pre-neuron tends to occur on average before the
output spike of the post-neuron. If the spiking of the pre-neuron
tends to occur immediately after the output spiking of the post-
neuron, the synapse weights of the two neurons are slightly weaker
(Bi and Poo, 1998). In general, the STDP process can be defined as

1ω =







Ae
tpre−tpost

τ , tpre − tpost < 0,

Be−
tpre−tpost

τ , tpre − tpost > 0,
(3)
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here, 1ω represents the amount of change in synaptic strength,
tpre − tpost represents the time difference between the presynaptic
pulse and the postsynaptic pulse, A > 0 and B < 0 are the learning
rates that control the 1ω. However, the implementation of Eq. (3)
is not feasible as it requires separate recording of the firing times of
neurons before and after. It is easier to implement STDP using the
double-pulse trace-based approach (Morrison et al., 2008) provided
by Eq.(4), Eq.(5). The core idea of the double-pulse trace-based
approach is that synaptic weights decrease when the pre-neuron
fired spike and the synaptic weight increases when the post-neuron
is fired.

1ω
−
ij

(

t
f
j

)

= −F−
(

ωij

)

yi

(

t
f
j

)

, (4)

1ω
+
ij

(

t
f
i

)

= −F+
(

ωij

)

yi

(

t
f
i

)

, (5)

here, Eq.(4) depicts a decrease in synaptic weight when a

spike t
f
j from pre-neuron j arrives; Eq.(5) expresses an increase

in synaptic weight when a spike t
f
i from post-neuron i arrives,

−F+
(

ωij

)

and −F−
(

ωij

)

are functions that control the increment
of weights.

dxj

dt
= −

xj

τx
+
∑

t
f
j

δ

(

t − t
f
j

)

, (6)

dyi

dt
= −

yi

τy
+
∑

t
f
i

δ

(

t − t
f
i

)

. (7)

The double-pulse trace-based approach uses trace to describe
pre-neuron membrane potential xj and post-neuron membrane
potential yi. The membrane potential rises immediately when the
neuron receives a spike, and then slowly decreases to the resting
potential over time, which can be expressed by differential equation

Eq.(4), Eq.(5). t
f
j and t

f
i is the spike firing time of post-neuron i after

pre-neuron j, δ is the pulse function, which is 1 at t = 0, and 0 at
other times.

Adaptive graph learning: In this paper, the PSG signal input of
an epoch is defined as a graphG(V ,E,A), whereV is the set of nodes
in the graph, each node corresponds to a channel in the PSG, and
E represents the edge between nodes, A is the adjacency matrix of
the graph. The adjacency graph is an important input of the graph
neural network. In this paper, the graph learning algorithm can be
defined as inputting PSG data of an epoch and outputting a graph
structure of the epoch.

The main purpose of adaptive STDP graph learning is to
learn graph structures using STDP. As shown in the upper part
of Figure 1, when the PSG is input to the STDP adaptive graph
learning module, the signals of each channel in the PSG are
first encoded into a spike train by the BSA algorithm. The spike
train of a channel is regarded as the spike train emitted by a
neuron, the connection between the channel and the channel
can be regarded as a synapse, and the synapse strength can be
obtained by the STDP. If the pre-neuron emits a spike before
the post-neuron emits a spike, it can be seen that there is a

connection between the pre-neuron and the post-neuron. The
STDP graph learning algorithm used in this paper is distinct from
other graph structure construction algorithms in that it relies
on the STDP algorithm to establish interdependencies between
different channels. However, this algorithm requires time steps
for simulation, resulting in increased computational overhead. To
save time, we employ an improved STDP algorithm and GPU
parallel computing. After the STDP graph learning module, the
relationship between channels and channels can be obtained, which
is represented as an adjacency matrix. The topology of multivariate
data can be used as input to spatio-temporal graph convolution to
extract feature representations in the spatial dimension.

The input of STDP-GCN is a sequence of multiple epochs,
each epoch will use the STDP graph algorithm to adaptively
learn a graph structure, which can be defined as input X =

(xt−c, ..., xt , ..., xt+c), output A = (at−c, ..., at , ..., at+c). The PSG
signal and graph structure at time step t are represented by xt
and at , respectively. The weight calculation between channel j and
channel i in the STDP graph structure algorithm can be expressed
as

aji =

L
∑

t=1

i(1ω
−
ij

(

t
f
j

)

+ 1ω
+
ij

(

t
f
j

)

), (8)

here, aji is the synapse weight between pre-neuron and post-

neuron, 1ω
−
ij

(

t
f
j

)

is the amount of change in the synaptic weight

when the presynaptic spike is fired, and 1ω
+
ij

(

t
f
i

)

is the amount of

change in the synaptic weight when the post-synaptic fired spike.
After constructing the graph, the preprocessed original signal and
the adjacency graph enter the STGCN layer together.

The cross-entropy is used as a loss function to tune the
parameters of the spatio-temporal graph convolution, which is
defined as

L = −
1

L

L
∑

i=1

N
∑

n=1

yi,n log(ŷ), (9)

here, L is the number of samples, while N is the number of
categories of sleep stages, and y is the ground truth label.

3.2. Spatial-temporal graph convolution

Graph convolution: The main purpose of graph convolution is
to aggregate and extract the spatial dimension features of signals.
EEG of different channels can measure the electrical signals of
corresponding brain regions, and the relationship between signals
between brain regions can be aggregated by graph convolution. We
use spectral graph convolution theory to build graph convolution
layers and to speed up training, we use a simplified GCN. The signal
propagation between layers is shown in Eq.(10), where D− 1

2AD− 1
2

is the constructed Laplacianmatrix,A is the adjacency graphmatrix
constructed by STDP,H is the result of the previous layer, andW is
the learnable parameter matrix, σ is the activation function.

H(l) = σ

(

D
− 1

2 AD
− 1

2H(l−1)W(l−1)
)

. (10)

Convolution in time dimension: According to the AASM
standard, the sleep transition rule, that is, the sleep staging of
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the preceding and following periods is an important reference
condition for judging the current sleep state. Therefore, taking
transition rules into account can improve the accuracy of the
classification. STDP-GCN utilizes an adaptive STDP graph learning
algorithm for graph construction and feature extraction through
GCN at distinct time steps. It subsequently employs time-wise
convolution to learn the transition rules. After the data passes
through the graph convolution layer, the information of the
data has been fully aggregated, and then convolution in the
time dimension will better extract the sleep transition rules. The
convolution in the time dimension in this paper can be described
as follows:

H(l+1) = softmax
(

8 ∗

(

softmax
(

H(l)
)))

, (11)

here softmax is the activation function, 8 denotes the convolution
kernel, ∗ denotes the standard convolution operation.

Domain adaptation:Machine learning models rely heavily on
data distribution and the data distribution of PSG may vary
significantly due to individual differences. Therefore, we hope
that STDP-GCN can effectively learn how to extract common
core features. By treating an individual’s physiological signal as a
domain, we can use the domain adaptation to learn the common
features between domains and effectively improve the robustness
of the model.

The idea of domain adversarial training (Ganin et al.,
2016) originates from Generative Adversarial Network (GAN)
(Goodfellow et al., 2014), which consists of a generator and a
discriminator. Generators are used to generate false data, and
discriminators are used to determine whether the input data is
generated false data or real data. The core idea of GAN is to
hope that the false data generated by the generator can deceive the
discriminator, which is also improving the discriminant ability to
prevent being deceived. The two play against each other until the
whole system reaches a stable state. Similarly, domain adversarial
training is when the model extracts features from the source
domain and the target domain, respectively, and then trains the
discriminator, hoping that the discriminator cannot distinguish
the extracted features from the source domain from the target
domain. This allows the target domain’s data to be generated with a
feature distribution as close to the source image as possible, thereby
reducing the domain shift.

As depicted in Figure 4, there are two main tasks to be
completed in the domain adversarial training of STDP-GCN: (1)
Accurate classification of source domain datasets to minimize the
error of automatic sleep staging; (2) To confuse the source domain
dataset with the target domain dataset, maximize the domain
classification error. Feature extractor Gf maps input xi to feature
space to get domain-invariant featureXf , and thenXf input domain
discriminator D and sleep stage classifier. Feature extractor Gf is
defined as

Xi
f = Gf

(

xi; θf
)

, (12)

where Xi
f
denotes the transferred features of xi, θf is the trainable

parameter of Gf .
Sleep stage classifier Gf and its loss can be defined as

ŷic = Gy

(

Xi
f ; θy

)

(13)

Lc(ŷ
i
c, yi) = log

1

ŷic
yi (14)

where ŷci predicted label, θy is the trainable parameter of Gy.
Domain discriminator Gd and its loss can be defined as

ŷid = Gd

(

Xi
f ; θd

)

, (15)

Ld(ŷ
i
d, di) = di log

1

ŷi
d

+ (1− di) log
1

ŷi
d

(16)

where ŷdi is the predicted result of the domain discriminator, di
represents the binary label of the i-th sample and is used to indicate
whether the sample belongs to the source or target domain, θy is
the trainable parameter of Gy. The overall loss of training can be
defined as

E(θf , θc, θd) =
1

n

n
∑

i=1

Lic − λ

(

1

n

n
∑

i=1

Lid +
1

n′i

n
∑

i=n+1

Lid

)

(17)

Through Gradient Reversal Layer (GRL), domain
adaptation can be naturally integrated into the back-
propagation algorithm of the network to unify the
training process. The network optimization process is
defined as

(θ̂f , θ̂c) = argmin
θ̂f ,θ̂c

L(θf , θc, θ̂d) (18)

θ̂d = argmin
θd

L(θ̂f , θ̂y, θd) (19)

The parameters of the sleep stage classifier are updated
by minimizing the objective function, and the parameters
of the domain discriminator are updated by maximizing the
objective function.

4. Experiments

4.1. Datasets and experimental settings

In this paper, the ISRUC-S3 dataset and SLEEP-EDF-153
dataset are used to verify the validity of the STDP-GCN model.
There are PSG recordings of 10 healthy subjects in the ISRUC-S3
dataset, with 6 EEG channels, 2 EOG channels, 3 EMG channels,
and 1 ECG channel. Each epoch is divided into 5 sleep states
by AASM standard. The SLEEP-EDF-153 dataset recorded the
PSG signals of 78 healthy subjects, and the EEG was obtained
by sampling from the Fpz-Cz and Pz-Oz electrode positions at
100 HZ. The SLEEP-EDF-153 dataset classifies labels into eight
modes (wake-up, S1, S2, S3, S4, REM, motion, and unknown)
according to the Rechtschaffen and Kales standard (Wolpert, 1969).
To simplify the process of setting experimental parameters, we
combine S3 and S4 into S3 according to AASM standards (Berry
et al., 2012).

We use subject-independent cross-validation to test the effect
of the STDP-GCN. Due to the different number of individuals
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FIGURE 4

Domain adversarial training framework for STDP-GCN. Following the blue arrow, the PSG signal is processed through the feature extractor to acquire

the domain-invariant feature, which then proceeds to the sleep stage classifier for classification and computation of the label loss, before

undergoing back-propagation. Along the yellow arrow, the domain-invariant feature is fed into the domain discriminator for domain classification

and calculation of the domain loss, which then undergoes backpropagation through the Gradient Reverse Layer.

TABLE 1 Experiment hyperparameter setting.

Hyperparameter description Value

Optimizer Adam

Learning rate 1e-4

Number of training epochs 500

Batch size 256

Dropout probability 0.5

Weight decay 1e-3

Layer number of GCN 1

The number of temporal contextsM 5

τ values of neurons 100.0

Threshold for spiking 1.0

Learning rate for STDP 1e-2

Domain classifier architecture 450-512-100-2

Initial λ value of Gradient Reversal Layer 1.0

contained in the data set, we apply 10-fold cross-validation
on the ISRUC-S3 data set and 20-fold cross-validation on the
SLEEP-EDF-153 dataset. The hyperparameters of STDP-GCN
are listed in Table 1, and we apply the same experimental
settings to all baselines to pursue comparative fairness. This
article uses PyTorch to implement the model and training,
and the code has been released at: https://github.com/thegoist/
STDP-GCN.

4.2. Experimental results and comparison

This section uses STDP-GCN to compare with the other
baselines, showing the superiority of the current STDP-GCN.
As evident from Tables 2, 3, STDP-GCN outperforms prior
methods in multiple metrics. By utilizing the STDP mechanism
in constructing its graph structure, STDP-GCN aligns with the
principles of neuroscience and effectively leverages the inter-
channel dependencies to enhance the extraction of spatial features,
resulting in better performance across various indicators. It can
be observed from the table that the traditional machine learning
algorithm SVM and RF is less accurate than other methods
because it cannot learn temporal transition rules, while CNN and
RNN can rely on learning transition rules in the time dimension
and learning features in the spatial dimension to achieve higher
accuracy. The channels in the PSG signal are not separated by
Euclidean distances, so using Euclidean distance for convolution
may overlook the non-Euclidean distance information between
channels. The experimental data demonstrates that Wake and N1
indicators are always mutually exclusive. An increase in the Wake
indicator leads to a decrease in the N1 indicator. The reason behind
this is that the N1 stage is prone to misclassification as Wake due
to the shared characteristics between them. Based on the AASM
standard (Berry et al., 2012), both fully awake and drowsiness are
included in the Wake stage, and the electrophysiological signals
and psychological characteristics of drowsiness even continue to
the N1 stage, which could be the main reason for misclassification.
In addition, we also explored the effect of different folds on
cross-validation, as shown in Table 4. We also applied 5-fold
cross-validation on ISRUC-S3, where the performance of 5-fold
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TABLE 2 Overall results comparison on ISRUC-S3.

Methods Overall results F1-score for each class

Accuracy F1-score Wake N1 N2 N3 REM

SVM (Alickovic and Subasi, 2018) 73.3% 72.1% 86.8% 52.3% 69.9% 78.6% 73.1%

RF (Memar and Faradji, 2018) 72.9% 70.8% 85.8% 47.3% 70.4% 80.9% 69.9%

MLP+LSTM (Dong et al., 2018) 77.9% 75.8% 86.0% 46.9% 76.0% 87.5% 82.8%

CNN+BiLSTM (Supratak et al.,
2017)

78.8% 77.9% 88.7% 60.2% 74.6% 85.8% 80.2%

CNN (Chambon et al., 2018) 78.1% 76.8% 87.0% 55.0% 76.0% 85.1% 80.9%

ARNN+RNN (Phan et al., 2019) 78.9% 76.3% 83.6% 43.9% 79.3% 87.9% 86.7%

STGCN (Jia et al., 2020) 79.9% 78.7% 87.8% 57.4% 77.6% 86.4% 84.1%

MSTGCN (Jia et al., 2021a) 82.1% 80.8% 89.4% 59.6% 80.6% 89.0% 85.6%

STDP-GCN 82.6% 81.0 % 83.5% 62.9% 83.1% 86.0% 90.6%

The bold result is the best result.

TABLE 3 Overall results comparison on SLEEP-EDF-153.

Methods Overall results F1-score for each class

Accuracy F1-score Wake N1 N2 N3 REM

SVM (Alickovic and Subasi, 2018) 71.2% 57.8% 80.3% 13.5% 79.5% 57.1% 58.7%

RF (Memar and Faradji, 2018) 72.7% 62.4% 81.6% 23.2% 80.6% 65.8% 60.8%

CNN+BiLSTM (Supratak et al.,
2017)

78.5% 75.3% 91.0% 47.0% 81.0% 69.0% 79.0%

MSTGCN (Jia et al., 2021a) 86.4% 84.1% 85.5% 75.3% 89.8% 80.4% 89.3%

STDP-GCN 87.4% 83.2 % 91.1% 60.1% 89.1% 84.6% 88.8%

The bold result is the best result.

TABLE 4 Cross-validation of di�erent fold numbers on the ISRUC-S3 dataset.

Overall results F1-score for each class

Accuracy F1-score Wake N1 N2 N3 REM

5-folds 80.3% 78.5% 83.6% 58.8% 82.0% 82.0% 84.6%

10-folds 82.6% 81.0% 83.5% 62.9% 83.1% 86.0% 90.6%

cross-validation decreased relative to 10-fold, probably due to
the increase in the adversarial sample and the decrease in the
test sample.

4.3. Experiments and analysis

To visualize the graph structure generated by the STDP graph
learning algorithm, we applied the algorithm to generate the
adjacency graph structure of all data in the ISRUC-S3 dataset. By
summing up all the adjacency graph matrices adaptive learned
through the STDP graph learning algorithm in each state, the brain
functional connectivity in each sleep state is shown in Figure 5.
The explainability of STDP-GCN can be explored by observing the
graph structure generated by the STDP graph learning algorithm.
There are numerous functional connections because the brain is
more active during the wake period (Larson-Prior et al., 2011).

During the NREM stage, the brain gradually enters a deep sleep
state and exhibits limited connectivity, typically represented by
one or two channels. Conversely, in the REM stage, the functional
connections between brain regions are relatively weak (Spoormaker
et al., 2010).

In order to verify the effectiveness of the STDP graph learning
algorithm, this paper uses different graph construction methods
to compare the graph structures, which is shown in Figure 6.
The graph structures used for comparison mainly include (1)
Fully connected adjacency matrix. Fully connected adjacency
matrix means that each brain area has functional connections
with the same weight, which is not conducive to extracting the
spatial features of the graph. (2) Random matrix, each brain
area is randomly connected. (3) Graph learning algorithm, which
builds the loss by establishing the feature difference between
different channels, and learns through backpropagation. Through
the experimental results, it can be seen that the fully connected
adjacency matrix has the worst effect, and the graph learning

Frontiers inNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fnins.2023.1158246
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zhao et al. 10.3389/fnins.2023.1158246

FIGURE 5

Visualization of the adjacency matrix learned by the STDP graph learning algorithm(Wake Stage, N1 Stage, N2 Stage, N3 Stage, and REM Stage).

FIGURE 6

Performance comparison of di�erent graphs.

algorithm has the best effect, while the STDP graph learning
algorithm is close to the graph learning algorithm, and is better
than the randommatrix algorithm, which it is shown that the graph
learned by the STDP graph learning algorithm is effectiveness, and
it also shows that the relationship between brain regions can be
constructed through synaptic plasticity. The reason why the STDP
graph learning algorithm is slightly lower than the graph learning
algorithm may be that the STDP algorithm only pays attention to
the changes in the synaptic strength caused by the impulse signal
between neurons, and the connections between other brain areas
are not fully utilized, such as adjacent brain areas. There should also
be some connection between the zones.

Temporal context is used as an input that has a significant
impact on the model, and we use different temporal contexts
to test their impact on performance. As demonstrated in
Figure 7, the classification performance of STDP-GCN on the
ISRUC-S3 dataset varies with the number of input contexts
M. With insufficient input contexts, the model will struggle
to learn the temporal transition rules, while an excessive
number of contexts will make it challenging for the model to
accurately comprehend the temporal transition rules. Optimal
performance has been observed when the number of input
contextsM = 5.

Figure 8 illustrates that the model’s performance gradually
decreases as the number of adversarial data increases. This

FIGURE 7

Performance comparison of di�erent time contexts.

FIGURE 8

Comparing performance with varying numbers of adversarial data.

phenomenon can be attributed to the variance in data distribution
of PSG, which is influenced by individual differences. As the
number of adversarial samples increases, the number of non-
adversarial samples decreases, causing the model to face challenges
in learning common features.

We plot the training loss curves for subject-independent
cross-validation of the ISRUC-S3 dataset. As shown in Figure 9,
the loss of the domain classifier decreases and converges as
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FIGURE 9

Training loss curves for cross-validation of the ISRUC-S3 dataset. The loss value of the domain discriminator is represented by the blue curve, and the

loss of the domain classifier is represented by the red curve.

the epoch increases, while the loss of the domain discriminator
oscillates but eventually decreases and converges, suggesting that
adversarial training is helping the model learn invariant features
between domains.

5. Discussion

In this paper, we propose STDP-GCN for automatic sleep
staging. The main advantage of STDP-GCN is to compute the
interdependencies between nodes using the STDP algorithm
with neuroscience mechanism, and then construct the graph
structure between nodes, so STDP-GCN makes full use of
the interdependencies between nodes through GCN to extract
features. The STDP graph learning algorithm does not require
backpropagation and labeling, it only needs to encode the PSG
signal as a pulse sequence to calculate the graph structure of the
PSG channel, which not only has a neuroscience mechanism but
also has a good performance. As shown in Figure 6, when compared
with other graph structure construction algorithms, the STDP
graph learning algorithm had the highest accuracy metrics on both
the ISRUC-S3 dataset and the SLEEP-EDF-153 dataset, and most of
the remaining evaluation metrics outperformed existing methods.
In automated sleep staging, individual differences in physiological

signals often result in models that perform well in training and
poorly in testing. This problem can be effectively addressed by using
adversarial training. Figure 9 shows the loss curves of the domain
classifier and the domain discriminator during adversarial training
on the ISRUC-S3 dataset, from which it can be seen that the loss
curve of the domain discriminator decreases in oscillation. This
phenomenon indicates that the domain discriminator acts as an
adversarial training operation, and in addition, the performance
metrics of the model training also prove the effectiveness of
adversarial training.

STDP-GCN also comes with some disadvantages. Firstly, the
STDP algorithm requires time steps for simulation, and even with
the modified STDP algorithm and GPU parallel computing, the
STDP graph learning algorithm is still slower than the rest of
the graph structure algorithms. Second, STDP-GCN sometimes
misclassifies Wake and N1 because bothWake and N1 have similar
features. This still indicates that STDP-GCN needs to strengthen its
feature learning capability.

6. Conclusion

Inspired by Spike-Timing-Dependent Plasticity, this paper
proposes an adaptive graph convolution network (GCN) for
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automatic sleep staging, named STDP-GCN. The key advantage
of STDP-GCN is its ability to establish connections between brain
regions through the synaptic weight adjustment mechanism among
neurons. This algorithm dynamically establishes inter-channel
dependencies without any labeling and exhibits exceptional
performance. Comparative experiments show that the performance
of STDP-GCN is comparable to the leading models in the field.
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