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Interventional strategies for
ischemic stroke based on the
modulation of the gut microbiota
Jing Wang, Xiaofeng Liu* and Qun Li*

Department of Gastroenterology, The 960th Hospital of the PLA, Jinan, Shandong, China

The microbiota-gut-brain axis connects the brain and the gut in a bidirectional

manner. The organism’s homeostasis is disrupted during an ischemic stroke

(IS). Cerebral ischemia affects the intestinal flora and microbiota metabolites.

Microbiome dysbiosis, on the other hand, exacerbates the severity of IS outcomes

by inducing systemic inflammation. Some studies have recently provided novel

insights into the pathogenesis, efficacy, prognosis, and treatment-related adverse

events of the gut microbiome in IS. In this review, we discussed the view that

the gut microbiome is of clinical value in personalized therapeutic regimens for

IS. Based on recent non-clinical and clinical studies on stroke, we discussed new

therapeutic strategies that might be developed by modulating gut bacterial flora.

These strategies include dietary intervention, fecal microbiota transplantation,

probiotics, antibiotics, traditional Chinese medication, and gut-derived stem cell

transplantation. Although the gut microbiota-targeted intervention is optimistic,

some issues need to be addressed before clinical translation. These issues include

a deeper understanding of the potential underlying mechanisms, conducting

larger longitudinal cohort studies on the gut microbiome and host responses with

multiple layers of data, developing standardized protocols for conducting and

reporting clinical analyses, and performing a clinical assessment of multiple large-

scale IS cohorts. In this review, we presented certain opportunities and challenges

that might be considered for developing effective strategies by manipulating the

gut microbiome to improve the treatment and prevention of ischemic stroke.

KEYWORDS

ischemic stroke, gutmicrobiome, fecal microbiota transplantation, probiotics, traditional
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Introduction

Stroke is a devastating cerebrovascular disease characterized by high morbidity,
disability, recurrence, and mortality. The data provided by the Global Burden of Disease
(GBD) 2019 suggested that stroke is the second most common reason for death and the
third leading reason for disability across the world. Also, the absolute number of first-ever
stroke and stroke-related deaths has increased considerably over the last decade (GBD 2019
Stroke Collaborators, 2021). China has a greater burden of stroke, considering that the
country has the highest prevalence of stroke in the world. Additionally, most of the years
of life lost and disability-adjusted life years among Chinese adults are because of stroke
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(Wu et al., 2019; Ma et al., 2021; Wang Y. J. et al., 2022). Stroke
can be broadly classified into ischemic and hemorrhagic stroke,
with ischemic stroke (IS) contributing to more than 70% of total
incidences of stroke worldwide (GBD 2016 Lifetime Risk of Stroke
Collaborators et al., 2018; Tuo et al., 2022). It primarily occurs due
to a cerebral arterial occlusion caused by a thrombus or embolus
(Tian et al., 2019; Mistry and Dumont, 2020). Besides damaging the
brain parenchyma surrounding the ischemic areas, IS also triggers
complex neuropathophysiological and neuropathological events
followed by neuroinflammation and immune response (Pluta et al.,
2021; Zhang S. R. et al., 2021). Many recent studies have suggested
that post-stroke immunosuppression and intestinal barrier damage
can increase the risk of opportunistic infections after IS, which can
seriously worsen the outcomes of IS (Ghelani et al., 2021). These
findings indicate that effective treatment of IS and the extension
of the therapeutic window are challenging, and new therapeutic
strategies need to be developed.

Recanalization and neuroprotection are the main approaches
for treating IS in the clinic. Performing intravenous/intra-
arterial thrombolysis and mechanical thrombectomy for effective
reperfusion following recanalization are necessary for a positive
prognosis of IS patients (Prabhakaran et al., 2015; Wu et al., 2019).
The Food and Drug Administration (FDA) has only approved
intravenous recombinant tissue plasminogen activator (IV rtPA)
for treating IS (National Institute of Neurological Disorders and
Stroke rt-Pa Stroke Study Group, 1995). Endovascular reperfusion
therapy can partially improve the overall likelihood of a good
IS outcome (Prabhakaran et al., 2015; Wu et al., 2019; Saver
and Adeoye, 2021). However, the overall safety and efficacy
are limited by a narrow treatment window (Yeo et al., 2013)
of 4.5 h from the onset of the symptoms, the challenges of
cerebral ischemia-reperfusion injury (Eltzschig and Eckle, 2011;
Sun et al., 2018), and the tendency of hemorrhagic transformation
(Gauberti et al., 2018) during the treatment course. Therefore,
many researchers are investigating novel approaches for treating
IS. In the past two decades, more than 1,000 potential neuro-
protectants have been found to attenuate ischemic brain injury
by promoting neuronal survival, neural plasticity, neurogenesis,
and synaptogenesis (Liberale et al., 2018; Shen et al., 2023).
However, the studies were mainly conducted on experimental IS
animal models, and only a few agents targeting these molecules
could be administered in the clinic (Gauberti et al., 2018; Gan
et al., 2020; Mani et al., 2023). Stem cell therapy and neural
progenitor cell transplantation therapy provide a regenerative
strategy for protecting neural tissue in the acute phase and the
replacement of lost tissues in the sub-acute or chronic phase of
IS (Wei et al., 2017; Yu et al., 2019). However, this technique
has numerous challenges, including identifying suitable neural
progenitors, low overall survival of the neurons, and insufficient
neuronal differentiation (Wei et al., 2017; Wang S. N. et al., 2020;
Mani et al., 2023). Thus, the technique needs to be further improved
before clinical application.

Along with the typical neurological deficit in the acute phase
(Powers, 2020), more than half of the patients with IS suffer
from gastrointestinal complications, including gut motility and
absorption dysfunction, intestinal bleeding, gut leakiness, and
enteropathogenic sepsis (Wen and Wong, 2017). After the concept
of the microbiota-gut-brain axis (MGBA) was proposed, many
studies confirmed the presence of a bidirectional MGBA and the

potential of microbiota-directed interventions to improve stroke
outcomes (Zhao et al., 2018). Detailed studies on the underlying
mechanisms might provide a theoretical basis for developing novel
interventions and therapeutic strategies for IS based on microbes
(Cryan et al., 2019). With the advancement of high-throughput and
“-omics” technologies, especially the integration of metagenomics
and metabolomics techniques, a strong correlation was found
between the gut microbiota and potential risk factors for the onset,
progression of pathological changes and the prognosis and recovery
of IS patients (Benakis et al., 2016; Nam, 2019; Pluta et al., 2021).
Several studies have shown that the gut microbiota and their
metabolites might play a dual role in IS (Peh et al., 2022). As
the gut microbiome is less diverse in IS patients, modulating the
composition of the gut microbiome might improve the prognosis
of IS patients. On the other hand, consuming foods rich in choline
and L-carnitine increases the occurrence of IS due to the generation
of trimethylamine-N-oxide. Meanwhile, consuming dietary fiber
improves the outcomes in IS patients due to the action of short-
chain fatty acid metabolites containing butyrate and propionate,
derived from gut microbes (Chen et al., 2019b; Battaglini et al.,
2020; Peh et al., 2022).

Several effective strategies have been proposed for treating
disorders related to gut microbiota in IS patients. The gut
microbiota can be modulated using two ways: (1) By identifying
keystone taxa in the gut microbiome and performing interventions;
(2) By altering the composition of the intestinal microbiota
by single or combined use of dietary interventions, antibiotics,
probiotics, fecal microbiota transplantation (FMT), or traditional
Chinese medication (TCM). Several studies have also suggested
that repairing the damaged intestinal mucosal barrier by gut-
derived stem cell transplantation might be a new treatment
strategy, which could prevent the occurrence of endotoxemia
and secondary infections. Therefore, in this review, we discussed
intestinal microbiota as an intervention technique for treating IS to
gain further insights into the emerging field of IS therapy.

Dietary interventions in IS

Diet directly affects the composition of the gut microbial
communities and the production of metabolites. Cellular stress
caused by unhealthy diets, such as a high intake of high-fat foods,
animal byproducts, and processed foods, may influence abnormal
lipid metabolism and cerebral small vessel disease, which can
trigger the neuroinflammatory process and, as a result, activate a
neurodegenerative cascade (Nassir et al., 2021; Flaig et al., 2023).
Foods high in choline and L-carnitine, such as red meat, can be
metabolized by intestinal microbiota to produce trimethylamine
N-oxide (TMAO), which has been shown in experimental and
clinical studies to promote the occurrence of atherosclerosis and
stroke (Koeth et al., 2013; Zhu et al., 2021). Reduced reverse
cholesterol transport induced by TMAO via gut flora-related
pathways is one possible mechanism (Zhu et al., 2021; Peh et al.,
2022). Meanwhile, the presence of specific bacterial species in
human feces has been linked to TMAO plasma concentration
and diet pattern (Peh et al., 2022). TMAO may also promote
platelet hyperreactivity and thrombosis by increasing Ca2+ release
from intracellular stores during submaximal agonist stimulus-
dependent platelet activation (Zhu et al., 2016). Clinical trials
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confirmed that plasma TMAO levels could independently predict
the risk of thrombosis, including heart attack and stroke (Tang
et al., 2013; Zhu et al., 2016; Wang M. et al., 2022). Furthermore,
TMAO-mediated pathogenesis is associated with the activation
of multiple inflammatory signaling pathways, which may result
in oxidative stress, mitochondrial dysfunction, neuronal aging,
synaptic compromise, and cognitive impairment (Praveenraj et al.,
2022).

Consumption of dietary fiber and polyphenols, on the other
hand, may improve stroke outcomes via gut flora-associated SCFAs
such as butyrate and propionate (Fraga et al., 2019; Peh et al.,
2022). Long-term consumption of short-term fermented soybeans
(chungkookjang) containing specific Bacillus species in animal
models of stroke could influence host metabolism, particularly
inflammation and insulin resistance, through regulation of
gut microbiota composition (increase in Lactobacillus, Bacillus,
and Akkermansia) and metabolites (increase in propionate and
butyrate), and further prevent neuronal cell death and memory
dysfunction from the artery occlusion (Zhang T. et al., 2021).
Nonetheless, the underlying mechanisms are unknown. In a
recent study, sodium butyrate was shown to reduce neuronal
apoptosis by activating PI3K/Akt via the G protein-coupled
receptor GPR41/Gβγ in a rat model (Zhou et al., 2021).

Collectively, dietary intervention may be an appealing and
valuable way to influence the course of IS.

Dietary patterns in the prevention of IS

Many studies have shown the importance of overall dietary
patterns in the prevention and reduction of the occurrence of
IS. Diet quality and unbalanced nutrition are risk factors that
strongly increase the chances of the incidence of a first-ever stroke
(O’Donnell et al., 2016), as well as the relapse of stroke and other
vascular events (Amarenco et al., 2016; Yusuf et al., 2020). A study
found that compared to not consuming vegetables, consuming
306–372 g of vegetables can reduce the risk of IS by 23.2%.
The results indicated that vegetable consumption could effectively
protect people from IS (Stanaway et al., 2022). Additionally, long-
term dietary habits and the intensity of systemic inflammation
were found to be strongly correlated, suggesting that the diet can
modulate carotid plaque vulnerability in IS patients (Peng et al.,
2020). In that study, Peng et al. (2020) calculated the dietary
inflammatory index (DII) of 32 food components with a detailed
questionnaire on food frequency. They found that IS patients
who consumed foods with lower anti-inflammatory properties,
including fruits, vegetables, and nuts, had a higher DII score and
were vulnerable to plaques.

In the IS population, evaluating whole dietary patterns is
more promising than evaluating individual nutrients or food
components. The EAT-Lancet Commission proposed an integrated
framework related to a health-reference diet based on a sustainable
food system to achieve better overall health outcomes and to
conform to food culture in most parts of the world. Individualizing
energy intake based on body size, body composition, and physical
activity levels was recommended (English et al., 2021; Wu and
Anderson, 2021). English et al. (2021) evaluated the information
related to the dietary patterns affecting primary and secondary

stroke prevention, and they recommended that the most effective
dietary strategies include following the Mediterranean diet, low
sodium intake, and intake of folic acid supplements in regions with
low folate. To address the complexities and the insufficient evidence
directly relevant to clinical implications, well-designed randomized
controlled trials need to be conducted based on appropriate dietary
interventions, especially for people who have suffered a stroke.

The effects of drinks have also been investigated. According to a
16-year follow-up study, drinking water with a high concentration
of calcium and magnesium (magnesium ≥10 mg/L or calcium
≥50 mg/L) is related to a lower risk of IS. The study also
showed that drinking water enriched with calcium and magnesium,
especially magnesium, can significantly reduce the risk of IS
in postmenopausal women (Helte et al., 2022). Coffee and tea
are extremely popular beverages globally and possess health
benefits. A large prospective cohort study conducted with 365,682
participants from the UK Biobank showed that drinking 2–3 cups
of coffee or tea per day decreased the risk of stroke by 32% during
the median follow-up of 11.4 years for new onset IS. People who
consumed both coffee and tea, particularly up to 3–6 cups daily, had
the lowest risk of IS and vascular dementia after a stroke (Zhang Y.
et al., 2021).

Dietary alteration accompanied by shifts
in the intestinal metabiome

The gut microbiota encodes many carbohydrate-active
enzymes. Dietary fiber and carbohydrates in the diet can be
fermented to produce short-chain fatty acids (SCFAs) through
these enzyme systems. Many studies have shown that SCFAs
can regulate immune responses, maintain gut barrier integrity,
suppress the activity of histone deacetylases, and block the
cascade of inflammatory reactions (Kasahara and Rey, 2019).
Sodium butyrate (NaB; an SCFA) is a histone deacetylase inhibitor
generated by butyrate-producing bacteria (BPB). NaB can cross
the blood-brain barrier (BBB) and lower oxidative stress in
the brain, subsequently increasing the expression level of the
neuroprotectant IGF-1 in peripheral tissues (Park and Sohrabji,
2016), reducing the expression of proinflammatory cytokines
in the serum (Wang H. et al., 2022), and ultimately effectively
decreasing brain injury after a stroke. Therefore, it can aid in
neurological recovery and treat cognitive impairment following
a stroke (Wang H. et al., 2022). Furthermore, when a moderate
amount of fiber, butyrate, or probiotic-producing butyrate is added
to the diet, the leaky gut can be repaired in IS patients (Boivin et al.,
2016), and the consolidated integrity of the epithelial barrier can
provide neuroprotection during stroke recovery. Also, consuming
fermented dairy foods, including cheese and yogurt, which contain
beneficial probiotics (Aryana and Olson, 2017), can help in the
prevention and treatment of IS (Zhang K. et al., 2020) by improving
the overall intestinal microbiota (Carr et al., 2021) after the living
microorganisms reach the intestine.

Additionally, moderate restriction in dietary proteins and
energy can provide neuroprotection by modulating the gut
microbiota. In the mouse model of middle cerebral artery
occlusion, the effects of a moderately low protein diet on decreasing
the cerebral infarction volume and restoring neuroplasticity
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were associated with higher antioxidant reactions, lower
neuroinflammation, and rebalanced commensal gut microbiota
in the post-acute phase (Silva de Carvalho et al., 2022). Calorie
restriction was also reported to enhance post-stroke rehabilitation,
which might correlate with the dramatically altered composition of
the gut microbiota and its metabolism, in which Bifidobacterium
was enriched (Huang et al., 2021). These findings might provide
novel strategies for stroke rehabilitation in the clinic based on diet
control and gut microbiota.

Enteral nutrition (EN) in IS

The stress status during the acute phase of stroke is
characterized by high decomposition and high metabolism. It can
trigger hyperglycemia, acidosis, hypoproteinemia, and negative
nitrogen balance, leading to serious malnutrition, weakening
the immune system, and increasing complications (Xu C. Y.
et al., 2021). Many studies have proposed the concepts of
immune and microecological nutrition, and the latter’s role was
found to be especially important. For stroke patients, early EN
combined with probiotics can help in improving the nutritional
status, reconstructing the gut microbiota, stabilizing intestinal
barrier function, improving immune tolerance, and decreasing
the complications of infection and nutritional diarrhea, thus,
facilitating a more effective therapeutic intervention (Xu and
Shao, 2015; Mao et al., 2022). Furthermore, systematic reviews
and meta-analyses of randomized controlled trials have confirmed
the efficacy of EN in IS patients (Chen et al., 2022; Savigamin
et al., 2022). On the other hand, additional high-quality and well-
designed randomized controlled trials are required to provide more
reasonable theoretical guidance for clinical practice (Chen et al.,
2022).

Administration of antibiotics in IS

Many studies have investigated the application of antibiotics
to prevent post-stroke infections and improve stroke outcomes.
According to some studies, post-stroke immunodepression and
stress can disrupt the intestinal epithelial barrier and facilitate
the spread of commensal bacteria from the host gut microbiota,
causing systemic infections (Kumar et al., 2010). Infections,
particularly pneumonia, commonly occur after a stroke and might
contribute to neurological deficits and an increase in the mortality
rate (Faura et al., 2021). Therefore, antibiotics are currently used in
clinical practice to prevent infections following stroke; a common
approach involves the use of broad-spectrum antimicrobial agents
or combinations (Westendorp et al., 2015, 2018). Antibiotics are
often administered for the early prevention and control of IS, and
for patients with severe IS, broad-spectrum antibiotics are usually
administered for 1 week (Meisel and Smith, 2015). However, the
safety and efficacy of prophylactic antibiotics used for treating IS
remain unclear. Besides their role in antimicrobial prophylaxis,
antibiotic intervention can also change the composition of the
intestinal microbiota and disturb the homeostasis of the microbiota
for several months or even years (Langdon et al., 2016; Rizzatti
et al., 2018). This might, in turn, increase the risk of infection,

particularly pneumonia, as the disturbance or even eradication of
the commensal bacterial communities might lead to the production
of bacterial fragments, which can act as toxins and co-stimulants
(Winek et al., 2016). Several studies have evaluated the necessity
of administering prophylactic antibiotics to IS patients in intensive
care units. Early prophylactic antibiotic treatment with ceftriaxone
(cephalosporin), levofloxacin (fluoroquinolone), penicillin, and
minocycline (tetracycline), most of which were prescribed within
24 h, could not reduce the occurrence of post-stroke pneumonia
or the mortality rate in a longer follow-up, despite decreasing
the incidence of urinary tract infections and other post-stroke
complications (Zheng et al., 2017; Rashid et al., 2020; Wang Q. et al.,
2022).

However, preventive antibiotic therapy at the onset of a
stroke is still important. For example, the prophylactic use of
antibiotics is highly efficient in specific subgroups of IS patients
(Vermeij et al., 2018). Liu C. et al. (2022) showed that broad-
spectrum antibiotics could decrease systemic and brain cytokine
levels, decrease infarct size and perilesional cortex apoptosis,
improve long-term behavioral recovery, and strongly affect the
gut microbiota in rats after cerebral ischemia. Their study showed
that antibiotic prophylaxis has neurorestorative benefits after
IS. Their findings indicated that oral administration of non-
absorbable antibiotics might strongly affect stroke pathophysiology
by altering commensal gut bacteria. Benakis et al. (2020) also
showed that a cocktail of antibiotics significantly decreased the
infarct volume of IS mice in the acute phase. In contrast, the
neuroprotective effect was abolished with the re-colonization
of a wild-type gut microbiota in the model mice. They also
discovered that antibiotic treatment with ampicillin or vancomycin
as monotherapy, rather than neomycin, was sufficient for
reducing infarct volume and improving sensory and motor
function 3 days after the stroke. Furthermore, specific microbial
populations, particularly Bacteroidetes S24.7, and microbial
metabolites primarily containing aromatic amino acids, exerted this
neuroprotective effect. These findings highlighted the preventive
effects on the short-term and long-term outcomes of IS patients
due to the targeted modification of the microbiome related to
specific microbial enzymatic pathways following the administration
of specific antibiotics.

However, further studies are needed to determine whether
the administration of antibiotics can improve the outcomes
of IS patients and whether antibiotics affect post-stroke
infections through the intestinal flora. Also, as non-infectious
inflammation comprises a significant portion of stroke-associated
pneumonia due to the risk factors of dysphagia and stroke-induced
immunodepression (Eltringham et al., 2020), combination therapy
using antibiotics and targeted immunomodulatory agents might
more effectively improve the prognosis of IS patients (Meisel and
Meisel, 2011; Meisel and Smith, 2015).

Probiotics and prebiotics in IS

According to the World Health Organization (WHO),
probiotics are live microbial food supplements or components
of bacteria that are beneficial to humans when administered
in adequate amounts (Hill et al., 2014). Several recent studies

Frontiers in Neuroscience 04 frontiersin.org

https://doi.org/10.3389/fnins.2023.1158057
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1158057 February 25, 2023 Time: 14:35 # 5

Wang et al. 10.3389/fnins.2023.1158057

have shown the beneficial effects of specific probiotic strains or
a mixture of strains at particular life stages or disease stages.
Some studies investigated the mechanism of action of probiotics
in IS to elucidate how probiotics strengthen the gut epithelial
barrier function, inhibit pathogen adhesion to the intestinal wall by
adhering to the intestinal mucosa, suppress bacterial translocation,
produce bioactive compounds, including bacteriocins, organic
acids, vitamins, and neurotransmitters, reduce certain biomarkers
of oxidative stress and inflammatory cytokines, produce anti-
inflammatory compounds to modulate the immune system, and
upregulate the expression of opioid and cannabinoid receptors
in intestinal epithelial cells; thus, activating calcium-dependent
potassium channels in intestinal sensory neurons (Sánchez et al.,
2017; Martínez-Guardado et al., 2022). Additionally, SCFAs
produced by probiotics can counteract neuroinflammation after IS
(Sadler et al., 2020; Zhang W. et al., 2022) and help in repairing
cognitive dysfunction and brain injury. Probiotics can also improve
the negative emotions of IS patients, including anxiety and
depression, 3 months after stroke (Bailey and Cryan, 2017; Liu et al.,
2020). Probiotic treatment not only alters the microenvironment
to limit pathological progress but also plays a complementary
role by promoting the pharmaceutical management of calcium-
channel blockers and statins (Liu W. et al., 2022). Combinatorial
therapy with regenerative medicine, such as stem cell therapy,
has also been found by some researchers to increase the level of
the neurotrophic factor brain-derived neurotrophic factor (BDNF)
through symbiotic treatment to enhance neurogenesis and post-
stroke cognitive function. Therefore, this treatment strategy is
promising and warrants further investigation (Romo-Araiza et al.,
2018; Xu H. et al., 2021).

Lactobacillus and Bifidobacterium are probiotics that can
hinder the overgrowth of opportunistic pathogens and the
invasion of foreign pathogens, and thus, help in maintaining
the intestinal microecological balance, lowering the apoptosis of
intestinal epithelial cells due to pathogens, protecting the intestinal
mucosal barrier, and improving the intestinal and systemic immune
functions (Chen et al., 2022). Studies on rodent models have
shown the beneficial effects of probiotic strains such as Bacillus
licheniformis (Li Y. et al., 2021), Lactobacillus (Wanchao et al.,
2018), and Clostridium butyricum (Sun et al., 2016) on stroke.
The beneficial effects of prebiotics on IS have also been studied
extensively (Hill et al., 2014; Gibson et al., 2017). Lactulose is an
important prebiotic, which can elevate the levels of SCFAs in the
intestine and serum (Bothe et al., 2017; Chen X. et al., 2020),
aggravate post-stroke inflammation, and improve the functional
prognosis of stroke (Yuan et al., 2021). Some studies have also
shown that intragastric administration of indole-3-propionic acid
(IPA) to mice with middle cerebral artery occlusion (MCAO) can
restore the alterations in the structure of the gut microbiome
with elevated probiotics and reduce the number of harmful
bacteria, repair the integrity of the intestinal barrier, inhibit A1
reactive astrogliosis by regulating the activities of regulatory T
cells (Tregs)/Th17 cells in gut-associated lymphoid tissue, and
thus, efficiently alleviate the effects of neuritic impairment and
brain infarction (Xie Y. et al., 2022). Prebiotics like functional
barley can increase the number of butyrate-producing bacteria and
promote the production of intestinal butyrate (Akagawa et al.,
2021). Therefore, to better apply the synergistic and beneficial
effects of probiotics and prebiotics on therapy, “synbiotics,” which

is a mixture of active microorganisms (probiotics) and a matrix
(prebiotics), was developed (Swanson et al., 2020). Some studies
have also found that the effects of probiotics on the host are not
directly associated with the active microorganisms but instead are
indirectly mediated by the metabolites or bacterial components of
certain probiotics (Klemashevich et al., 2014; Salminen et al., 2021),
such as SCFAs, which are plant polysaccharide products that are
broken down by the gut microbiota (Fang et al., 2022). A study
found a synergistic effect between SCFA-producing bacteria and
inulin which can improve neurological deficit and behavioral
outcomes post-stroke (Lee et al., 2020).

Probiotics and prebiotics are the most extensively studied
biotherapeutic strategies to maintain and improve brain function
via the MGBA (Dinan et al., 2013; Cryan et al., 2019; Martínez-
Guardado et al., 2022). Probiotics and prebiotics are strong
candidates for treating and preventing IS as they can reshape the
gut microbiota, inhibit oxidative stress, and maintain the regular
pathways related to microbial metabolism and brain functions.
However, most findings and inferences in this field are based on
animal studies, and only a few probiotics and prebiotics have been
studied (Sarkar et al., 2016) in different combinations for their
commercial availability or other physiological beneficial effects,
but no study has investigated their specific properties related to
the modulation of the MGBA. Therefore, future studies should
focus on the mechanisms and targeted effects to improve the brain
function of specific probiotic strains and prebiotics.

Fecal microbiota transplantation
(FMT) in IS

Fecal microbiota transplantation is the most efficient
intervention to reconstruct the gut microbiota and might be
an effective therapeutic strategy for IS. A study found that FMT
attenuated cerebral ischemic injury and improved neurological
deficit in obese rats, which was probably mediated by the lowering
of oxidative stress and apoptosis in the brain (Xie T. et al.,
2022). FMT also ameliorated and/or protected transient MCAO
mice from transient cerebral ischemic injury (Benakis et al.,
2016). Lactobacillus helveticus and Lactobacillus brevis are the
most affected microbiota in ischemia and reperfusion brain
injury. Restoration of the L. helveticus and L. brevis colonies
had strong neuroprotective effects. It significantly alleviated the
accumulation of branched-chain amino acids (BCAAs), which
aggravated microglia-induced neuroinflammation through the
AKT/STAT3/NF-kB signaling pathway in the development of IS
(Shen et al., 2023). Additionally, as an aged biome can increase the
systemic proinflammatory cytokine levels (Spychala et al., 2018),
which in turn contributes to the pathogenesis of IS, replenishing
the gut microbiome with fresh microorganisms can reverse age-
related poor stroke recovery through host immunologic, microbial,
and metabolomic modulation.

As a key player in the MGBA, SCFAs can protect against
neurodegenerative diseases by regulating the release of hormones
and neurotransmitters mediated by G-protein-coupled receptors to
further regulate inflammation and the mood of the patient (Fang
et al., 2022). Among the known SCFAs, butyric acid showed the
highest negative correlation with IS. A recent study reported that
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FIGURE 1

Improving ischemic stroke outcomes (IS) with microbiota-gut-brain axis (MGBA)-based interventions. Microbiological interventions, including
dietary interventions, antibiotics, probiotics and prebiotics, fecal microbiota transplantation (FMT), traditional Chinese medicine (TCM), and intestinal
stem cell transplantation can improve MGBA by altering microbial communities. The gut microbiome is known to be highly involved in the
biosynthesis and release of various hormones, neurotransmitters, and numerous active metabolites and agents that may directly or indirectly
regulate MGBA via neurobiological networks, immunological processes, and/or microbial metabolic signaling pathways, thereby affecting brain
function and systemic inflammation. Modulation of gut microbiota composition and microbiota-derived metabolites may prevent infectious
complications and improve neurological outcomes in IS patients by increasing short-chain fatty acids (SCFAs) and neurochemicals, decreasing gut
permeability, reducing bacterial translocation, and alleviating immunosuppression.

administering butyrate decreased exacerbated cerebral infarction
in IS associated with type 2 diabetes. The mechanisms related
to this effect might include improvements in the functions of
the gut barrier and the blood-brain barrier and a decrease
in the serum levels of lipopolysaccharides (LPSs), LPS-binding
protein (LBP), and proinflammatory cytokines (Wang H. et al.,
2022). Interfering with the gut microbiota by transplanting fecal
bacteria rich in SCFAs and supplementing with butyric acid
could thus be an effective strategy for treating IS (Chen et al.,
2019b). In a study, the researchers performed direct enrichment of
selective SCFA-producing bacteria, which included Bifidobacterium
longum, Clostridium symbiosum, Faecalibacterium prausnitzii, and
Lactobacillus fermentum. The results showed that these SCFA-
producing bacteria alleviated post-stroke neurological deficits and
inflammation and increased the concentrations of SCFAs in the gut,
brain, and plasma of aged mice after a stroke (Lee et al., 2020).
These findings confirmed the effects of a more targeted and refined
microbiome therapy.

These studies showed the beneficial effects of FMT on patients
with neurological disorders. However, almost all studies were
conducted on animal models. Additionally, one study conducted

with an animal model for stroke also recorded an increase in
mortality after FMT (Vendrik et al., 2020). As the beneficial effects
of FMT are not clear, whether positive findings from animal studies
can be verified in treating human diseases needs to be ascertained.
Large double-blinded randomized controlled trials need to be
conducted to further explain the impact of FMT in IS. In recent
years, many novel therapeutic strategies targeting specific bacteria
have been developed, such as phage therapeutics or multi-phage
cocktail therapy, cytokine modulators, and gene therapy. These
techniques are more applicable than FMT.

Traditional Chinese medicine (TCM)
in IS

Besides strategies directly modulating the intestinal microbiota,
drugs that influence the intestinal microbiota might be more
convenient in clinical practice. TCM emphasizes the holistic
concept, which is consistent with the modern view of the MGBA
in stroke. In China, since the Han Dynasty period, TCM practices
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TABLE 1 The summary of pharmacological effects of herbal ingredients
and natural products in IS based on the intestinal microbiota.

Natural products and
botanical herbal
components

Effects in IS based on
intestinal microbiota

Active ingredients of herbs

Anthraquinones (Guo Y. et al., 2021) Lactobacillus, Bifidobacterium↑
Escherichia coli, Enterococcus↓

Saponins

Astragaloside IV (Yin et al., 2020) Clostridium, Blautia, Bifidobacterium,
Holdemanella, Megamonas ↑

Ginsenosides (Chen H. et al., 2020) Lactobacillus helveticus↑

Panax notoginseng saponins (Li et al.,
2018)

Bifidobacterium longum↑

Herb pair

Chuanxiong-Pueraria (Chen et al., 2019a) Ruminococcaceae_UCG_004,
Ruminococcaceae_UCG_005,
Ruminococcaceae_NK4A214_group,
Lachnospiraceae_NK4B4_group,
Akkermansia, Alloprevotella,
Oscillospira, Megasphaera↑

TCM prescription

Angong Niuhuang Pill (Zhang H. et al.,
2022)

the family Prevotellaceae, the genus
Alloprevotella, the phylum
Bacteroidota↓
the family Lachnospiraceae, the
genera Lachnoclostridium, the phylum
Firmicutes, Enterorhabdus,
Colidextribacter, Roseburia,
Lachnospiraceae_UCG-006↑
prostaglandin I2 and uridine↑

Buyang Huanwu decoction (Liu W. et al.,
2022)

Lactobacilli, Bifidobacteria↑
Escherichia coli, Actinobacterium↓

Dihuang Yinzi (Wang X. et al., 2022) Firmicutes, Bacteroidetes,
Proteobacteria↑

Huangqi-Honghua (Wang K. et al., 2022) Ruminococcaceae, Bacteroides,
Phascolarctobacterium,
Desulfovibrionaceae↓
Blautia, Lachnospiraceae, Oscillibacter,
Bifidobacterium↑
bile acid receptor FXR activated

Huazhuo Jiedu Huoxue Tongluo
Prescription (Ni et al., 2022)

Firmicutes, Bacteroidetes, Lactobacillus,
Prevotella↑
Enterobacteriaceae, Clostridium,
Enterococcus↓

Tanhuo decoction (Guo Q. et al., 2021) Anaerostipes, Bifidobacterium, Blautia,
Coprococcus, Gemmiger, Ruminococcus,
Streptococcus↑
Lachnospira, Odoribacter, Eubacterium,
Phascolarctobacterium↓

Tong-Qiao-Huo-Xue Decoction (Zhang
F. et al., 2020)

Bacteroidetes, Isobacillus,
Bifidobacteria↑
intestinal barrier repaired

Xinglou Chengqi Decoction (Gao et al.,
2021)

Verrucomicrobia, Akkermansia↑
Paraprevotella, Roseburia, Streptophyta,
Enterococcu, Bacteroidetes↓
short chain fatty acids (SCFAs)↑

Zhilong Huoxue Tongyu capsule (Wang
R. et al., 2022)

Proteobacteria, Prevotella↑
Firmicutes, Bacteroidota, Lactobacillus↓

have been passed down and evolved over thousands of years,
and many classic and effective medicines have been developed
for treating IS (Sun et al., 2015). Recent studies have shown that
many TCM formulae and monomers exert therapeutic effects by
modulating the intestinal microbiota and improving the secretion
of gastrointestinal hormones (Zhai et al., 2023).

Traditional Chinese medicine can be used to effectively
modulate intestinal homeostasis based on the concept of
“homology of medicine and food” and the typical hepatoenteric
characteristics of the pharmacokinetic profiles. Terpenoids,
glycosides, flavonoids, steroids, polyphenols, and polysaccharides,
among other bioactive substances found in TCM, can play distinct
roles in multiple gut microbial metabolic pathways (Li X. et al.,
2021). These active ingredients in the gut can reshape the structure
of the intestinal microflora by increasing beneficial bacteria
and decreasing harmful bacteria, thereby facilitating metabolic
processes that reduce oxidative stress and inflammation after a
stroke (Wang Y. X. et al., 2021).

Here, we briefly summarized the pharmacological effects
of natural botanical active ingredients, TCM monomers, and
compounds in the pathological state of IS based on the intestinal
microbiota and their metabolites, as shown in Table 1. The
orally administered TCM primarily interacts with the intestinal
microbiota in three ways in IS patients. (1) TCM modulates gut
microbiota composition; (2) TCM regulates intestinal metabolites;
(3) Intestinal microbiota transforms the components of TCM and
improves their metabolism, absorption, and synergism. Specifically,
TCM can change the composition and structure of the gut
microbiota and affect the production of gut microbiota-associated
metabolites. Thus, it exerts anti-inflammatory, anti-oxidative, and
immune regulatory effects, which can improve the outcome of
IS. Additionally, the intestinal microbiota exerts strong effects on
the metabolism of TCM through oxidation, reduction, hydrolysis,
and hydroxylation reactions, which are important for improving
the absorption of TCM and exerting pharmacological effects
(Chen et al., 2016). These findings provide new information
that might help elucidate the mechanisms through which TCM
affects IS.

The benefits of TCM for treating IS based on gut microbiota
may be associated with reshaping the gut microenvironment,
weakening of bacterial flora translocation, and an increase in
probiotics to reduce cerebrovascular damage (Zhang H. Y. et al.,
2021). To develop more effective TCM for treating IS, novel gut
microbiota sequencing technologies must be used to investigate
the gut microbiota for more accurately and precisely assessing the
regulatory impact of TCM, as well as to establish more standardized
and unified stable IS animal models for determining TCM impact.
Furthermore, in various IS models, including rodents and large
mammals, the long-term protective effects of TCM on the brain
and survival rate and the mechanism of regulating intestinal
flora must be determined. Also, the current pharmacokinetics,
pharmacodynamics, and toxicological characteristics of TCM
require more attention.

Acupuncture treatment at different acupoints, such as Quchi
and Zusanli (Ke et al., 2022), is an efficient therapy for IS. It
is extensively practiced in China and has also been accepted in
other countries and regions in recent years. The mechanism of
action of acupuncture might be associated with its effects on
intestinal microecology and plasma metabolism. It might influence
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Turicibacter, isoflavones, phytoestrogen metabolites (Xian et al.,
2022), and IPA levels (Li et al., 2022). Additionally, the combination
of acupuncture and TCM might have synergistic effects, which
might further enhance the recovery of IS when administered
together.

Intestinal epithelial stem cell
transplants (gut-derived stem cells)
in IS

Several studies have shown an association between a leaky
gut and alterations in gut microbiota in patients with IS
(Huang and Xia, 2021; Zhang W. et al., 2022). The leaky
gut hypothesis suggests that the increase in gut permeability
might cause inflammatory cytokines and toxic gut metabolites to
pass through the compromised intestinal epithelial barrier. The
resultant endotoxemia and bacterial translocation can aggravate
gut hemorrhage, gut dysmotility, intestinal paralysis, bowel
incontinence, and even gut-origin sepsis, along with neurological
impairment and a series of secondary injuries after IS (Larochelle
et al., 2022; Zhang W. et al., 2022). Therefore, the intestinal
epithelium needs to be repaired for the recovery of the patient
after a stroke. Stem cell therapy and organoid techniques are novel
strategies for gut remediation (Shaker and Rubin, 2012). Mani et al.
(2023) showed that the gut is a critical therapeutic target for stroke.
They engrafted organoids containing intestinal epithelial stem
cells (IESCs) from young rats into older model rats that suffered
a stroke. They found that the transplanted IESCs incorporated
into the gut restored gut dysbiosis caused by the stroke and
decreased intestinal permeability, which reduced the circulating
levels of endotoxin LPS and the inflammatory cytokine IL-17A.
They also discovered that IESC transplantation improved stroke-
induced acute (4 day) sensory-motor disability as well as chronic
(30 day) cognitive-affective function. The findings emphasized the
importance of early intervention in the acute stage of stroke and
transplantation of IESCs from young people. However, no clinical
studies on the efficacy of gut-derived stem cells in the treatment
of IS have been reported in the literature to date. In the future,
it will be critical to investigate donor selection, the mechanisms
underlying cell engraftment, and regimens to maximize transplant
efficiency. Therefore, further investigation is needed to optimize the
transplantation time, dose, and route to apply gut stem cell therapy
in the clinic.

Summary

The gut shows an early response to stroke, and changes in the
gut occur simultaneously with stroke-induced hyperpermeability
of the BBB. After the concept of MGBA was proposed, several
studies showed the high clinical application value of the approaches
targeting intestinal microbiota in the treatment of IS. The gut
microbiota can influence the metabolic status of the body besides

exerting strong effects on blood pressure, blood glucose, and
atherosclerosis, all of which are risk factors for IS (Wang J. et al.,
2022). A detailed study of the physiological functions of the
gut microbiota and gut microbiota disorders associated with the
central nervous system might provide new ideas for preventing and
treating IS. Additionally, several studies have also investigated the
development of the dietary intervention, antibiotics, probiotics and
prebiotics, FMT, TCM, as well as gut-derived stem cells for the
microbiome-based treatment of IS (Figure 1). However, intestinal
microbiota-targeted treatment of IS needs further improvement.
Large-sample multicenter studies with long-term follow-up need
to be conducted to verify the benefits. Identifying specific species of
pathogenic bacteria, optimizing targeted regimens, and combining
therapies can greatly contribute to the advancements in treating IS.
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