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Purpose: To construct a machine learning model based on radiomics of

multiparametric magnetic resonance imaging (MRI) combined with clinical

parameters for predicting Sonic Hedgehog (SHH) and Group 4 (G4) molecular

subtypes of pediatric medulloblastoma (MB).

Methods: The preoperative MRI images and clinical data of 95 patients with MB

were retrospectively analyzed, including 47 cases of SHH subtype and 48 cases

of G4 subtype. Radiomic features were extracted from T1-weighted imaging

(T1), contrast-enhanced T1 weighted imaging (T1c), T2-weighted imaging (T2),

T2 fluid-attenuated inversion recovery imaging (T2FLAIR), and apparent diffusion

coefficient (ADC) maps, using variance thresholding, SelectKBest, and Least

Absolute Shrinkage and Selection Operator (LASSO) regression algorithms. The

optimal features were filtered using LASSO regression, and a logistic regression

(LR) algorithm was used to build a machine learning model. The receiver operator

characteristic (ROC) curve was plotted to evaluate the prediction accuracy, and

verified by its calibration, decision and nomogram. The Delong test was used to

compare the differences between different models.

Results: A total of 17 optimal features, with non-redundancy and high correlation,

were selected from 7,045 radiomics features, and used to build an LR model. The

model showed a classification accuracy with an under the curve (AUC) of 0.960

(95% CI: 0.871−1.000) in the training cohort and 0.751 (95% CI: 0.587−0.915) in

the testing cohort, respectively. The location of the tumor, pathological type,

and hydrocephalus status of the two subtypes of patients differed significantly

(p < 0.05). When combining radiomics features and clinical parameters to
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construct the combined prediction model, the AUC improved to 0.965 (95%

CI: 0.898−1.000) in the training cohort and 0.849 (95% CI: 0.695−1.000) in the

testing cohort, respectively. There was a significant difference in the prediction

accuracy, as measured by AUC, between the testing cohorts of the two prediction

models, which was confirmed by Delong’s test (p = 0.0144). Decision curves and

nomogram further validate that the combined model can achieve net benefits

in clinical work.

Conclusion: The combined prediction model, constructed based on radiomics

of multiparametric MRI and clinical parameters can potentially provide a non-

invasive clinical approach to predict SHH and G4 molecular subtypes of

MB preoperatively.

KEYWORDS

medulloblastoma, radiomics, molecular subtypes, machine learning, prediction models

1. Introduction

Medulloblastoma (MB) is one of the most common malignant
brain tumors, and accounts for 15−20% of central nervous system
tumors in children and 40% of tumors in the posterior cranial fossa
(Kumar et al., 2015; Massimino et al., 2016; Northcott et al., 2019).
Prior to the emergence of molecular diagnostics, MB was classified
histologically into subtypes including classic, extensive nodularity,
desmoplastic or nodular, and large cell or anaplastic. However,
recent studies have found that histopathological classification does
not provide better prediction for the prognosis of patients and
guidance of clinical treatment (Louis et al., 2016; Massimino et al.,
2016).

With the development of molecular diagnostic techniques, the
2016 World Health Organization (WHO) classification of central
nervous system tumors classified MB into four molecular subtypes,
including wingless (WNT), sonic hedgehog (SHH, TP53 mutant,
or wild type), Group 3 (G3), and Group 4 (G4) (Louis et al., 2016).
Different molecular subtypes have different molecular mechanisms,
clinical characteristics, and prognosis (Eid and Heabah, 2021;
Fang et al., 2022). The WNT-activated type, which accounts for
approximately 10% of MB, with a 1:1 male and female incidence
ratio, originates in the rhombomere lip and dorsal brainstem
of older children, has the best clinical outcomes, and is usually
accompanied by an exon 3 activating mutation in CTNNB1 and
Chromosome 6 monomers (Ramaswamy et al., 2016; Colafati et al.,
2018). The SHH-activated type, which accounts for approximately
30% of MB, originating from cerebellar granule cells, has a
moderate prognosis, and the common molecular variants are
TP53, PTCH1, SUFU, SMO, and other genes mutations (Colafati
et al., 2018; Waszak et al., 2018; Hovestadt et al., 2019). In
the non-WNT/SHH-activated type (G3 and G4), which accounts
for approximately 25 and 35% of MB, respectively, the main
common molecular variants are frequent MYC, MYCN, and, OTX2
amplification. Patients in the G4 group with i17q or chromosome
11 deletion have a better prognosis compared to G3, but the
prognosis of G4 is significantly worse compared to SHH or WNT-
activated types (Zhao et al., 2016; Archer et al., 2017).

The published methods of molecular classification are invasive,
relying mostly on gene expression and methylation analyses. In

recent years, rapid advances in radiomics and machine learning
techniques have made it possible to preoperatively predict MB
molecular subtypes non-invasively. Radiomics is a quantitative
analysis method of standard medical imaging that extracts a large
number of quantitative features from CT, MRI, and PET images
through advanced image analysis tools combined with statistical
analysis and is now widely used in various clinical fields, such as
increasing precision in diagnosis, predicting prognosis and therapy
response (Hassani et al., 2019; Chu et al., 2021; Liang et al., 2021;
Zhai et al., 2021; Guiot et al., 2022).

Recently, some studies have used a single MRI sequence or
ADC values to construct prediction models for the prediction of
MB molecular subtypes (Iv et al., 2019; Gonçalves et al., 2022;
Saju et al., 2022). However, the results are still unstable, and there
are fewer reports on constructing prediction models based on
multiparametric MRI combined with clinical parameters for the
prediction of MB molecular subtype. It was found that SHH and
G4 were the most common molecular subtypes of MB in children,
and the prognosis differed significantly between these two subtypes
(Taylor et al., 2012). Total resection of the tumor in patients with G4
type has great importance in improving progression-free survival,
especially in the presence of metastatic tumor spread preoperatively
(Packer and Vezina, 2008; Thompson et al., 2016, 2018). Therefore,
early preoperative prediction of molecular subtypes can help tailor
individualized treatment and improve long-term prognosis.

In this study, we retrospectively analyzed MRI images and
clinical data of 95 patients with MB to construct a machine learning
model based on radiomics of multiparametric MRI combined with
clinical parameters for predicting SHH and G4 molecular subtypes
of pediatric MB.

2. Materials and methods

2.1. Patient characteristics

The Institutional Review Committees of our hospital approved
the study. MRI imaging data and clinical data of patients with
MB who were treated and followed up in the Children’s Hospital
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FIGURE 1

Flowchart shows the process of radiomics in this study, including tumor sketching, feature extraction, feature selection, and model analysis.

of Chongqing Medical University and the Children’s Hospital
of Fudan University from October 2015 to October 2022 were
collected. Inclusion criteria were: (1) availability of sufficient image
quality preoperative, including axial T1, T2, T1C, T2FLAIR, and
ADC maps; (2) availability of postoperative pathological and
molecular subtype; (3) availability of complete clinical follow-
up data. Exclusion criteria: molecular subtypes that could not
be modeled due to the small number of cases were excluded.
Exclusion criteria were: molecular subtypes that have fewer cases
failed to build a model. 12 cases of WNT, 17 cases of G3,
and 1 case of not otherwise specified (NOS) were excluded.
Finally, 47 cases of SHH group and 48 cases of G4 group
(90 cases from the Children’s Hospital of Chongqing Medical
University and 5 cases from the Children’s Hospital of Fudan
University) were enrolled.

2.2. Detection methods of molecular
subtypes

The acquisition of molecular subtypes includes transcriptome-
related assays and genome-related assays. Transcriptome assay use

RNAseq methods to detect the expression levels of genes in the
subjects, which can assist in determining the molecular subtype and
prognosis of MB through the assessment of the expression levels of
genes related to molecular typing. Genomic assay cover common
variant types, including point mutations, insertions, deletions,
amplifications, and fusions, in 687 genes related to tumors. This
includes genetic variants highly related to the molecular subtype
of MB molecular typing and other genetic variants related to
molecular typing and drug use.

2.3. MRI acquisition

All patients underwent brain MR imaging at 1.5T or 3.0T
(Signa EXCITE HD, GE Healthcare, Chicago, IL, United States;
Discovery MR750, GE Healthcare, Milwaukee, WI, United States;
Achieva, Philips Healthcare, Best, Netherlands), with scanning
sequences encompassing axial T1, T2, T2FLAIR, T1c, and DWI
(b-value taken as 1,000, with subsequent post-processing for ADC
map generation). Details of the parameters for all the sequence
acquisition are available in Supplementary Table 1.
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TABLE 1 Clinical information of SHH and G4 groups.

Clinical data SHH
(n = 47)

G4
(n = 48)

P-value

Hydrocephalus

Absent 35 45 0.022

Present 12 3

Location

Cerebellum 23 2 0

Midline 24 46

Pathological typing

Classic 11 46 0

Desmoplastic or nodular 32 0

Large cell or anaplastic 2 2

Extensive nodularity 2 0

Age (x ± s, year) 6.75 ± 3.54 7.50 ± 2.97 0.217

Sex

Female 15 18 0.568

Male 32 30

Renal function

Abnormal 1 0 0.495

Normal 46 48

Liver function

Abnormal 2 1 0.985

Normal 45 47

Preoperative metastases

Absent 7 6 0.734

Present 40 42

Intracranial hypertension

Absent 40 45 0.299

Present 7 3

Ataxia

Absent 13 18 0.306

Present 34 30

Follow up recurrence or metastases

Absent 12 9 0.426

Present 35 39

2.4. Image uploading and tumor
sketching

The steps of radiomics analysis are shown in Figure 1.
Five sequence images of each patient were uploaded using the
big data artificial intelligence research cloud platform developed
by Huiying Medical Technology (Beijing) Co. A physician
manually outlined regions of interest (ROI) for each sequence,
layer by layer, for each case, using the platform’s built-
in tools. An automatic computer-generated 3D volume of
interest (VOI) of the lesion was obtained. The tumor boundary
was outlined without peritumoral edema and reviewed by an

TABLE 2 Seventeen optimal radiomic features.

Radiomic feature Radiomic
class

Filter

High gray level zone emphasis
is

glszm MB-ADC_wavelet-HHL

High gray level zone emphasis glszm MB-FLAIR_wavelet-
LHH

Large dependence low gray
level emphasis

gldm MB-T2_wavelet-LLL

Run variance glrlm MB-FLAIR_wavelet-LLH

Busyness ngtdm MB-ADC_wavelet-LLH

Zone entropy glszm MB-FLAIR_wavelet-LLH

Zone variance glszm MB-FLAIR_wavelet-
HHL

Skewness firstorder MB-T1_wavelet-HLL

Kurtosis firstorder MB-ADC_exponential

Dependence variance gldm MB-FLAIR_wavelet-LHL

High gray level zone emphasis glszm MB-T1C_wavelet-HHL

Size zone non-uniformity glszm MB-FLAIR_wavelet-HLL

Variance firstorder MB-T1C_wavelet-LLL

Small area high gray level
emphasis

glszm MB-ADC_wavelet-HHH

Zone entropy glszm MB-FLAIR_original

Zone entropy glszm MB-FLAIR_logarithm

Range firstorder MB-FLAIR_logarithm

experienced pediatric radiologist with 10 years of expertise in
neuroimaging. If the regional variation was more than 5%, the
boundary was decided by a senior physician, and neither of
the two physicians knew the patient’s information during this
procedure.

2.5. Radiomics feature extraction

A total of 7,045 quantitative imaging radiomics features were
extracted from the outlined ROIs using the open source Python
language environment toolkit Pyradiomics based on the Huiying
Big Data research platform, and these features can be classified
into four categories: À Intensity statistics characterization: The
distribution of voxel intensities within MR images is described
quantitatively by commonly used and basic metrics. Á Shape
and size features: These features reflect the shape and size of
the ROI. Â Texture features: Based on the gray level run-length
and gray level co-occurrence texture matrix calculation, we get
the texture features that can quantify the difference of regional
heterogeneity. Ã High-order statistical features, intensity, and
texture features of the transformed image are calculated again
using various filters such as exponential, logarithmic, square, square
root, and wavelet (including wavelet-LHL, wavelet-LHH, wavelet-
HLL, wavelet-LLH, wavelet-HLH, wavelet-HHL, and wavelet-
LLL).
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FIGURE 2

(A,B) ROC curves of the radiomics and combined model on the testing cohort and training cohort, respectively.

2.6. Feature selection

As described above, we extracted quantitative imaging
radiomics features from the five-sequence image ROIs of 95
patients. However, it is unlikely that all of these extracted features
will be useful for a given task. Therefore, using feature downscaling
to filter the specific features that are most relevant to this study for
best performance is a necessary step. To reduce redundant features,
feature selection methods include variance threshold (threshold
value = 0.8), SelectKBest, and the least absolute shrinkage and
selection operator (LASSO). For the variance threshold, the
threshold value is 0.8, so feature values with variances less than
0.8 are removed. The SelectKBest method is a univariate feature
selection method that uses p-values to analyze the relationship
between features and classification results, which will allow
screening all features with p-values less than 0.05. For LASSO
regression, the L1 regularizer is used as the cost function, with
a maximum number of iterations of 1,000. Finally, we obtain 17
optimal feature subsets.

2.7. Machine learning classification

Based on the selected feature subsets, the LR algorithm was
used to construct the radiomics feature model and the combined
model of radiomics features and clinical parameters, respectively,
and the patients were divided into training and testing cohorts

TABLE 3 AUC, 95% CI, sensitivity, and specificity of radiomics model in
training cohort and testing cohort.

Cohort AUC 95% CI Sensitivity Specificity

Training cohort 0.960 0.871−1.000 0.880 0.850

Testing cohort 0.751 0.587−0.915 0.730 0.730

TABLE 4 AUC, 95% CI, sensitivity and specificity of combined model in
training cohort and testing cohort.

Cohort AUC 95% CI Sensitivity Specificity

Training cohort 0.965 0.898−1.000 0.910 0.940

Testing cohort 0.849 0.695−0.915 0.800 0.730

by the random grouping method in the ratio of 7:3 to obtain the
classification prediction results.

2.8. Statistical analysis

Clinical data were statistically analyzed using SPSS 25.0
statistical software. Measurement data that conforms to a normal
distribution were presented as x ± s, and the independent
samples t-test was used to compare the differences between groups.
Categorical data were tested using the χ2 test or Fisher’s exact
test, and differences were considered statistically significant at
P < 0.05. For the machine learning results, ROC curves were
used in the training cohort and testing cohort to compare model
prediction accuracy and calculate AUC, sensitivity, and specificity.
The Delong test was used to compare the AUC differences between
the ROC curves of the two models, and P < 0.05 was considered
statistically significant.

3. Results

3.1. Clinical features

A total of 95 patients with MB were enrolled in this study,
including 47 cases of SHH and 48 cases of G4. The clinical data
such as gender, age, tumor location, clinical symptoms and physical
signs, hydrocephalus status, metastasis or recurrence status, blood
biochemical indexes, and pathological typing were collected. There
were no significant differences in age, gender, renal function,
liver function, intracranial hypertension, ataxia and preoperative
metastases, recurrence or metastases at follow-up between these
two groups (P > 0.05). Pre-dominant pathological typing was
desmoplastic or nodular in SHH and classic in G4. The tumor
location was mainly in the cerebellum (cerebellar hemisphere or
pontine arm) in SHH and in the midline (four ventricles or
cerebellar vermis) in G4. Compared with patients in SHH, those
in G4 had a higher likelihood of developing hydrocephalus. These
differences between groups were statistically significant (P < 0.05),
as shown in Table 1.
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FIGURE 3

(A,B) Calibration curves of the radiomics and combined model on the testing cohort and training cohort, respectively.

FIGURE 4

(A,B) Decision curves of the radiomics and combined model on the testing cohort and training cohort, respectively.

FIGURE 5

Nomogram based on clinical and radiomics score.
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TABLE 5 Delong test result.

Training cohort
radiomics

model/Combined
model

Testing cohort
radiomics

model/Combined
model

AUC 0.960/0.965 0.751/0.849

P-value 0.4604 0.0144

3.2. Radiomic features

A total of 7,045 quantitative imaging features were extracted
from the five sequence images of 95 patients, and 17 optimal
feature sets, including 13 texture features and 4 intensity features,
were obtained after dimensionality reduction using variance
threshold (threshold = 0.8), SelectKBest, and the LASSO regression
algorithm. The details were shown in Table 2.

3.3. Model performance

In the radiomics feature model, the AUC was 0.960 (95% CI:
0.871−1.000), and the sensitivity and specificity were 0.880 and
0.850, respectively, in the training cohort. In the testing cohort,
the AUC was 0.751 (95% CI: 0.587−0.915), and the sensitivity
and specificity were 0.730 and 0.730, respectively. In the radiomics
features and clinical parameters combined model, the AUC was
0.965 (95% CI: 0.898−1.000), and the sensitivity and specificity
were 0.910 and 0.940, respectively, in the training cohort. In the
testing cohort, the AUC was 0.849 (95% CI: 0.695−1.000), and the
sensitivity and specificity were 0.800 and 0.730, respectively. The
ROC curves for both the training and testing cohorts are shown
in Figures 2A, B and Tables 3, 4. The calibration curves show
the goodness of fit between the predicted molecular subtypes and
actual molecular subtypes in both the training and testing cohort
for the radiomics model and the combined model (Figures 3A, B).
The decision curves show that the combined model outperforms
the radiomics model in terms of net benefit (Figures 4A, B). The
clinical utility of both prediction models is demonstrated by the
nomogram (Figure 5).

Delong test results showed the difference of prediction accuracy
measured by AUC in the testing cohort of the two prediction
models has statistical significance. The results were shown in
Table 5.

4. Discussion

Medulloblastoma is a highly aggressive brain tumor, the
therapeutic strategies and clinical prognosis vary significantly
among molecular subtypes. The published methods of molecular
classification are invasive, relying mostly on gene expression and
methylation analyses. Due to the tumor tissue heterogeneity, the
biopsy tissue specimens cannot fully capture the whole tumor tissue
information. In this study, we extracted radiomics features of the
entire tumor region and combined them with clinical parameters
to build a prediction model for SHH and G4 molecular subtypes
of pediatric MB. The results showed that the combined model had

significant classification efficacy with an AUC > 0.8 in the testing
cohort, potentially providing a non-invasive clinical approach to
preoperatively predict SHH and G4 molecular subtypes of MB.

In this study, we used clinical characteristics, including
hydrocephalus status, tumor location, and pathological type, to
construct a combined model for predicting SHH and G4 molecular
subtypes of MB. In our study, there were no significant differences
in age and gender between the two molecular subtypes, which is not
consistent with the previous studies reported by Taylor et al. (2012)
and Eid and Heabah (2021). We suspect that this may be due to the
small sample size of our cohort. Similar to a recent study by Yan
et al. (2020) that enrolled 122 patients, our study also showed that
the tumor location and hydrocephalus status differed in molecular
subtypes and were combined in the model to improve predictive
efficacy.

In our study, 17 optimal radiomics features were selected,
containing 13 texture features and 4 intensity features.
A multicenter study of 263 patients from 12 children’s hospitals
reported that texture features and first-order intensity features
contributed the most to improving the predictive efficacy of the
model (Zhang et al., 2022). In the study by Yan et al. (2020),
three texture features and eight intensity features were extracted
to construct the model. Also, in the study by Chang et al.
(2021), 38 children from Taipei showed significant differences in
eight textural features among different molecular subtypes. In a
systematic review and meta-analysis on radiomics-based machine
learning for predicting molecular subtypes of MB (Karabacak
et al., 2022), five articles enrolled 420 patients with MB, and the
results showed that the mean AUC of prediction models for all MB
molecular subtypes was >0.8, indicating a greater possibility of
predicting MB molecular subtypes by radiomics studies. Compared
with the above-mentioned studies, our study used comprehensive
image features of five sequences including T1, T2, T1C, T2FLAIR,
and ADC maps, and combined them with clinical parameters to
construct a combined model with improved prediction accuracy.
The AUC was 0.965 in the training cohort and 0.849 in the testing
cohort, respectively, which can be used to facilitate the prediction
of SHH and G4 molecular subtypes of MB preoperatively.

This study had some limitations. First, the number of cases
in the SHH and G4 groups enrolled in this study was relatively
small, and the WNT and G3 groups were not included in the
study because the number of cases did not meet the modeling
requirements. Further expansion of the sample size is needed to
conduct a multicenter, prospective study. Second, the results of this
study lack external validation to better assess the generalizability of
the model, which still needs further investigation.

5. Conclusion

In summary, our study demonstrated that a combined
prediction model based on the radiomics features of
multiparametric MRI and clinical parameters can effectively
predict the SHH and G4 molecular subtypes of MB prior to
surgery. These findings highlight the potential of radiomics
and machine learning techniques for non-invasive preoperative
prediction of MB molecular subtypes.
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