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Neural circuit regulation by
identified modulatory projection
neurons
Dawn M. Blitz*

Department of Biology and Center for Neuroscience, Miami University, Oxford, OH, United States

Rhythmic behaviors (e.g., walking, breathing, and chewing) are produced by

central pattern generator (CPG) circuits. These circuits are highly dynamic due

to a multitude of input they receive from hormones, sensory neurons, and

modulatory projection neurons. Such inputs not only turn CPG circuits on and

off, but they adjust their synaptic and cellular properties to select behaviorally

relevant outputs that last from seconds to hours. Similar to the contributions of

fully identified connectomes to establishing general principles of circuit function

and flexibility, identified modulatory neurons have enabled key insights into neural

circuit modulation. For instance, while bath-applying neuromodulators continues

to be an important approach to studying neural circuit modulation, this approach

does not always mimic the neural circuit response to neuronal release of the

same modulator. There is additional complexity in the actions of neuronally-

released modulators due to: (1) the prevalence of co-transmitters, (2) local- and

long-distance feedback regulating the timing of (co-)release, and (3) differential

regulation of co-transmitter release. Identifying the physiological stimuli (e.g.,

identified sensory neurons) that activate modulatory projection neurons has

demonstrated multiple “modulatory codes” for selecting particular circuit outputs.

In some cases, population coding occurs, and in others circuit output is

determined by the firing pattern and rate of the modulatory projection neurons.

The ability to perform electrophysiological recordings and manipulations of

small populations of identified neurons at multiple levels of rhythmic motor

systems remains an important approach for determining the cellular and synaptic

mechanisms underlying the rapid adaptability of rhythmic neural circuits.

KEYWORDS

central pattern generator, neuropeptide, feedback, neuromodulation, neural circuit,
modulatory projection neuron

1. Introduction

Rhythmic motor behaviors are generated by central nervous system (CNS) circuits
called central pattern generators (CPGs) (Bucher et al., 2015). Although CPGs can produce
rhythmic output without rhythmic input, modulatory input is often required to configure
CPGs into an active state. Additionally, beyond simply turning on or off, CPGs are often
“multifunctional,” in that they produce different outputs to adapt to changes in the internal
and external environments (Briggman and Kristan, 2008; Benjamin, 2012; Daur et al., 2016;
Marder et al., 2022). In some cases, the source of modulation is intrinsic to the CPG and
a necessary component of motor output (Katz, 1998). However, many sources originate
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outside the CPG, including sensory inputs, hormones, and
modulatory projection neurons (PNs), i.e., neurons which originate
in higher order CNS regions and project to CPGs (Rosen et al.,
1991; Briggman and Kristan, 2008; Nusbaum, 2008; Hsu and
Bhandawat, 2016).

Small circuits, particularly those underlying rhythmic
behaviors, with their identified neurons, have enabled many
important insights into circuit function and plasticity (Calabrese
et al., 2016; Cropper et al., 2018; Katz and Quinlan, 2019; Marder
et al., 2022). Similar to the accessibility of identified circuit
neurons, several invertebrate preparations also have relatively
small populations of modulatory PNs which are accessible to
electrophysiological approaches (Rosen et al., 1991; Heinrich,
2002; Mesce et al., 2008; Nusbaum, 2008). PN populations range
from ∼20 pairs in crab and mollusk feeding systems to ∼200–500
pairs targeting the insect ventral nerve cord (Rosen et al., 1991;
Coleman et al., 1992; Hsu and Bhandawat, 2016; Namiki et al.,
2018). Comparable PN populations in vertebrates are typically
larger, include heterogeneous types, and can be distributed
across multiple nuclei (Garcia et al., 2011; Sharples et al., 2014;
Ruder and Arber, 2019; Flaive et al., 2020). While technological
advances are increasing the ability to control vertebrate neuron
populations in vitro and in vivo, cellular-level experimental access
to modulatory PNs and a fully described motor circuit connectome
remains challenging in many vertebrate preparations (Kim et al.,
2017; Leiras et al., 2022). Here, I will focus on lessons learned from
several small, invertebrate motor systems, regarding the cellular
mechanisms by which modulatory PNs alter CPG output, and how
their activity is regulated. Much additional work on descending
motor control, including fast activation of escape behaviors, and
large-scale genetic approaches investigating insect descending
neurons is beyond the scope of this article (Cande et al., 2018;
Herberholz, 2022).

2. Modulatory projection neurons
alter CPG output

2.1. Bath-application vs.
neuronal-release

Early studies primarily using bath-applied neuromodulators,
but also stimulation of identified modulatory PNs, demonstrated
that there is considerable flexibility in the strength and pattern
of neuronal activity, as well as in which CPG(s) the neurons
are participating (Hooper and Marder, 1984; Kuhlman et al.,
1985; Flamm and Harris-Warrick, 1986; Dickinson et al., 1990;
Harris-Warrick and Marder, 1991; Ramirez and Pearson, 1991;
Marder, 2012). Although bath-application continues to provide
insights into circuit modulation, bath-applied modulator actions
range from very similar to neuronally-released modulator, to
only mimicking some effects, to having distinct, even opposite
effects (Marder, 2012; Nusbaum et al., 2017). The small numbers
and exceptional experimental access afforded by invertebrate
modulatory neurons have revealed several explanations for
distinctions between bath-applied and neuronally-released
modulators. The crustacean stomatogastric nervous system
(STNS), is particularly useful because the transmitters, intrinsic

properties, and synaptic connections are identified for the ∼30
neurons comprising two feeding-related CPGs (pyloric, gastric
mill) (Figure 1A; Marder and Bucher, 2007; Daur et al., 2016).
Additionally, identified modulatory PNs are amenable to intra-
somatic and intra-axonal recordings, and identification of their
(co-)transmitter content allows for direct comparison of bath-
applied vs. neuronally-released neuromodulators (Figure 1A;
Nusbaum and Marder, 1989a; Coleman and Nusbaum, 1994; Stein,
2009; Kwiatkowski et al., 2013; Nusbaum et al., 2017).

2.2. Co-transmission

Modulatory CPG inputs, including PNs, use metabotropic
receptors and second messenger signaling to alter intrinsic and
synaptic properties of circuit neurons to select different outputs
(Katz and Calin-Jageman, 2009; Nadim and Bucher, 2014).
However, they often also use rapid ionotropic transmission. Co-
transmission is ubiquitous and a likely contributor to distinctions
between modulatory neuron activation and bath-application.
Co-transmitter complements include neuropeptide plus classical
and/or amine small molecule transmitters, or multiple small
molecule transmitters (Nusbaum et al., 2017; Nässel, 2018; Trudeau
and El Mestikawy, 2018; Svensson et al., 2019; Eiden et al., 2022).
One or more neuropeptides plus a small molecule transmitter is
common in modulatory PNs targeting CPGs (Figure 1A; Schlegel
et al., 2016; Nusbaum et al., 2017; Nässel, 2018).

Neuropeptide and small molecule co-neurotransmitter actions
range from varying degrees of convergence, to complementary,
to entirely divergent (Thirumalai and Marder, 2002; Nusbaum
et al., 2017; Nässel, 2018; Florman and Alkema, 2022). In the
crab STNS, a modulatory PN (MCN5) switches the CPG neuron
LPG from pyloric-only network participation to dual-network
(pyloric plus gastric mill) activity via its neuropeptide Gly1-
SIFamide (Figure 1B; Fahoum and Blitz, 2021; Snyder and Blitz,
2022). However, bath applied Gly1-SIFamide excites the pyloric
CPG neuron LP, which inhibits LPG and prevents it from fully
expressing dual-network activity. This Gly1-SIFamide excitation of
LP is opposite of MCN5 actions (Figure 1B; Fahoum and Blitz,
2021). MCN5-released Gly1-SIFamide can elicit the switch in LPG
activity due to co-released glutamate inhibiting the LP neuron
that would otherwise interfere with LPG switching into dual-
network activity (Figure 1B). Thus, ionotropic classical transmitter
actions are essential for metabotropic neuropeptide actions to be
fully expressed. Conversely, in Aplysia feeding, ionotropic actions
are enhanced by metabotropic receptor-mediated co-transmitter
actions. The feeding motor pattern activated by the modulatory
PN CBI-2 changes over time, due to CBI-2 modulation of its
cholinergic synaptic transmission onto feeding motor neurons
(Koh et al., 2003). The time-dependent effects on the motor pattern
and enhanced fast cholinergic synaptic transmission are mimicked
by either of the CBI-2 peptide co-transmitters (CP2, FCAP).
However, the cooperative peptide effects are distinct, with CP2
and FCAP increasing quantal content versus size, respectively (Koh
et al., 2003). Intracellular recordings from identified modulatory
PNs such as MCN5 and CBI-2, with identified co-transmitters,
revealed co-transmitter cooperativity necessary for motor pattern
selection that would be missed in bath-application studies.
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FIGURE 1

Identified modulatory projection neurons reveal cooperative and divergent actions contributing to distinctions between bath-applied and
neuronally-released modulator. (A) The crustacean stomatogastric nervous system (STNS) includes the pyloric (food filtering, ∼1 Hz) and gastric mill
(food chewing, ∼0.1 Hz) CPGs within the stomatogastric ganglion (STG). Modulatory PNs originating in the oesophageal (OG), the paired
commissural ganglia (CoGs), and the supraoesophageal ganglion (SOG) project to and modulate the CPGs. Intracellular recordings of modulatory
PNs can be made at the soma in the SOG, CoG, or OG, and axon terminals near the entrance to the STG (electrode symbols). Most modulatory PNs
contain small molecule and neuropeptide co-transmitters as listed in the upper table. a,bSome analogous modulatory neurons in different species
(lobster, Homarus gammarus, H. americanus; crab, Cancer borealis) contain the same co-transmitters, and others contain different complements.
All PNs listed occur as pairs, either as a single copy in each CoG (MCN1/5/7, CPN2), or in the same location (OG: MPN/GN; SOG: IVN/PS), however
they are drawn as single neurons for clarity. (B) Ionotropic co-transmitter actions are necessary for full expression of metabotropic actions. In
C. borealis, the modulatory PN MCN5 elicits a motor pattern that includes dual-network activity in the LPG neuron (shorter duration, faster
pyloric-timed bursts alternating with slower gastric mill-timed bursts). Pyloric network activity is evident in LP and PD neuron activity, gastric mill
network activity is represented by DG neuron activity. Neuron activity is schematized as extracellular recordings with each box representing a burst
of action potentials. Bath application of the MCN5 neuropeptide Gly1-SIFamide mimics some but not all MCN5 actions. In particular, Gly1-SIFamide
excites the pyloric LP neuron (+) whereas MCN5 inhibits LP (–). The increased LP activity during Gly1-SIFamide application inhibits the LPG neuron,
preventing it from fully participating in the slower gastric mill network, note the extended duration LPG bursts alternating with DG that do not fully
merge into a gastric mill-timed burst. MCN5 inhibits LP (gray) via its co-transmitter glutamate, which is essential for LPG to fully participate in the
gastric mill network via Gly1-SIFamide effects (Blitz et al., 2019; Fahoum and Blitz, 2021). (C) Spatially divergent co-transmitter actions occur in
modulatory PNs in the STNS. The MPN and PS neurons use their peptide transmitters (proctolin and crust-MS, respectively) on pyloric and gastric
mill CPGs in the STG, but their small molecule transmitters (GABA and histamine, respectively) in the CoGs. It is not known whether there is
differential trafficking or other explanations for these segregated co-transmitter actions (Nusbaum and Marder, 1989a; Blitz and Nusbaum, 1999;
Kwiatkowski et al., 2013). Species used in the referenced studies are indicted in each panel. Neuron/transmitter identification in panel (A): (Nusbaum
and Marder, 1989a; Coleman and Nusbaum, 1994; Norris et al., 1994, 1996; Blitz and Nusbaum, 1999; Blitz et al., 1999, 2019; Meyrand et al., 2000;
Swensen et al., 2000; Thirumalai and Marder, 2002; Christie et al., 2004; Kwiatkowski et al., 2013; Fahoum and Blitz, 2021).

In some cases, neuropeptide and small molecule actions appear
partially redundant. In the nematode Caenorhabditis elegans,
serotonin or NLP-3 neuropeptide release from a modulatory PN
is sufficient to activate egg-laying, however their combined actions

elicit additional egg-laying. Further work is necessary to determine
whether their actions converge onto the same targets (Brewer et al.,
2019). Co-transmitters may converge onto the same cellular or even
subcellular targets (Nadim and Bucher, 2014), however without
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cellular-level access to the full CPG circuit, similar network level
actions may hide cellular divergence. In Aplysia feeding, three
neuropeptides released from modulatory neuron CBI-12, each have
the same circuit level effect, shortening the protraction phase of an
ingestive motor pattern (Jing and Weiss, 2005; Zhang et al., 2018).
However, the peptides act on different CPG neurons to mediate
the same circuit effect (Zhang et al., 2018). Such redundancy may
ensure a particular adjustment to circuit output even when some
targets are unresponsive.

2.3. Spatial segregation of co-transmitter
actions

Divergent co-transmitter actions may result from spatial
segregation. In the crustacean STNS, modulatory PNs (MPN,
PS) each use their peptide transmitter on CPG neurons within
the stomatogastric ganglion (STG), but their small molecule
transmitters act at distinct arbors, in different ganglia [commissural
ganglia (CoGs)] (Figure 1C; Nusbaum and Marder, 1989b; Blitz
and Nusbaum, 1999; Kwiatkowski et al., 2013). Spatially distinct
actions could occur due to distinct trafficking of transmitter
vesicles, differential receptor expression on postsynaptic targets, or
differential sensitivity of transmitter release to neuronal activity
(Kueh and Jellies, 2012; Nusbaum et al., 2017; Cropper et al.,
2018; Cifuentes and Morales, 2021). Where determined, the low
end of physiological firing frequencies is sufficient to release both
peptide and small molecule transmitters (Cropper et al., 2018). On
a finer scale, peptidases can constrain the actions of neuronally-
released peptides, enabling distinct effects even when released into
the same densely overlapping neuropil regions (Christie et al., 1997;
Blitz et al., 1999; Nusbaum, 2002; Wood and Nusbaum, 2002;
Nässel, 2009). Although neuromodulators are often considered
to act via relatively non-specific “volume transmission,” it is
becoming increasingly clear that there is also spatial constraint
of neuromodulator actions (Disney and Higley, 2020; Liu et al.,
2021; Nässel and Zandawala, 2022). Localization of reuptake
and degradative machinery, and constrained release/receptor
distributions beyond anatomically-defined synapses can limit the
sphere of neuromodulator influence (Nusbaum, 2002; Disney and
Higley, 2020; Liu et al., 2021; Eiden et al., 2022).

2.4. Local presynaptic feedback onto
modulatory projection neurons

The ability to record from modulatory PN axon terminals
revealed local presynaptic regulation of their transmission
(Nusbaum, 1994). For example, rhythmic presynaptic inhibition
from a circuit neuron onto modulatory PN terminals in the crab
STNS and the subsequent waxing and waning of modulatory
effects is essential to elicit a chewing pattern (Coleman et al.,
1995). Further, the system is tuned such that this local feedback
inhibition results in a more coordinated motor pattern when
both PN copies are coactive compared to the same cumulative
activity in a single PN copy (Colton et al., 2020). The presynaptic
regulation occurs at terminals that are ∼1–2 cm distant from the
soma (Figure 1A) and due to electrotonic decay, is not present

in somatic recordings and does not alter PN activity initiating
in the PN ganglion of origin (Nusbaum et al., 1992; Coleman
and Nusbaum, 1994; Coleman et al., 1995). Local synaptic input
includes chemical transmission between circuit neurons and PNs
and between PNs, plus extensive electrical coupling between circuit
neurons and PN terminals (Perrins and Weiss, 1998; Hurwitz
et al., 2005; Stein et al., 2007; Marder et al., 2017; Blitz et al.,
2019). Local feedback actions may generally alter transmission, or
be more specific, including decreasing chemical but not electrical
transmission (Coleman et al., 1995), or decreasing peptide but
not small molecule transmitter release (DeLong et al., 2009).
Rhythmic presynaptic regulation from CPG elements can also
cause modulatory PN actions to occur via distinct mechanisms
(e.g., electrical vs. chemical transmission) during different phases
of motor output (Coleman et al., 1995; Hurwitz et al., 2005).
Long-distance synaptic feedback also regulates PN transmission,
however through changes in PN activity (see Section “3.3. Long-
distance CPG feedback”). While much continues to be learned from
bath-application studies, studies discussed above provide a note of
caution, as even co-transmitter bath application may not mimic
neuronal release due to the lack of spatial and temporal control that
occurs with neuronally-released neuromodulators.

3. Regulation of modulatory
projection neuron activity

Modulatory PNs serve as a link between sensory and/or higher-
order inputs, and the motor circuits responsible for behavior.
Thus, understanding how PN activity is controlled is important
to understanding how sensory information and higher-order
decisions are converted to appropriate behavioral responses.

3.1. State-dependence

In vitro and in vivo, single modality sensory input can be
sufficient to initiate relevant behaviors via activation of identified
modulatory PNs (Willard, 1981; Rosen et al., 1991; Horn et al., 1999;
Jing and Weiss, 2005; Hedrich et al., 2011). However, PN activity is
often regulated by multiple sources. In particular, inputs relaying
behavioral state information can alter PN sensitivity to other inputs
during ongoing behaviors, or result in different behavioral versions,
on multiple time scales (Kristan and Shaw, 1997; Staudacher, 2001;
Beenhakker et al., 2007; Barrière et al., 2008; White et al., 2017;
Ache et al., 2019; Cook and Nusbaum, 2021). State-dependent
PN activity may be a consequence of inputs specifically targeting
PNs, such as courtship-promoting neurons converging with visual
input onto the Drosophila P9 PN, to elicit courtship locomotor
behavior (Bidaye et al., 2020). Behavioral state can also be conveyed
to PNs through broadly-acting hormones (Willard, 1981; Mesce
and Pierce-Shimomura, 2010; Flood et al., 2013). In the medicinal
leech, circulating serotonin increases with hunger, coincident with
a decreased threshold for swimming. Although serotonin does
not activate swim-activating cell 204, it modulates its intrinsic
properties, making it easier for other inputs to activate this neuron
and elicit swimming (Angstadt and Friesen, 1993; Kristan et al.,
2005). Even if the responsiveness of a modulatory PN does not
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change, the consequences of its activity may be state-dependent.
The leech R3b1 PN elicits crawling or swimming, with the decision
determined by the surrounding fluid level (Esch and Kristan,
2002). “Shallow water detector” sensory neurons appear to select
motor output downstream from modulatory PNs, via actions on
CPG neurons (Figure 2A). However, dopamine application biases
the entire nervous system toward crawling and R3b1 only elicits
crawling in this context (Figure 2A; Puhl et al., 2012), suggesting
both PN- and CPG-level control of motor system state.

3.2. Long-lasting activity states

Inputs to modulatory PNs have rapid transient effects, via
fast synaptic transmission, or trigger activity persisting beyond
the stimulus duration, via slower metabotropic actions (Rosen
et al., 1991; Beenhakker and Nusbaum, 2004; Kristan et al., 2005;
Brodfuehrer et al., 2008; Benjamin, 2012). For long-lasting PN
activation, a behavioral switch might require active termination
of PN activity, such as a transient “stop” signal from a sensory
pathway that triggers an incompatible behavior via other PNs
(Esch and Kristan, 2002; Mesce and Pierce-Shimomura, 2010).
Additionally, interactions between modulatory neurons, serving
to either reinforce or suppress activity in other modulatory PNs,
enables them to play important roles in maintaining or switching
behavioral state. This includes inhibiting competing PNs to remove
their drive of an alternative CPG, activating PNs which inhibit
a competing CPG, or exciting complementary PNs (Blitz and
Nusbaum, 1997, 1999; Crisp and Mesce, 2006; Wu et al., 2014;
Pirger et al., 2021).

A persistent behavioral state can also occur without long-
term PN activation, but instead due to the duration of PN
modulatory actions. In Aplysia feeding, repeated CBI-2 stimulation
progressively adapts CPG activity and improves behavioral output,
due to second messenger accumulation in target CPG neurons
(Cropper et al., 2017). As a result, the CPG is biased toward
one output over another, which may stabilize the circuit when
one behavior is more likely to be useful (Cropper et al., 2017).
Different from this auto-regulation, in another mollusk, Lymnaea,
the octopaminergic OC cells enhance CPG responses to other
modulatory neurons for multiple motor pattern cycles (Benjamin,
2012). Thus, motor system state can be regulated directly at the PN
level, or in circuit responsiveness to PNs, across multiple timescales.

3.3. Long-distance CPG feedback

Another source of regulation is synaptic feedback from CPG
neurons to PNs, which results in PN firing being time-locked to
circuit activity, including in vivo and in semi-intact preparations
when PNs are activated by physiological stimuli (Gillette et al.,
1978; Blitz and Nusbaum, 2008; Mesce et al., 2008; Hedrich
et al., 2011; Blitz, 2017). A distinct case occurs in the stick insect
Carausius morosus in which PN walking-timed activity is due to
sensory feedback instead of CPG feedback (Stolz et al., 2019).
Feedback to PNs contributes to inter-circuit coordination, duration
of PN activity, and gating of other PN inputs (Wood et al., 2004;
Antri et al., 2009; Kozlov et al., 2014). Additionally, feedback

control of modulatory PN activity can be important for motor
pattern selection (see Section “4.2. Activity code”).

4. Motor pattern selection

4.1. Population code

Although experimentally-induced activation of an individual
PN can elicit a motor pattern, physiological stimuli often activate
more than one PN type (Coleman and Nusbaum, 1994; Esch and
Kristan, 2002; Beenhakker and Nusbaum, 2004; Benjamin, 2012;
Follmann et al., 2018; Fahoum and Blitz, 2021). This raises the
possibility that the “modulatory code” for selecting a motor output
is one in which different stimuli activate distinct PN subsets,
resulting in a combinatorial “population code.” Such a scenario
occurs in several systems, and experimentally manipulating which
PNs are active elicits switches between motor patterns (Kristan
and Shaw, 1997; Combes et al., 1999; Kupfermann and Weiss,
2001; Hedrich et al., 2009; Guo et al., 2022). In Aplysia when
the modulatory PN CBI-2 is active, repeated stimulations are
necessary to elicit an ingestive pattern, which is persistent, but
if CBI-2 and CBI-3 are both active, they immediately elicit
an ingestive motor pattern without induction of a persistent
state (Evans et al., 2021; Figure 2B). Thus, the population of
modulatory neurons active can determine the pattern produced,
and other aspects such as the dynamics of motor pattern
selection.

4.2. Activity code

Quantitatively, modulatory PN firing rate can regulate motor
output, although differences occur in network sensitivity (Kristan
et al., 2005; Hedrich et al., 2011; Benjamin, 2012; Spencer and
Blitz, 2016; Sakurai and Katz, 2019). Additionally, an “activity
code,” i.e., PN pattern and/or rate can encode qualitatively
distinct motor patterns and behaviors. In Drosophila courtship,
the same descending PN (aSP22) uses cumulative spike count,
to elicit different behaviors in a sequential fashion. In this
“ramp-to-threshold” mechanism, different behavioral components
of courtship are generated as the aSP22 spike count crosses
a series of thresholds (Figure 2C; McKellar et al., 2019). In
the crab STNS, mechanosensory neurons and neuroendocrine
cells each trigger long-lasting activation of two modulatory PNs
(MCN1, CPN2) (Beenhakker and Nusbaum, 2004; Blitz et al.,
2008). However, differential, long-lasting, modulation of CPG
feedback in these two states results in distinct MCN1/CPN2
activity patterns and rates which encode different chewing
behaviors, and different sensitivity to sensory feedback (Figure 2D;
Beenhakker et al., 2007; Blitz and Nusbaum, 2008, 2012; Diehl
et al., 2013; Blitz, 2017; White et al., 2017). The ability
to manipulate feedback synapses onto small populations of
identified modulatory neurons was essential for these insights
into how CPG feedback to PNs contributes to motor pattern
selection. Collectively, these examples illustrate that the same
PNs can use an activity code to select motor outputs, instead
of a population code of different PN subsets, with both
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FIGURE 2

Motor pattern selection by modulatory PNs is state-dependent, and can be encoded in the population of active PNs, or in PN activity. (A) The effects
of PN R3b1 are determined by environmental and internal conditions. Left, in an in vitro or semi-intact leech preparation, the R3b1 neuron elicits
either swimming or crawling in response to the same input. The swim and crawl CPGs consist of partially overlapping neurons (orange and blue
boxes). Fluid depth around the animal determines which locomotor pattern is selected. The proposed mechanism is that “shallow water detector”
neurons provide inhibitory input to the swim CPG and excitatory input to the crawl CPG (Esch et al., 2002). Right, in the presence of dopamine
(yellow cloud), the entire nervous system is biased toward crawling, and R3b1 only elicits crawling (Puhl et al., 2012). (B) Distinct subpopulations of
activated PNs select feeding patterns with different dynamics. When the modulatory PN CBI-2 alone is activated, repeated stimulation is necessary
to elicit an ingestive feeding pattern which persists for ∼30 min. However, if CBI-2 and CBI-3 are co-activated, an ingestive feeding pattern is
immediately selected, but it is a transient activation (Evans et al., 2021). (C) The same PN, aSP22, activates different CPGs and different behaviors
based on a spike number code. In this “ramp-to-threshold” example, as an increasing number of action potentials crosses different thresholds,
aSP22 progressively activates CPGs contributing to different aspects of courtship (McKellar et al., 2019). (D) In response to different stimuli, the
modulatory PNs MCN1 and CPN2 elicit qualitatively different chewing patterns due to distinctions in their activity patterns and rates (Beenhakker and
Nusbaum, 2004; Blitz et al., 2008; White and Nusbaum, 2011; Diehl et al., 2013). MCN1 and CPN2 activity is indicated as extracellular recordings,
with each colored box representing a burst of action potentials (different firing rates are not represented in the schematics). The differences in their
activity are due to different strengths of CPG feedback (CPG feedback terminal size (colored circles) is representative of relative CPG feedback
strength) (Blitz, 2017). Additionally, proprioceptive sensory neurons regulate MCN1 and CPN2 activity in the “orange” state when CPG feedback is
weak, but not in the “blue” state, when CPG feedback is stronger (Beenhakker et al., 2007; White et al., 2017). Species used in the referenced studies
are indicated in the panels.

mechanisms possible even in the same system, albeit in distinct
species (Beenhakker and Nusbaum, 2004; Blitz et al., 2008;
Hedrich et al., 2009).

5. Conclusion

Cellular-level access to modulatory PNs at their somata
and axon terminals, and their CPG neuron targets in several
invertebrate preparations enabled insights into regulation of PN
activity, strategies for selecting an appropriate motor pattern, and
significant complexity in communication between modulatory
PNs and their CPG targets. Invertebrate PNs and larger vertebrate
populations similarly link sensory and higher-order processing
with motor circuits, and many of the insights discussed have

already, or likely will be found to extend to larger circuits
(Dickinson, 2006; Sharples et al., 2014; Yang et al., 2020).
Technological advances are enabling recording and manipulation
of genetically identified populations in organisms with barriers to
electrophysiological approaches (e.g., neuronal size, accessibility,
population size). However invertebrate organisms remain
important for determining how modulatory PNs regulate circuits
at the cellular-level, via electrophysiological recordings and
manipulations that remain difficult in larger systems. Given the
rapidly developing techniques making investigation in larger
systems more tractable, plus the application of genetic approaches
to classic neurophysiologically-accessible model organisms
(Kim et al., 2017; Northcutt et al., 2018, 2019; Devineni and
Scaplen, 2022; Leiras et al., 2022), diverse models and approaches
are expected to continue increasing our understanding of how
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motor circuits rapidly adapt to the everchanging conditions in and
around us.
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